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Explicit expressions for higher order binomial
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Abstract We give explicit expressions for higher order binomial convolutions
of sequences of numbers having a finite exponential generating function. Il-
lustrations involving Cauchy, Bernoulli, and Apostol-Euler numbers are pre-
sented. In these cases, we obtain formulas easy to compute in terms of Stirling
numbers.
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1 Introduction

LetN be the set of positive integers andN0 = N∪{0}. The Cauchy numbers of
the first kind c = (cn)n≥0 are defined via their exponential generating function
as

G(c, z) =
z

log(1 + z)
=

∞∑
n=0

cn
zn

n!
, z ∈ C, |z| < 1, (1)

(see, for instance, Comtet [5, Ch. VII] or Merlini et al. [13]), or in integral
form as

cn =

∫ 1

0

(θ)n dθ, n ∈ N0, (2)
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where (θ)n is the descending factorial, i.e., (θ)n = θ(θ − 1) · · · (θ − n + 1),
n ∈ N, (θ)0 = 1. Different generalizations of these numbers can be found in
Komatsu and Yuan [12], Pyo et al. [15], and the references therein.

The starting point of this note is a recent paper by Komatsu and Simsek
[11], in which these authors pose the problem of finding rational numbers
a0, . . . , am−1, such that∑

l1+···+lm=µ

(
µ

l1, . . . , lm

) ∑
k1+···+km=n

(
n

k1, . . . , km

)
ck1+l1 · · · ckm+lm

=

m−1∑
j=0

ajcn+µ−j ,

(3)

where(
n

k1, . . . , km

)
=

n!

k1! · · · km!
, k1, . . . , km ∈ N0, k1 + · · ·+ km = n,

is the multinomial coefficient. Actually, Komatsu and Simsek [11] find explicit
formulae for m = 3 and m = 4 using umbral calculus. Observe that the right-
hand side in (3) is a linear combination of Cauchy numbers.

The aim of this note is to provide explicit expressions for the left-hand
side in (3), where the Cauchy numbers are replaced by arbitrary sequences
of numbers having a finite exponential generating function. This is done in
Theorem 1 in the following section. When applied to various sequences of
numbers, such as the Cauchy, the Bernoulli, and the Apostol-Euler numbers,
Theorem 1 gives us formulas easy to compute, since they depend on the Stirling
numbers of the first and second kinds (see Section 3).

2 The main result

Unless otherwise specified, we assume from now on that n, µ ∈ N0, m ∈ N,
and z ∈ C with |z| < r, where r > 0 may change from line to line. Let H be
the set of real sequences u = (un)n≥0 such that

∞∑
n=0

|un|
rn

n!
<∞,

for some radius r > 0. If u ∈ H, we denote its exponential generating function
by

G(u, z) =

∞∑
n=0

un
zn

n!
. (4)

If u and v are in H, the binomial convolution of u and v, denoted by u×v =
((u× v)n)n≥0, is defined as

(u× v)n =

n∑
k=0

(
n

k

)
ukvn−k.
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It was shown in [2] that if u(k) = (u
(k)
n )n≥0 ∈ H, k = 1, . . . ,m, then u(1) ×

· · · × u(m) ∈ H and

(u(1) × · · · × u(m))n =
∑

j1+···+jm=n

(
n

j1, . . . , jm

)
u
(1)
j1
· · ·u(m)

jm
. (5)

In addition, u(1) × · · · × u(m) is characterized by its exponential generating
function

G(u(1) × · · · × u(m), z) = G(u(1), z) · · ·G(u(m), z). (6)

Finally, denote by

J(u(1) × · · · × u(m);µ, n)

=
∑

l1+···+lm=µ

(
µ

l1, . . . , lm

) ∑
k1+···+km=n

(
n

k1, . . . , km

)
u
(1)
k1+l1

· · ·u(m)
km+lm

.
(7)

With these ingredients, we state the following.

Theorem 1 Let u(k) ∈ H, k = 1, . . . ,m. Then,

J(u(1) × · · · × u(m);µ, n) = (u(1) × · · · × u(m))µ+n.

Proof If u ∈ H and l ∈ N0, we consider the shifted sequence u(l) ∈ H defined
as

u(l) = (ul+n)n≥0. (8)

Differentiating term by term in (4), we see that

G(u(l), z) = G(l)(u, z).

Hence, using Leibniz’s rule for differentiation in (6), we get

G((u(1) × · · · × u(m))(µ), z) = G(µ)(u(1) × · · · × u(m), z)

=
∑

l1+···+lm=µ

(
µ

l1, . . . , lm

)
G(l1)(u(1), z) · · ·G(lm)(u(m), z)

=
∑

l1+···+lm=µ

(
µ

l1, . . . , lm

)
G(u(1)(l1)× · · · × u(m)(lm), z),

(9)

By (8), we have

G((u(1) × · · · × u(m))(µ), z) =

∞∑
n=0

(u(1) × · · · × u(m))µ+n
zn

n!
. (10)

By (5) and (8), we see that

G(u(1)(l1)× · · · × u(m)(lm), z) =

∞∑
n=0

(u(1)(l1)× · · · × u(m)(lm))n
zn

n!

=

∞∑
n=0

zn

n!

∑
k1+···+km=n

(
n

k1, . . . , km

)
u
(1)
l1+k1

· · ·u(m)
lm+km

.

This, in conjunction with (9) and (10), shows the result.
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According to Theorem 1, in order to compute expression (7), we only need
to look at the µ+n term of the binomial convolution u(1)×· · ·×u(m), which,
in turn, can be obtained by differentiating the exponential generating function
in (6). In many occasions, such a term can be described in probabilistic terms,
as it happens in the case of the Cauchy numbers considered in the following
section.

3 Examples

Let (Uj)j≥1 be a sequence of independent identically distributed random vari-
ables having the uniform distribution on [0, 1] and denote by

Sm = U1 + · · ·+ Um (S0 = 0). (11)

It is well known (cf. Feller [8, p. 27] or Adell and Sangüesa [4, Proposition
2.1]) that the probability density of Sm is given by the spline funcion

ρm(θ) =
1

(m− 1)!

m−1∑
k=0

(
m

k

)
(−1)k(θ − k)m−1+ , θ ∈ [0,m], (12)

where x+ = max(x, 0). On the other hand, recall that the Stirling numbers
of the first and second kind, respectively denoted by s(n, k) and S(n, k), k =
0, 1 . . . , n, are defined by

(x)n =

n∑
k=0

s(n, k)xk, xn =

n∑
k=0

S(n, k)(x)k, x ∈ R, (13)

(see, for instance, Abramowitz and Stegun [1] or Olver et al. [14]). Finally,
Sun [16] (see also [2]) showed the following probabilistic representation for the
Stirling numbers of the second kind

S(n,m) =

(
n

m

)
ESn−mm , m = 0, 1 . . . , n, (14)

where E stands for mathematical expectation.
With the preceding notations, we state the following.

Corollary 1 Let c = (cn)n≥0 be the Cauchy numbers. Then,

J(
m
^

c× · · · × c;µ, n) =

∫ m

0

(θ)µ+nρm(θ) dθ =

µ+n∑
k=0

s(µ+ n, k)S(m+ k,m)(
m+k
m

) .

Proof From (1) and (12), we see that

G(c, z) =
z

log(1 + z)
=

∫ 1

0

(1 + z)θ dθ = E(1 + z)U1 .
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By (6), (11), and the independence between the random variables involved,
we have

G(
m
^

c× · · · × c, z) = E(1 + z)U1 · · ·E(1 + z)Um = E(1 + z)Sm =

∞∑
n=0

E(Sm)n
zn

n!
,

(15)
where in the last equality we have used the binomial expansion. This means
that

(
m
^

c× · · · × c)µ+n = E(Sm)µ+n =

∫ m

0

(θ)µ+nρm(θ) dθ, (16)

as follows from (12). Finally, we get from (13) and (14)

E(Sm)µ+n =

µ+n∑
k=0

s(µ+ n, k)ESkm =

µ+n∑
k=0

s(µ+ n, k)S(m+ k,m)(
m+k
m

) .

This, together with (16) and Theorem 1, completes the proof.

The Bernoulli numbers B = (Bn)n≥0 are defined by their exponential
generating function as

G(B, z) =
z

ez − 1
=

∞∑
n=0

Bn
zn

n!
.

The Cauchy numbers of the first kind defined in (1) are also named Bernoulli
numbers of the second kind, denoted in many papers by b = (bn)n≥0. This
is the reason why we use capital letters to denote the Bernoulli numbers.
Recently, we have shown in [3, Theorem 6] that

(

m
^

B × · · · ×B)n =

n∑
k=0

S(n, k)s(m+ k,m)(
m+k
m

) .

This formula and Theorem 1 immediately yield the following result.

Corollary 2 Let B = (Bn)n≥0 be the Bernoulli numbers. Then,

J(

m
^

B × · · · ×B;µ, n) =

µ+n∑
k=0

S(µ+ n, k)s(m+ k,m)(
m+k
m

) .

Comparing Corollaries 1 and 2, it is interesting to note that the roles of
the Stirling numbers of the first and second kinds are interchanged.

As a last example, consider the Apostol-Euler numbers e(β) = (e
(β)
n )n≥0

defined by means of their exponential generating function as

G(e(β), z) =
1

1 + β(ez − 1)
=

∞∑
n=0

e(β)n

zn

n!
, 0 < β ≤ 1. (17)
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For β = 1/2, e(β) are the classical Euler numbers. Apostol-type numbers and
polynomials extending formula (17) can be found in Hernández-Llanos et al.
[10]. The following formula has been proved in [3, Theorem 8]

(

m
^

e(β) × · · · × e(β))n =

n∑
k=0

(−m)kβ
kS(n, k). (18)

Similar identities to (18) were obtained by Dilcher [6], He and Araci [9], and
Dilcher and Vignat [7]. Formula (18), in conjunction with Theorem 1, gives us
the following corollary.

Corollary 3 Let e(β) = (e
(β)
n )n≥0 be the Apostol-Euler numbers. Then,

J(

m
^

e(β) × · · · × e(β);µ, n) =

µ+n∑
k=0

(−m)kβ
kS(µ+ n, k).
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