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Abstract

The Primal-Dual Hybrid Gradient (PDHG) algorithm is a powerful algorithm used quite fre-
quently in recent years for solving saddle-point optimization problems. The classical application
considers convex functions, and it is well studied in literature. In this paper, we consider the con-
vergence of an alternative formulation of the PDHG algorithm in the nonconvex case under the
precompact assumption. The proofs are based on the Kurdyka-Łojasiewic functions, that covers
a wide range of problems. A simple numerical experiment illustrates the convergence properties.

Key words: Primal-Dual Hybrid Gradient algorithms, Kurdyka-Łojasiewic functions,
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1. Introduction

This paper is devoted to solving the following well-studied primal problem

min
x
Φ(x) := f (x) + g(Kx), (1)

where K ∈ Rm×n and x ∈ Rn. If f and g are convex functions, one can represent model (1) as the
following saddle-point problem

min
x

max
y
Ψ(x, y) := f (x) − y⊤Kx − g∗(y), (2)

where g∗ is the convex conjugate function of g. The saddle-point problem (2) is ubiquitous
in different disciplines and applications, especially in the total variation regularization problem
arising in imaging science [1, 2, 3].
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A classical and frequently-used method for solving problem (2) is the Primal-Dual Hybrid
Gradient (PDHG) algorithm [4, 5]. Mathematically, PDHG algorithm can be described as the
iterative process 

xk+1 = arg min
x

{
Ψ(x, yk) +

r
2
∥x − xk∥22

}
,

yk+1 = arg max
y

{
Ψ(xk+1, y) − s

2
∥y − yk∥22

}
,

(3)

where r and s are the step sizes of the method. If f and g are convex functions, another descrip-
tion (obtained by choosing θ = 0 in [6]) of the PDHG algorithm is given by

yk+1 ∈ arg min
y

{ s
2
∥y − Kxk∥22 − ⟨y, qk⟩ + g(y)

}
,

qk+1 = qk + s(Kxk − yk+1),

xk+1 ∈ arg min
x

{
1
2t
∥x − xk∥22 + ⟨Kx, qk+1⟩ + f (x)

}
,

(4)

where now K, r and t are the parameters and step sizes of the method. We can easily see that in (4)
the main steps in each iteration just lay on calculating the proximal maps of f and g. Compared
with (3), the scheme (4) can be directly used to the nonconvex case. This is because in (3) the
convex conjugate function g∗ is used in the definition (2) of the function Ψ(x, y), however, the
conjugate function of a nonconvex function has not been well defined yet in literature, but the
proximal maps used in (4) exist for closed nonconvex functions.

Although scheme (4) is apparently similar to the Alternating Direction Method of Multipliers
(ADMM) algorithm [7, 8, 9, 10], they are in fact quite different (the authors in [6] also point out
this fact). Actually, PDHG has a deep relationship with the inexact Uzawa method [11]. In
[12], the authors prove the convergence of PDHG under asymptotical assumptions on the step
sizes. The sublinear convergence rate was established in [13] in an ergodic sense via variational
inequalities, providing a very concise way to understand the convergence influenced by the step
size. Meanwhile, paper [1] also proves the sublinear convergence rate of the PDHG, and this
convergence problem is an active research subject in literature [14, 15, 16, 17].

In all the previous papers, the convergence problem was studied for the convex case. In
this paper, we study the convergence of the PDHG algorithm for the nonconvex case. More
precisely, we consider the scheme (4) where f and g are both nonconvex functions. With the
help of Kurdyka-Łojasiewic function properties, we prove that the points generated by scheme
(4) converge to a critical point of Φ under the precompact assumption (that is, assuming the
sequence is bounded). The proofs of our results are motivated by previous recent works [18,
19, 20]. Finally, we present a simple numerical experiment to show the convergence properties.
We remark that the convergence results presented in this paper are based on the precompact
assumption. Then, we do not prove the generic convergence problem for the nonconvex PDHG
algorithm.

The paper is organized as follows: Section 2 presents some basic results and definitions;
Section 3 contains the convergence results for the nonconvex PDHG algorithm; Section 4 reports
a simple numerical example; and finally, Section 5 presents some conclusions.
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2. Preliminaries

In this section we present the definitions and basic properties in variational and convex anal-
ysis and in Kurdyka-Łojasiewicz functions used later in the convergence analysis.

2.1. Subdifferentials
We collect several definitions as well as some useful properties in variational and convex

analysis (see for more details the excellent monographes [21, 22, 23]).
Given a lower semicontinuous function J : RN → (−∞,+∞], its domain is defined by

dom(J) := {x ∈ RN : J(x) < +∞}.

The graph of a real extended valued function J : RN → (−∞,+∞] is defined by

graph(J) := {(x, v) ∈ RN × R : v = J(x)}.

The notation of subdifferential plays a central role in (non)convex optimization.

Definition 2.1 (Subdifferentials [21, 22]). Let J : RN → (−∞,+∞] be a proper and lower
semicontinuous function.

1. For a given x ∈ dom(J), the Fréchet subdifferential of J at x, written as ∂̂J(x), is the set of
all vectors u ∈ RN which satisfy

lim inf
y,x
y→x

J(y) − J(x) − ⟨u, y − x⟩
∥y − x∥2

≥ 0.

When x < dom(J), we set ∂̂J(x) = ∅.
2. The (limiting) subdifferential, or simply the subdifferential, of J at x ∈ RN , written as
∂J(x), is defined through the following closure process

∂J(x) := {u ∈ RN : ∃xk → x, J(xk)→ J(x) and uk ∈ ∂̂J(xk)→ u as k → ∞}.

It is easy to verify that the Fréchet subdifferential is convex and closed while the subdifferen-
tial is closed. When J is convex, the definition agrees with the one used in convex analysis [23]
which can be described as

∂J(x) := {v : J(y) ≥ J(x) + ⟨v, y − x⟩ for any y ∈ RN}.

Let {(xk, vk)}k∈N be a sequence in RN × R such that (xk, vk) ∈ graph (∂J). If (xk, vk) converges to
(x, v) as k → +∞ and J(xk) converges to v as k → +∞, then (x, v) ∈ graph(∂J). This fact gives
us the following simple proposition.

Proposition 2.2. If vk ∈ ∂J(xk), limk vk = v and limk xk = x, then we have that

v ∈ ∂J(x). (5)

A necessary condition for x ∈ RN to be a minimizer of a lower semicontinuous function J(x) is

0 ∈ ∂J(x). (6)

When J is convex, (6) is also sufficient. A point that satisfies (6) is called (limiting) critical point.
The set of critical points of J(x) is denoted by crit(J).
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Proposition 2.3. If x∗ satisfies that

0 ∈ ∂ f (x∗) + K⊤∂g(Kx∗). (7)

Then, x∗ is a critical point of Φ.

Proof. It is easy to obtain that

0 ∈ ∂ f (x∗) + K⊤∂g(Kx∗) ⊆ ∂Φ(x∗). (8)

So, x∗ is a critical point of Φ.

2.2. Kurdyka-Łojasiewicz functions
In this paper the convergence analysis is based on the Kurdyka-Łojasiewicz functions, orig-

inated in the seminal works of Łojasiewicz [24] and Kurdyka [25]. These kind of functions has
played a key role in several recent convergence results on nonconvex minimization problems
and they are ubiquitous in applications. For example, semi-algebraic, subanalytic and log-exp
functions are Kurdyka-Łojasiewicz functions (see [26, 27, 28]).

Definition 2.4. [26, 27] (a) The lower semicontinuous function J : RN → (−∞,+∞] is said
to have the Kurdyka-Łojasiewicz (KL) property at x ∈ dom(∂J) if there exist η ∈ (0,+∞], a
neighborhood U of x and a continuous function (desingularizing function): φ : [0, η)→ R+ such
that

1. φ(0) = 0.
2. φ is C1 on (0, η).
3. (Concavity) For all s ∈ (0, η), φ′(s) > 0.
4. For all x in U

∩{x | J(x) < J(x) < J(x) + η}, the Kurdyka-Łojasiewicz inequality holds

φ′(J(x) − J(x)) dist(0, ∂J(x)) ≥ 1. (9)

(b) Proper lower semicontinuous functions which satisfy the Kurdyka-Łojasiewicz property
at each point of dom(∂J) are called Kurdyka-Łojasiewicz (KL) functions.

KL functions have several interesting properties. We present here a result used later in the
main theorem (Theorem 3.7).

Lemma 2.5. (Lemma 3.6, [26]) Let J : RN → R be a proper lower semi-continuous function
and Ω be a compact set. If J is constant on Ω and satisfies the KL property at each point on Ω,
then there exist a function φ and constants η, ε > 0 such that for any x ∈ Ω and any x satisfying
that dist(x,Ω) < ε and f (x) < f (x) < f (x) + η, it holds that

φ′(J(x) − J(x)) dist(0, ∂J(x)) ≥ 1. (10)

The concept of semi-algebraic sets and functions can help to find and check a very rich class
of Kurdyka-Łojasiewicz functions.

Definition 2.6 (Semi-algebraic sets and functions [27]). (i) A subset S of RN is a real semi-
algebraic set if there exists a finite number of real polynomial functions gi j, hi j : RN → R such
that

S =
p∪

j=1

q∩
i=1

{u ∈ RN : gi j(u) = 0 and hi j(u) < 0}.
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(ii) A function h : RN → (−∞,+∞] is a semi-algebraic function if its graph

{(u, t) ∈ RN+1 : h(u) = t}

is a semi-algebraic set of RN+1.

If J is a semi-algebraic function, for any fixed x ∈ dom(∂J), the auxiliary desingularizing
function φ in Definition 2.4 takes the form

φ(s) = cs1−θ, (11)

where c > 0 and 0 ≤ θ < 1.

Lemma 2.7. [27] Let J : RN → R be a proper and lower semicontinuous function. If J is
semi-algebraic then it satisfies the KL property at any point of dom(J). In particular, if J is
semi-algebraic and dom(J) = dom(∂J), then J is a KL function.

We would like to point out that many common functions are semi-algebraic functions: real
polynomial functions; indicator functions of semi-algebraic sets; addition and composition of
semi-algebraic functions; and in matrix theory cone of PSD matrices, Stiefel manifolds and
constant rank matrices. We refer the reader to the reference [27] for these and more examples
and properties.

3. Convergence analysis

In this section we provide convergence results in the case f and g functions are semi-algebraic
(and so they are KL functions). First we detail some technical lemmas, and we will use the
following notation

wk := (xk, yk, qk, xk−1), dk := (xk, qk), (12)

where we use the convention w0 = w1.

Lemma 3.1. Let {(xk, yk, qk)}k=0,1,2,... be the sequence generated by the nonconvex PDHG algo-
rithm (4). If 1

2t − s∥K∥22 > 0, then we have that

L(wk) − L(wk+1) ≥ ν∥dk+1 − dk∥22, (13)

where ν := min{ 1
2t − s∥K∥22,

1
2s } and

L(x, y, q, x̂) := f (x) + g(y) + ⟨Kx − y, q⟩ + s∥y − Kx̂∥22 + s∥K∥22∥x − x̂∥22. (14)

Proof. Taking into account the iteration formula (4) of updating yk+1 we have that

s
2
∥yk+1 − Kxk∥22 − ⟨yk+1, qk⟩ + g(yk+1) ≤ s

2
∥yk − Kxk∥22 − ⟨yk, qk⟩ + g(yk). (15)

And updating xk+1

1
2t
∥xk+1 − xk∥22 + ⟨Kxk+1, qk+1⟩ + f (xk+1) ≤ ⟨Kxk, qk+1⟩ + f (xk). (16)
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Adding the above two inequalities we obtain

1
2t
∥xk+1 − xk∥22 +

s
2
∥yk+1 − Kxk∥22 + ⟨Kxk+1, qk+1⟩ − ⟨yk+1, qk⟩ + f (xk+1) + g(yk+1)

≤ s
2
∥yk − Kxk∥22 + ⟨Kxk, qk+1⟩ − ⟨yk, qk⟩ + f (xk) + g(yk).

(17)

Inequality (17) can be represented as

⟨Kxk+1 − yk+1, qk+1⟩ + f (xk+1) + g(yk+1)

+
1
2t
∥xk+1 − xk∥22 +

s
2
∥yk+1 − Kxk∥22 + ⟨Kxk − yk+1, qk − qk+1⟩

≤ s
2
∥yk − Kxk∥22 + ⟨Kxk − yk, qk⟩ + f (xk) + g(yk).

(18)

From the iteration of qk+1 in (4), we have that

⟨qk − qk+1,Kxk − yk+1⟩ = s∥Kxk − yk+1∥22. (19)

Substituting (19) into (18), we obtain

⟨Kxk+1 − yk+1, qk+1⟩ + f (xk+1) + g(yk+1)

+
1
2t
∥xk+1 − xk∥22 +

3s
2
∥yk+1 − Kxk∥22

≤ s
2
∥yk − Kxk∥22 + ⟨Kxk − yk, qk⟩ + f (xk) + g(yk).

(20)

Now, by using the Schwartz’s inequality we infer

s
2
∥yk − Kxk∥22 =

s
2
∥yk − Kxk−1 + Kxk−1 − Kxk∥22

≤ s∥yk − Kxk−1∥22 + s∥Kxk−1 − Kxk∥22
≤ s∥yk − Kxk−1∥22 + s∥K∥22 · ∥xk−1 − xk∥22. (21)

And by substituting (21) into (20)

⟨Kxk+1 − yk+1, qk+1⟩ + f (xk+1) + g(yk+1)

+
1
2t
∥xk+1 − xk∥22 +

3s
2
∥yk+1 − Kxk∥22

≤ s∥yk − Kxk−1∥22 + s∥K∥22 · ∥xk−1 − xk∥22
+⟨Kxk − yk, qk⟩ + f (xk) + g(yk).

(22)

Defining ν := min{ 1
2t − s∥K∥22,

1
2s } > 0, and using the operator L (Eq. 14) we will have that

L(xk+1, yk+1, qk+1, xk) + ν∥xk+1 − xk∥22 +
s
2
∥yk+1 − Kxk∥22 ≤ L(xk, yk, qk, xk−1). (23)

Taking into account that yk+1 − Kxk = (qk − qk+1)/s and ν ≤ 1
2s , we obtain the result.

The next lemma relates the critical points of the functions L and Φ.
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Lemma 3.2. If w∗ = (x∗, y∗, q∗, x̂∗) is a critical point of the function L (14), then, x∗ is a critical
point of Φ.

Proof. A direct differentiation calculus will give that

∂L(w) =


∂ f (x) + K⊤q + 2s∥K∥22(x − x̂)
∂g(y) − q + 2s(y − Kx̂)

Kx − y
2sK⊤(Kx̂ − y)
2s∥K∥22(x̂ − x)

 . (24)

As w∗ is a critical point of L then 0 ∈ ∂L(w∗). That is, we have
0 ∈ ∂ f (x∗) + K⊤q∗ + 2s∥K∥22(x∗ − x̂∗),
0 ∈ ∂g(y∗) − q∗ + 2s(y∗ − Kx̂∗),
0 = Kx∗ − y∗,
0 = 2sK⊤(Kx̂∗ − y∗),
0 = 2s∥K∥22(x̂∗ − x∗).

(25)

So, we obtain that
0 ∈ ∂ f (x∗) + K⊤∂g(Kx∗) ⊆ ∂Φ(x∗), (26)

and from Proposition 2.3 we have that x∗ is a critical point of Φ.

Lemma 3.3. Let {(xk, yk, qk)}k=0,1,2,... be the sequence generated by the nonconvex PDHG (4).
Then, there exists L > 0 such that

dist(0, ∂L(wk+1)) ≤ L∥dk+1 − dk∥2. (27)

Proof. Note that yk+1 minimizes
s
2
∥y − Kxk∥22 − ⟨y, qk⟩ + g(y), then

0 ∈ ∂
[ s
2
∥y − Kxk∥22 − ⟨y, qk⟩ + g(y)

]∣∣∣∣∣
y=yk+1

.

That is, the optimization condition of the algorithm at each iteration gives that

qk + s(Kxk − yk+1) ∈ ∂g(yk+1). (28)

Similarly, we can derive that

−K⊤qk+1 − 1
t

(xk+1 − xk) ∈ ∂ f (xk+1). (29)

Substituting (28) and (29) into (24), we have

zk+1 :=



2s∥K∥22(xk+1 − xk) − 1
t (xk+1 − xk)

s(yk+1 − Kxk) = qk − qk+1

Kxk+1 − yk+1

2sK⊤(Kxk − yk+1) = 2K⊤(qk+1 − qk)
2s∥K∥22(xk − xk+1)


∈ ∂L(wk+1), (30)
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where for convenience, we have defined the term zk+1. Note that

Kxk+1 − yk+1 = Kxk − yk+1 + Kxk+1 − Kxk = qk+1 − qk + Kxk+1 − Kxk. (31)

Thus, we have
∥Kxk+1 − yk+1∥2 ≤ ∥qk+1 − qk∥2 + ∥K∥2 ∥xk+1 − xk∥2. (32)

Therefore, we can further obtain that

∥zk+1∥2 ≤
[
(
1
t
− 2s∥K∥22) + ∥K∥2 + 2s∥K∥22

]
∥xk+1 − xk∥2

+(2 + 2∥K∥2)∥qk+1 − qk∥2
≤ L∥dk+1 − dk∥2, (33)

where L =
√

2 max
{ 1

t + ∥K∥2, 2 + 2∥K∥2
}
. Then, we have

dist(0, ∂L(wk+1)) ≤ dist(0, zk+1) = ∥zk+1∥2 ≤ L∥dk+1 − dk∥2. (34)

Lemma 3.4. If 1
2t − s∥K∥22 > 0 and the sequence {(xk, yk, qk)}k=0,1,2,..., generated by the nonconvex

PDHG (4), is bounded. Then, we have

lim
k
∥dk+1 − dk∥2 = 0, (35)

being dk defined in (12). Moreover, for any cluster point (x∗, y∗, q∗), x∗ is also a critical point of
Φ.

Proof. We note that the boundness of {(xk, yk, qk)}k=0,1,2,... indicates the boundness of {wk}k=0,1,2,...,
and the continuity of L indicates that {L(wk)}k=0,1,2,... is also bounded. Moreover, from Lem-
ma 3.1, L(wk) is decreasing. Thus, the sequence {L(wk)}k=0,1,2,... is convergent, i.e., limk[L(wk)−
L(wk+1)] = 0. Now, using Lemma 3.1, we infer

lim
k
∥dk+1 − dk∥2 ≤ lim

k

√
L(wk) − L(wk+1)

ν
= 0. (36)

For any cluster point (x∗, y∗, q∗), there exists {k j} j=0,1,2,... such that lim j(xk j , yk j , qk j ) = (x∗, y∗, q∗).
Then, lim j(xk j+1, qk j+1) = (x∗, q∗). Note that

lim
j

yk j+1 = lim
j

(
Kxk j − qk j − qk j+1

s

)
= Kx∗.

From the definition of the PDHG scheme (4), we have the following conditions

qk j − s(yk j+1 − Kxk j ) ∈ ∂g(yk j+1),

−K⊤qk j+1 − xk j+1 − xk j

t
∈ ∂ f (xk j+1). (37)

Letting j→ +∞, and using Proposition 2.2, we have

q∗ ∈ ∂ f (x∗),
−K⊤q∗ ∈ ∂g(Kx∗). (38)

Thus, 0 ∈ ∂ f (x∗) + K⊤∂g(Kx∗) ⊆ ∂Φ(x∗), and therefore, x∗ is a critical point of Φ.
8



Now, we recall the definition of the limit point set introduced in [26].

Definition 3.5. Let dk j be a sequence generated by PDHG scheme from a starting point d0 ∈ RN ,
then we define the setM(d0) of all limit points

M(d0) := {u ∈ RN : ∃ an increasing sequence of integers {k j} j∈N such that dk j → u as j→ ∞}.

Before proving our main theorem the following result provides some properties of the limit
point set.

Lemma 3.6. Let {(xk, yk, qk)}k=0,1,2,... be a sequence generated by the PDHG scheme (4) which is
assumed to be bounded, and 1

2t − s∥K∥22 > 0. Then, the following assertions hold.

(1) The limit point setM(w0) is nonempty andM(w0) ⊆ cri(L) (the set of critical points of
L).

(2) limk dist(wk,M(w0)) = 0.
(3) The objective function L is finite and constant onM(w0).

Proof. (1) As the sequence {(xk, yk, qk)}k=0,1,2,... is bounded, also the sequence {wk}k=0,1,2,... is
bounded, and then M(w0) is nonempty. Assume that w∗ ∈ M(w0), from the definition, there
exists a subsequence wki → w∗. From Lemma 3.1, we have dki−1 → d∗, and from Lemma 3.3,
we have that zki ∈ ∂L(wki ) and zki → 0 (using zk defined in (30)). Therefore, Proposition 2.2
indicates that 0 ∈ ∂L(w∗), i.e. w∗ ∈ cri(L).

(2) We obtain the proof by “reductio ad absurdum”. Assume this assertion does not hold.
Then, there exist {k j} j=0,1,2,... such that

dist(wk j ,M(w0)) ≥ ε0 > 0. (39)

Note that {k j} j=0,1,2,... is bounded, and without loss of generality we assume that {wk j } j=0,1,2,... →
w∗. Obviously, w∗ ∈ M(w0) from the definition. That means dist(w∗,M(w0)) = 0. However,
from (39), we obtain that

dist(w∗,M(w0)) > 0, (40)

which leads to a contradiction.
(3) Let the subsequence wki → w∗ ∈ cri(L). It is easy to see that L(wki ) is decreasing and

L(wki ) > −∞. Then, L(wki ) → L(w∗) which is a finite constant. Let w ∈ cri(L) be another
critical point. It is easy to see that there exists w ji → w satisfying that ji ≤ ki for any i. The
descend property of L gives that

L(wki ) ≤ L(w ji ).

Letting i → +∞, we have L(w∗) ≤ L(w). Similarly, we can obtain L(w) ≤ L(w∗). Then, the
function value of L is constant onM(w0).

Now, we present our main theorem about the convergence of the nonconvex PDHG algorithm
approaching the set of critical points. We consider the precompact assumption in the convergence
study of the nonconvex PDHG (in a similar way as Theorem 1 for the PALM algorithm of [26]),
i.e., we assume the sequence is bounded.
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Theorem 3.7 (Convergence result). Suppose that f , g are both semi-algebraic functions and
1
2t − s∥K∥22 > 0. Let {(xk, yk, qk)}k=0,1,2,... be a sequence generated by the PDHG scheme (4) which
is assumed to be bounded. Then, the sequence {dk}k=0,1,2,3,... defined in (12) has finite length, i.e.

+∞∑
k=0

∥dk+1 − dk∥2 < +∞. (41)

Moreover, {dk}k=0,1,2,3,... converges to (x∗, q∗), where x∗ is a critical point of Φ.

Proof. As f and g are both semi-algebraic functions, obviously L is also semi-algebraic. Be-
sides, from Lemma 3.6, L is constant on M(w0). Let w∗ be a stationary point of {wk}k=0,1,2,....
Also from Lemmas 2.5 and 3.6, we have dist(wk,M(w0)) < ε and there is a constant η such that
L(wk) < L(w∗) + η for any k > k̃ for some k̃ ∈ N. Hence, also, from Lemma 2.5, we infer

φ′(L(wk) − L(w∗)) dist(0, ∂L(wk)) ≥ 1, (42)

which together with Lemma 3.3 gives that

1
φ′(L(wk) − L(w∗))

≤ dist(0, ∂L(wk)) ≤ L∥dk − dk−1∥2. (43)

Then, the concavity of φ yields that

L(wk) − L(wk+1) = L(wk) − L(w∗) − [L(wk+1) − L(w∗)]

≤ φ[L(wk) − L(w∗)] − φ[L(wk+1) − L(w∗)]
φ′[L(wk) − L(w∗)]

≤ {
φ[L(wk) − L(w∗)] − φ[L(wk+1) − L(w∗)]

} × L∥dk − dk−1∥2.

Taking into account Lemma 3.1, we have that

ν∥dk+1 − dk∥22 ≤
{
φ[L(wk) − L(w∗)] − φ[L(wk+1) − L(w∗)]

} × L∥dk − dk−1∥2,

which is equivalent to

2
ν

L
∥dk+1 − dk∥2 ≤ 2

√
φ[L(wk) − L(w∗)] − φ[L(wk+1) − L(w∗)]

×
√
ν

L

√
∥dk − dk−1∥2. (44)

Using the Schwartz’s inequality, we infer

2
ν

L
∥dk+1 − dk∥2 ≤ {φ[L(wk) − L(w∗)] − φ[L(wk+1) − L(w∗)]}

+
ν

L
(∥dk − dk−1∥2). (45)

Adding (45) from k̃ to k̃ + j yields that

ν

L

k̃+ j−1∑
k=k̃

∥dk+1 − dk∥2 +
2ν
L
∥dk̃+ j+1 − dk̃+ j∥2 ≤ φ[L(wk̃) − L(w∗)] − φ[L(wk̃+ j+1) − L(w∗)]. (46)

10



Taking the limit j→ +∞, combined with Lemma 3.3, we have

ν

L

+∞∑
k=k̃

∥dk+1 − dk∥2 ≤ φ[L(wK) − L(w∗)] < +∞. (47)

Note that sequence {(xk, yk, qk)}k=0,1,2,... is assumed to be bounded. From the inequality above, we
can see that {dk}k=0,1,2,... is convergent. From Lemma 3.4, there exists a stationary point (x∗, y∗, q∗)
of {(xk, yk, qk)}k=0,1,2,... such that x∗ is a critical point of Φ. Then, {dk}k=0,1,2,... is convergent and
(x∗, q∗) is a stationary point of {dk}k=0,1,2,.... That is to say, {dk}k=0,1,2,... converges to (x∗, q∗). This
completes the proof.

Remark 3.8. From the second step in each iteration of the nonconvex PDHG, we also have that
yk → Kx∗. Then, y∗ = Kx∗ and w∗ = (x∗,Kx∗, q∗, x∗).

Theorem 3.9 (Convergence rate). In the conditions of Theorem 3.7, and assuming that the con-
cave desingularizing function of L at the point w∗ is given by φ(s) = c s1−θ (Eq. (11)). Then, the
following items hold.

(1) If θ = 0, the sequence {wk}k=0,1,2,... converges in a finite numbers of steps (and so, the
sequence {xk}k=0,1,2,... converges).

(2) If 0 < θ ≤ 1
2 , then there exist α > 0 and 0 ≤ τ < 1 such that ∥xk−x∗∥2 ≤ ∥wk−w∗∥2 ≤ α τk.

(3) If 1
2 < θ < 1, then there exist α > 0 such that ∥xk − x∗∥2 ≤ ∥wk − w∗∥2 ≤ α k−

1−θ
2θ−1 .

Proof. This is a classical result that follows convergence theorems in KL theory. The proof is
similar to Theorem 5 in [29] and it will not be presented here.

We remark that the previous results establish the convergence of the nonconvex PDHG
method, and Theorem 3.9 gives some idea of the convergence rates, but without giving a com-
plete analysis of it. In the following, we present sufficient conditions to guarantee boundedness
of the sequence generated by the nonconvex PDHG.

Lemma 3.10. Assume that f is differentiable, K∗ is invertible (i.e., ∥K∗q∥2 ≥ σ∥q∥2 for any
q ∈ Rm), and there exists τ > 0 such that

inf{ f (x) − 1
τ
∥∇ f (x)∥22} > −∞. (48)

If the parameters satisfy the following condition

256τ∥K∥22
σ2 < 1, (49)

and the step sizes t and s are chosen such that

2

1 +
√

1 − 256τ∥K∥22
σ2

< t <
2

1 −
√

1 − 256τ∥K∥22
σ2

,
32τ
σ2 +

1
2t2∥K∥22

< s <
1

2t∥K∥22
, (50)

then the sequence generated by the nonconvex PDHG algorithm is bounded if one of the follow-
ing conditions is satisfied:

1. function g is coercive and K is invertible,
11



2. function f (x) − 1
τ
∥∇ f (x)∥22 is coercive and inf g > −∞.

Proof. The definition of the function L (14) gives that

L(wk) = f (xk) + g(yk) + ⟨Kxk − yk, qk⟩ + s∥yk − Kxk−1∥22 + s∥K∥22∥xk − xk−1∥22. (51)

The second step in the iteration process of the nonconvex PDHG algorithm gives

K∗qk =
xk−1 − xk

t
− ∇ f (xk). (52)

Note that K∗ is invertible, so, there must exist σ > 0 such that

∥qk∥22 ≤
∥K∗qk∥22
σ2 ≤

2∥∇ f (xk)∥22
σ2 +

2∥xk − xk−1∥22
σ2t2 . (53)

On the other hand, we have that

⟨Kxk − yk, qk⟩ = ⟨Kxk − Kxk−1, qk⟩ + ⟨Kxk−1 − yk, qk⟩

≤ 32τ
σ2 ∥K∥

2
2 · ∥xk − xk−1∥22 +

σ2

8τ
∥qk∥22

+
32τ
σ2 ∥Kxk−1 − yk∥22 +

σ2

8τ
∥qk∥22. (54)

Substituting (53) and (54) into (51), we can obtain that

L(w0) ≥ L(wk) ≥ g(yk) + f (xk) − 1
τ
∥∇ f (xk)∥22 +

1
2τ
∥∇ f (xk)∥22

+[(s − 32τ
σ2 )∥K∥22 −

1
τt2 ] · ∥xk − xk−1∥22 + (s − 32τ

σ2 )∥yk − Kxk−1∥22. (55)

Under the parameters assumptions, we can see that (s − 32τ
σ2 )∥K∥22 −

1
τt2 ≥ 0 and s − 32τ

σ2 ≥
0. Now, in the case of condition –1– (function g is coercive and K is invertible), {yk}k=0,1,2,...,
{xk − xk−1}k=1,2,..., {∇ f (xk)}k=0,1,2,... and {yk − Kxk−1}k=1,2,... are bounded. And so, by the scheme of
PDHG, {wk}k=0,1,2,... is bounded. And in the case of condition –2– (function f (x) − 1

τ
∥∇ f (x)∥22 is

coercive and inf g > −∞), {xk}k=0,1,2,..., {xk − xk−1}k=1,2,..., {∇ f (xk)}k=0,1,2,... and {yk − Kxk−1}k=1,2,...
are bounded. And therefore, {wk}k=0,1,2,... is bounded.

Remark 3.11. Just as illustrative examples, and to show that the conditions imposed in the previ-
ous theorem are easily satisfied for some problems, we present two examples for the two cases.

Example 1 (condition –1–): Minimization of

min
x

1
2
∥b − Ax∥22 + λ∥x∥

q
q, (56)

where λ > 0, 0 < q < 1 and ∥ · ∥q denotes the ℓq norm. In paper [18], ∥b−Ax∥22 satisfies (48) with
τ = 1

2
√

2∥A∥22
and λ∥x∥qq is coercive.

Example 2 (condition –2–): Minimization of

min
x

1
2
∥b − Ax∥22 + g(Kx), (57)

where inf g > −∞, K is invertible and ∥A∥2 is small.
12



4. Numerical results

In this section, we present some numerical tests. The first part illustrates the convergence
of the nonconvex PDHG algorithm under a general matrix K. While the second part is de-
voted to compare the performances of different first-order methods that have been extensively
studied and widely used for solving a subset of the problem analyzed in this paper (PDHG,
Peaceman-Rachford splitting (PRS) [30, 31], Douglas-Rachford Splitting algorithm (DRS) [32],
Forward-Backward splitting algorithm (FB) [33] and Alternating Direction Method of Multipli-
ers algorithm (ADMM) [34]).

4.1. Performance of the nonconvex PDHG

This section contains a simple experimental result on the performance of the nonconvex
PDHG method in order to show the convergence of the scheme. We consider the following
problem

min
x

{
∥Kx∥0 +

λ

2
∥b − Ax∥22

}
, (58)

where x ∈ Rn, K, A ∈ Rm×n and ∥x∥0 = ♯(supp(x)). Letting g(·) := ∥ · ∥0 and f (x) = λ2 ∥b − Ax∥22,
then problem (58) can be rewritten in the same form as (1). In our tests we consider m = n = 100.
The PDHG algorithm applied to (58) takes the following form

yk+1 ∈ arg min
y

{ s
2
∥y − Kxk∥22 − ⟨y, qk⟩ + ∥y∥0

}
,

qk+1 = qk + s(Kxk − yk+1),

xk+1 =

(
λA⊤A +

In

t

)−1 (
xk

t
− K⊤qk+1 + λA⊤b

)
,

(59)

with In the identity matrix. In fact, the first step is the proximal map of ∥ · ∥0, which is easy to
compute [27]. More precisely, yk+1 can be calculated as

yk+1 =

 0, if Kxk +
qk

s <
√

2
s ,

Kxk +
qk

s , in other case.
(60)

In order to study the error of the convergence process we will show the relative error of a
sequence {xk}k=0,1,2,..., that is given by

RelErrk
x =
∥xk − x∗∥2
∥x∗∥2

, (61)

where x∗ is the convergent point of sequence {xk}k=0,1,2,.... In a similar manner we can obtain
RelErrk

y.
In any numerical iterative method a quite useful problem is the automatic error control, that is,

how to detect if the method has reached (within a required tolerance error) or not an approximate
solution of the problem. In our case, in the numerical tests we use the following error estimators
to study the convergence process: Estkf := | f k − f k+1|, Estkx := ∥xk+1 − xk∥2 and Dk, where in each
iteration f k and Dk are defined as:
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1. The function values
f k := ∥Kxk∥0 +

λ

2
∥b − Axk∥22. (62)

2. The distance of the subdifferential to the origin

Dk := dist
[
0, ∂

(
∥Kxk∥0 +

λ

2
∥b − Axk∥22

)]
. (63)

Note that λ2 ∥b − Ax∥22 is differentiable, thus we have that

∂
(
∥Kxk∥0 +

λ

2
∥b − Axk∥22

)
= K⊤∂∥Kxk∥0 + λA⊤(Axk − b). (64)

Besides, as
(∂∥x∥0)i = ∂|xi|0, (65)

and ∂|xi|0 =
{

0, xi , 0,
(−∞,+∞), xi = 0, we obtain a simple formula for the distance

Dk = arg min
y⊆supp(Kxk)

∥λA⊤(b − Axk) − K⊤y∥2. (66)

In order to stop the iterative process we have to choose three different error tolerances (one
per error estimator) and to impose Estkf < Tol f , Estkx < Tolx and Dk < TolD.
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Figure 1: Function values versus the iteration number using the nonconvex PDHG in the test problem (58).

In our test problem (58), we have chosen a matrix A ∈ R200×1000 which entries are generated
by a normal (Gaussian) random variable. Figure 1 shows the function values f k versus the iter-
ation number k. We observe that the function value is approaching to a constant value, showing
the convergence process. In our tests we have considered that the algorithm has converged to
x∗ if Estkf < 10−6, Estkx < 10−4 and Dk < 10−4, and the process it would stop at 30 iterations
(although we present the results for more iterations just to show the behaviour of the method).

The evolution of the relative error of variables {xk}k=0,1,... and {yk}k=0,1,... (that is, RelErrk
x and

RelErrk
y) versus the iteration number using the nonconvex PDHG is presented in Figure 2. We

have used two different scales (linear and logarithmic) in the pictures in order to see the con-
vergence process. From the pictures we observe clearly the convergence of the algorithm, but
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Figure 2: Relative errors RelErrk
x and RelErrk

y of variables xk and yk , respectively, versus the iteration number using the
nonconvex PDHG in the test problem (58).

also two different slopes, on one hand we have at the beginning a sublinear/linear convergence
process approaching the solution, and when the numerical solution is close enough the conver-
gence is much faster (lineal/superlinear). Obviously this numerical test is just an illustration of
the theory developed in this paper showing the convergence of the nonconvex PDHG method,
and a much more detailed numerical analysis is out of the scope of this paper and it is part of the
future research of our group.

4.2. Comparisons of different algorithms

This section considers the comparisons of the PDHG, FB, PRS, DRS and ADMM algorithms
on the problem

min
λ

2

{
∥Ax − b∥22 + ∥x∥0

}
, (67)

where x ∈ Rn, A ∈ Rn×n and ∥x∥0 = ♯(supp(x)). The parameters and stopping criterion are the
same as the ones used in the previous numerical test. Compared with the model used above
(Subsection 4.1), now the matrix K is given by K = In. We set this matrix K because the
algorithm FB, PRS and DRS need to calculate the proximal of ∥Kx∥0. But the proximal of
∥Kx∥0 can be numerically computed only if K is invertible, and therefore a general case is not
solvable with those algorithms. Note that these algorithms do not have the dual iterative points
and ADMM has two iterative points. Therefore, from that point of view, the nonconvex PDHG
method provides an interesting algorithm that can scan a much wider range of problems. Thus,
in this section we just compare the function values of the algorithms in a simple problem that is
approachable by all of them.

In Figure 3 we observe that all the methods work well on this problem, as expected, but from
the tests the best performance, as the convergence seems to be the fastest (see in the magnification
how the PDHG curve is the smallest), is obtained with the nonconvex PDHG method. In Table 1,
we present, for all the algorithms and problems of different sizes n, the error estimate using
the function values Estkf and the number of iterations needed to reach Estkf < 10−3. In all the
simulations the nonconvex PDHG method has required the lowest number of iterations to reach
the tolerance error. Moreover, we remark that the nonconvex PDHG method can be used for a
wider range of problems.
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Figure 3: Comparisons of function values versus the iteration number using different algorithms in the test problem (67).

Table 1: Error estimate using the function values Estkf and the number of iterations to reach Estkf < 10−3 for the PDHG,
FB, PRS, DRS and ADMM algorithms.

scenario PDHG ADMM DRS PRS FB
n Iter Estkf Iter Estkf Iter Estkf Iter Estkf Iter Estkf

100 78 9.87e-4 97 7.42e-4 93 8.62e-4 85 9.65e-4 112 8.42e-4
200 68 8.34e-4 82 9.55e-4 75 9.61e-4 71 8.44e-4 95 8.22e-4
300 74 9.66e-4 96 8.41e-4 91 9.37e-4 81 9.12e-4 106 9.17e-4
400 76 9.47e-4 94 9.27e-4 92 9.06e-4 80 9.22e-4 108 8.84e-4
500 72 9.07e-4 95 9.58e-4 92 9.48e-4 82 9.47e-4 111 9.24e-4
600 73 8.94e-4 93 8.95e-4 90 8.92e-4 83 9.52e-4 115 9.43e-4
700 77 9.74e-4 96 9.67e-4 91 9.57e-4 83 9.38e-4 120 8.74e-4
800 70 9.01e-4 93 9.84e-4 93 9.68e-4 79 9.49e-4 119 9.16e-4
900 78 8.89e-4 95 9.76e-4 89 9.97e-4 84 9.57e-4 104 9.40e-4
1000 79 9.36e-4 98 9.28e-4 93 9.69e-4 85 9.62e-4 118 9.03e-4

5. Conclusions

The Primal-Dual Hybrid Gradient (PDHG) algorithm is a powerful algorithm used quite fre-
quently for solving saddle-point optimization problems. In this paper, we study the precompact
convergence of the nonconvex PDHG, i.e., we prove the convergence if the sequence is bound-
ed (but the global convergence is not proved). The proofs are motivated by existing results
in Kurdyka-Łojasiewic function theory, giving rise results when the optimization functions are
semi-algebraic. A simple numerical test illustrates the convergence process of the nonconvex
PDHG algorithm.
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