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Abstract

Motivation: Microbiome analyses of clinical samples with low microbial biomass are challenging because of the
very small quantities of microbial DNA relative to the human host, ubiquitous contaminating DNA in sequencing
experiments and the large and rapidly growing microbial reference databases.

Results: We present computational subtraction-based microbiome discovery (CSMD), a bioinformatics pipeline spe-
cifically developed to generate accurate species-level microbiome profiles for clinical samples with low microbial
loads. CSMD applies strategies for the maximal elimination of host sequences with minimal loss of microbial signal
and effectively detects microorganisms present in the sample with minimal false positives using a stepwise conver-
gent solution. CSMD was benchmarked in a comparative evaluation with other classic tools on previously published
well-characterized datasets. It showed higher sensitivity and specificity in host sequence removal and higher specifi-
city in microbial identification, which led to more accurate abundance estimation. All these features are integrated
into a free and easy-to-use tool. Additionally, CSMD applied to cell-free plasma DNA showed that microbial diversity
within these samples is substantially broader than previously believed.
Availability and implementation: CSMD is freely available at https://github.com/liuyu8721/csmd.
Contact: weil9@mail.sysu.edu.cn
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Due to the decreasing costs and the ability to reach species-level or
higher taxonomic resolution, metagenomic shotgun sequencing has
become more popular in human microbiome studies, including the
body sites with low microbial loads, such as stomach (Zhang et al.,
2015), ocular surface (Wen et al., 2017) and blood (Kowarsky et al.,
2017). However, these low microbial biomass samples present dis-
tinct methodological challenges in microbiome profiling.

In clinical samples with low microbial biomass, DNA from host
genomes will often dominate the study sample greatly diluting the
signal of the actual microbiome (Walker et al., 2018; Zhang et al.,
2015). A non-comprehensive removal of human sequences may con-
found the accurate detection of these microbial signals by misidenti-
fying host DNA as novel microbial reads (Riley et al., 2013).
However, aggressive filtering of sequence data will further decrease
the positive microbial signal. Therefore, microbiome studies inter-
rogating human body sites with low microbial biomass must
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carefully balance sequence identification with excluding the host’s
genomic signal in a computationally efficient manner.

Assignment-dependent taxonomic classification using some kind
of reference data is the common strategy for microorganism identifi-
cation and quantification in metagenomic study samples (McIntyre
et al., 2017; Sczyrba et al., 2017). The reference data can be whole
genome sequences [e.g. MEGAN (Buchfink et al., 2015; Huson
et al., 2011)], marker genes [e.g. MetaPhlAn2 (Truong et al., 2015)
and mOTUs2 (Milanese et al., 2019)], compositional properties of
genomes [e.g. CLARK (Ounit and Lonardi, 2016; Ounit et al.,
2015) and Kraken (Wood and Salzberg, 2014)] or databases of
known protein sequences [e.g. kaiju (Menzel et al., 2016)]. These
methods attempt to assign every single read to its origin reference
genome or the lowest common ancestor in the taxonomic tree. An
individual short read has a small amount of information either caus-
ing false identification due to reads mismatch to related taxa or
reads discarding at high-rank taxa due to lack of uniquely classified
information. The limited amount of microbial reads in low biomass
samples compound these issues increasing the challenge of accurate
identification and estimation. Attempts have been made to mitigate
these problems by using more data from the same kind of samples to
enhance the microbial signal (Kowarsky et al., 2017; Pasolli et al.,
2019) and utilizing reference genome read coverage models to im-
prove individual species detection (Lindner and Renard, 2015;
Zhang et al., 2015).

The rapid growth of reference databases is another concern that
confounds high-resolution taxonomic classification. With high data-
base redundancy, it is in theory possible to identify organisms with
higher accuracy but numerous highly similar sequences in the data-
base complicate the read assignment to the correct source species in
the sample. The inhomogeneous distribution and proliferation of
reference genome taxa increase the challenge for taxonomic classifi-
cation (Lindner and Renard, 2015). The limited or absent reference
genomes in some taxa make classification imprecise or impossible,
while over-represented reference genomes in other taxa may lead to
very coarse or unreliable identifications. These demonstrate the ne-
cessity of a complete and high-quality reference genome database
with low redundancy for microbial classification.

In order to tackle these problems, a computational subtraction-
based microbiome discovery (CSMD) pipeline is presented to
generate species-level characterization of microorganisms for low
microbial biomass samples. CSMD functions in two critical steps:
sensitive and specific computational subtraction of host-derived
DNA followed by taxonomic profiling based on a mapping of
metagenomic reads against a comprehensive, non-redundant and
study-specific reference database. The first step amplifies the faint
microbial signal in the sample through multiple stages of host sub-
traction. Next, a finely tuned and study-specific microbial database
is generated and leveraged for rapid and accurate species-level classi-
fication and profiling for each sample. A stepwise process converges
to a high-quality database of target species through a novel sampling
and quality checking procedure. CSMD addresses the issues men-
tioned above in the following ways:

i. All putative non-human data from the same study group are

pooled together to maximize the microbial signal for the

identification;

ii. An initial and sufficiently redundant species-level microbial

database that contains homogeneous reference genomes for

each species is generated;

iii. The species genomes selected for the reference database are

gradually refined to maximize their sensitivity and accuracy

within the study group samples;

iv. The likelihood estimation of which species genomes are present

in the sample can be measured and compared using agreement

statistics estimated from modeling their genome coverage

profile.

In this study, we demonstrate the advantages of CSMD over
existing tools on simulated and artificial data, using performance

metrics under the framework of the Critical Assessment of
Metagenome Interpretation (CAMI) (Meyer et al., 2019).
Furthermore, we applied CSMD to cell-free DNA (cfDNA) plasma
samples to test its performance on data characteristics of low micro-
bial biomass clinical samples demonstrating the clinical relevance of
CSMD in devising a new roadmap for the microbial community
profiling.

2 Materials and methods

CSMD uses post-QC data as an input and is comprised of the fol-
lowing main steps: human-derived DNA removal, curation of a
comprehensive and non-redundant database, and taxonomic profil-
ing. Below, we describe each step along with the benchmark dataset.
The complete workflow is visualized in Figure 1A and detailed in
Supplementary Data S1.

2.1 Computational subtraction of human-derived data
CSMD performs human-derived reads subtraction through a series
of successive detection and filtering of human assembled genomes
and low complexity sequences (Figure 1B), as described by Kostic
et al. (2011) and Zhang et al. (2015). CSMD makes some improve-
ments to enhance the sensitivity and accelerate filtering. First,
CSMD simplifies the procedure by forgoing alignment to large re-
dundant databases such as the Ensembl human reference genomes.
Second, two additional human genomes representing different races
(specifically Asian and African) are introduced to provide a more
complete human decontamination reference database. Finally, in-
stead of using the computationally expensive program, BLAST, for
extra human reads removal, Bowtie2 is employed with ‘very-sensi-
tive-local’ algorithm to enormously speed up human-read
identification.

2.2 Comprehensive and non-redundant reference

database
After host read filtering, CSMD generates a comprehensive and non-
redundant genome database including, as far as possible, any organ-
isms that may emerge in the sample data. In order to maximize the
signal from the samples, all putative non-human sample reads were
pooled, and a painstaking microbiome discovery procedure was
employed to determine their species of origin (Figure 1C). The fol-
lowing subsections describe this process.

2.2.1 Initial homogeneous reference genome database

Initially, CSMD compiles a list of microbial reference genomes that
come from tens of thousands of species tabulated in the NCBI
RefSeq archive (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq). A repre-
sentative genome for each species is designated according to the
taxonomic information and when multiple genomes are available
for a species, the complete overdraft genome is picked up or the gen-
ome with the latest sequenced date is selected. The large initial data-
base represents a snapshot of all currently studied microorganisms
and is constructed to provide both breadth and depth in identifying
microbial signals. Considering restrictions of index size from the
aligners and memory management, the database is divided into mul-
tiple segments to facilitate processing species identification step. All
CSMD analysis used RefSeq bacteria database downloaded on
November 1, 2018.

2.2.2 Convergence of target microbiome

The convergent procedure of CSMD’s target microbial community
identification executes in three phases:

i. Identify a list of alternatives of candidate species genomes

through fast similarity search against the initial database;

ii. Do species correction to adjust for possible misidentification

and generate more reliable species candidates through BLAST

analysis of their mapping reads;
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iii. Perform species refinement through analyzing their genome

coverage profile after re-aligning the metagenomic data to the

species candidates.

We refer to these phases as species finding, species correction
and species refinement, respectively.

CSMD first performs preliminary species identification through
read alignment against the initial database. The process gives a long
list of suspected species likely present in the sample. Due to the
speed-sensitivity trade-off of fast mapping alignment tools, the prob-
lem of misidentification cannot be avoided. Misclassification of
sample reads from a single species to multiple related species can
confound classification efforts. Additionally, a suitable reference
genome for a sample species member may not be present in the ini-
tial database. Thus, CSMD screens out species with significantly in-
sufficient coverage (e.g. 25 pairs of 100 bp paired-end reads with
average coverage �0.1%) and performs a species correction for pos-
sible misidentification using BLAST (Altschul et al., 1990) for
greater sensitivity and specificity. A random subsampling of reads
mapped to each alternative species genome is analyzed using BLAST
to reduce the processing time without losing specificity. The nt data-
base, with RefSeq as a supplement for sequences using shotgun
sequencing technique (that are excluded from nt), is applied to re-
assess the classification (see Supplementary Data S1.2.3). Each
BLAST report is summarized by simply voting at two resolution lev-
els: species and reference genome (Supplementary Table S1). The
species with the vote number beyond the threshold, as described
above, is selected as a candidate species and the reference genome
with the highest vote for that species is included in the updated gen-
ome list. If there are more than one species passing this criterion, all
representative genomes are preserved, or if there is no such a species,
the alternative species are marked and discarded.

After species correction, a lot of alternative species may be cor-
rected to the same candidate species. These candidate species will be
merged and the representative genome with the highest vote number
will be preserved. Then, a database with the updated representative
genomes can be collected. This intermediary database provides more
reliable species candidates for the identification of micro-organisms
in the sample. Undergoing re-alignment against the updated data-
base, we can further assess what species are likely to be present in
the sample.

Distinct from single-read-based taxonomic classification in the
first two phases, CSMD identifies micro-organisms using their gen-
ome coverage profile to further improve false detection and get a
higher precision (Lindner and Renard, 2015). In this phase, a candi-
date genome with length Lg is first divided into non-overlapping and
equal-sized bins. The number of sequencing reads mapped to a bin
in a source genome, denoted by y, is expected to have a homoge-
neous coverage depth and modeled as a zero-inflated negative
binomial distribution, that is, a mixture of a negative binomial dis-
tribution fNB and a zero distribution z (Figure 1D):

f yjp; l;rð Þ ¼ p � fNB yjl;rð Þ þ ð1� pÞ � zðyÞ;

where p, l and r are the distribution parameters. Agreement statis-
tics coming from this procedure, Genome-Dataset Validity score
(Lindner et al., 2013), p in the formula, denoted by GDVbin, and bin
divergence (Sampson et al., 2011), r in the formula, denoted by rbin,
are estimated to distinguish the correctly identified microorganisms
from the false positives. The GDVbin measures the similarity be-
tween the candidate reference genome and the source genome,
and takes values from 0 (no similarity) to 1 (complete similarity).
The rbin measures the reliability referring to the extent to which the
source genome can be represented by the candidate genome, and
larger values imply more reliability. Thus, the larger these two statis-
tics are, the more likely the candidate genome is to be present in the
sample. In this study, we used GDVbin > 20% and rbin > 0.5 to de-
termine the positive bacteria identification. A detailed mathematical
description of the modeling process can be found in Supplementary
Data S2.

Fig. 1. The computational subtraction-based microbiome discovery pipeline for

taxonomic profiling of low microbial biomass clinical samples. (A) The bioinformat-

ic pipeline for microbial identification and profiling from low biomass clinical sam-

ples. In this pipeline, a more stringent filtering of host-derived reads is introduced

with a more sensitive and accurate microbial profiling procedure. (B) The concep-

tual workflow to perform computational subtraction of human-derived reads. The

size of the light blue bars represents the amount of remaining reads at the indicated

step, and the size of the white bars represents the amount detected as human. AHG,

reads from additional human genome; LCR, low complexity reads; EHG, reads

from external human genome. (C) The conceptual workflow to generate the minim-

ally non-redundant database. Starting with a complete RefSeq representative species

database, candidate species genomes were discovered, corrected and refined.

Finally, a comprehensive and minimally non-redundant microbial database was

constructed for microbial taxa. (D) The coverage structure analysis to model the

sequencing procedure for species refinement and evaluation. The number of

sequencing reads mapped to a position in a source genome is expected to have a

homogeneous coverage depth and modeled as a mixture of a negative binomial dis-

tribution and a zero distribution

CSMD: a computational subtraction-based microbiome discovery pipeline for clinical metagenomic samples 1579
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2.3 Taxonomic profiling
Once the comprehensive and non-redundant genome database is
built, CSMD aligns per-sample non-human data against it to gener-
ate the microbiome characterization for each sample. Alignment
efficiency is improved by depleting nearly all host data as well as
searching a much smaller non-redundant microbial genome data-
base. The process of mapping to the new non-redundant reference
additionally recovers previously ambiguously mapped reads leading
to improved accuracy. CSMD further enhances taxonomic sensitiv-
ity by running Bowtie2 with the ‘very-sensitive-local’ algorithm.
Finally, microbial abundance estimates including their taxonomic
information (e.g. species, genus, family, etc.) are reported.

2.4 Benchmarking
CSMD, specifically adapted for microbiome characterization of clin-
ical samples with low microbial loads, was designed to: (i) efficiently
subtract human-derived sequences but maximally preserve microbe-
derived sequences and (ii) provide sensitive and accurate detection
of microbial signal and minimize the false positive identification.
We benchmarked CSMD along two groups of other published bio-
informatics tools: one included BWA (Li and Durbin, 2009), Hisat2
(Kim et al., 2015), Bowtie2 (Langmead et al., 2009) and GATK
PathSeq (Walker et al., 2018) for human sequence identification and
filtering; and another included MEGAN, Kraken, CLARK, CLARK-
S, MetaPhlAn2 and mOTUs2 for microbial detection. These tools
were selected because they are all well-studied and commonly
applied for metagenomic sequence processing pipelines.

The human sequence subtraction process was benchmarked by
assessing the final read composition in the putative non-human
data. And the microbial profiles were compared using precision-
recall plots for species identification and L1 distance for species
quantification. Precision is calculated as TP/(TPþFP) and recall as
TP/(TPþFN), where TP are true positives, FP are false positives and
FN denotes false negatives. The L1 distance is defined as the abso-
lute difference between estimated relative abundances and relative
abundances simulated as ground truth.

Three sets of data were used in the benchmarking. Artificial data
containing six simulated datasets were generated using DWGSIM
(https://github.com/nh13/DWGSIM). Each dataset is combined with
reads generated from the human genome and several bacterial
genomes commonly found to be commensal with the human body
(Supplementary Table S2). Twenty million 100 bp paired-end reads
were first generated from hg38 with the same parameters as Li and
Durbin (2009). The simulated bacteria reads were derived from
22 bacterial genomes. To simulate distinct evolutionary distances,
six different substitutional mutation rates of 0%, 1%, 3%, 5%,
10% and 20%, were introduced for each of these genomes. Under
each mutation rate, 4400 paired-end reads of length 100 bp were
produced for the 22 bacteria, each with 200 reads, and then pooled
with the 20 million simulated human reads to comprise of a simu-
lated metagenomic dataset. Artificial datasets from the CAMI study
were included for a more comprehensive performance evaluation of
the profiling process, which contained one low complexity, two me-
dium complexity and five high complexity datasets. In addition, the
biological samples were acquired and sequenced as described previ-
ously (McIntyre et al., 2017). Three human-spike-in samples were
included and served as negative controls for the detection of experi-
mental contaminants which can significantly confound microbiome
analyses of low biomass clinical samples.

2.5 Cell-free plasma DNA samples
A recent study held by Stanford University used nucleic acids in
plasma to investigate the microbial diversity within the human body
(Kowarsky et al., 2017). In this study, the cohort of 32 pregnant
women with 120 plasma samples throughout their pregnancies were
included. The cell-free DNA was collected and sequenced on the
Illumina platform. All fastq data were pre-processed using
Trimmomatic (Bolger et al., 2014), and the quality was confirmed
by FASTQC (Andrews, 2010).

3 Results

3.1 Performance on human-derived sequence

subtraction
After the whole computational subtractive process, almost all human-
derived reads (>99.9999%) were correctly removed, and only very
few reads (25 for each,�0.53%) from bacteria-derived genomes were
filtered. The bacteria-derived filtered reads were mainly removed dur-
ing the low complexity read filtering phase (Figure 2A and
Supplementary Table S3). After filtering, the microbial signal emerged
from the remaining reads and became dominant in the sample data.

Conversely, commonly used one-stage human filtering processes,
including BWA, Hisat2 and Bowtie2, failed to detect a substantial
proportion of human reads (Figure 2B). The newer multi-stage filter-
ing process, GATK PathSeq, filtered more host sequences but simul-
taneously depleted the microbial signal. Consequently, all these
tools except CSMD resulted in the microbial signal constituting a
minority of the remaining sequences (Figure 2C).

3.2 Performance on microbiome discovery
The whole host-filtered sample datasets were pooled as an input to
CSMD’s three-phase microbiome discovery procedure. All 22 spe-
cies of origin, each with a representative strain genome, were cor-
rectly identified to be present in the simulated data (Figure 3A).

The convergent procedure of target microbial communities can
be found in Figure 3B. Fast similarity analysis in the finding phase
identified 273 species in the simulated data, which included 21 cor-
rect ones (Table 1). This indicates that very high false positives arise
in the species-level identification using a highly redundant reference
genome database. After screening, 36 species were kept and 1/3
were the close relatives of the positive control species. These false
classifications were corrected in the following phase by the BLAST
analysis. Some rare exceptions remained as BLAST could not distin-
guish some reads from Bacteroides vulgatus/Enterococcus faecalis
or B.dorei/E. sp. 7L76 because of their high sequence similarity.

Fig. 2. Pipeline performance on simulated data for human-derived reads subtraction.

(A) The bars represent the composition of human (green) and bacteria (blue) after

the indicated phase in the CSMD computational subtraction pipeline. And the lines

with the same color represent the number of remaining reads with log10ðxþ 1Þ
scale. (B) Relative performance of different tools for human reads identification

with different metrics. Read numbers of false negatives (purple) and true negatives

(red) are shown. (C) The relative composition of human reads (purple) and bacteria

reads (red) after human reads filtering using different tools. (Color version of this

figure is available at Bioinformatics online.)
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The coverage structure analysis showed deeper and more uniform
coverage validating their presence in the sample (Supplementary
Figure S1). In addition, BLAST using nt database could not detect
Actinomyces odontolyticus in the simulated data because no such a
complete sequence exists in nt. Instead, its closest relative, A.meyeri,
was identified with a very low mapping rate. However, this species
was correctly detected with a very high mapping rate when using the
RefSeq database because it contained its whole-genome shotgun
sequencing assembly. Finally, all the species converged to the simu-
lated true species and over 2/3 were successfully predicted with
strain-level resolution (Supplementary Table S2).

We compared results with a set of nine commonly used programs
for microbiome detection to evaluate false detection. The usage parame-
ters for each tool can be found in Supplementary Table S4. As shown in
Figure 3C, low precision which represents numerous false positives
plague metagenomic analyses for all commonly used tools except mark-
er gene methods (MetaPhlAn2 and mOTUs2) which struggle from low
recall rate. This result highlights their limitations for microbiome identi-
fication in low biomass clinical samples. In order to know whether it is

the better depletion of human genomes that is responsible for the better
species identification, we included comparison of species identification
using data from different phases in CSMD’s host sequence filtering
process. The results showed that more meticulous screening against
human genomes can highly improve identification precision for all kinds
of tools except marker gene methods (MetaPhlAn2 and mOTUs2)
(Supplementary Figure S2 and Supplementary Table S5). A closer
investigation of these approaches showed that the total nucleotide length
mapped to the marker gene catalog was not sufficient to allow species-
specific alignment (Milanese et al., 2019; Segata et al., 2012).

3.3 Improvement in abundance estimation
CSMD’s comprehensive and non-redundant refined database
leads to a significant increase in the proportion of correctly identi-
fied bacteria-derived reads on the simulated data (Supplementary
Figure S3A). CSMD correctly identified greater than 98% of all low
mutation rate (<5%) bacteria-derived reads and over 30% of the
extreme 20% substitutional mutation rate reads (Supplementary
Figure S3A). No residual simulated human reads were misclassified
as bacterial sequences. The improved mapping rate naturally
leads to improvements in abundance estimation. The accuracy of
species abundance estimation progressively improved, and high
consistency was observed as measured by the L1 distance
(Supplementary Figure S3B).

According to the L1 distance metric, the estimated relative abun-
dances from all commonly used tools showed large deviations from
the expected values (Figure 3D). Specifically, the marker gene meth-
ods (MetaPhlAn2 and mOTUs2) had the largest deviation of abun-
dance. These deviations likely result from falsely classified host
reads and poor classification rates at species level (Supplementary
Figure S4). The design of CSMD systematically addresses these limi-
tations to improve microbial detection and abundance quantifica-
tion. And as shown in Supplementary Figure S2 and Supplementary
Table S5, species quantification of the profilers also benefits from
the better removal of host sequence.

3.4 Performance on CAMI challenge data
Even though CSMD was specifically designed for low microbial bio-
mass sample profiling, CSMD outperformed almost all commonly
used tools in terms of precision for species identification with com-
parable recall at any complexity challenge on CAMI data (Figure 4A
and Supplementary Table S6). And the L1 distance also showed
that CSMD had better abundance estimation (Figure 4B and
Supplementary Table S6). As shown in Supplementary Figure S5
and Supplementary Table S6, CSMD achieved an even better per-
formance at other higher taxonomic levels.

Fig. 3. Pipeline performance on simulated data for microbiome discovery at species

resolution. (A) The bars show the composition of true positive (blue) and false posi-

tive (grey) species included in the library after the indicated step in the CSMD

microbiome discovery pipeline. The lines with the same color represent the number

of correctly identified bacteria-derived reads with log10ðxþ 1Þ scale. (B)

Microbiome discovery detail. Two hundred and seventy-three species were identi-

fied by fast similarity analysis in the finding phase according to the CSMD pipeline

and 36 species were preserved after screening out genomes with significantly insuffi-

cient coverage. After species correction and refinement, species discovered by the

CSMD converged to the true set. True positive and false positive detection are col-

ored with blue and gray texts. (C) Precision-recall plot, where each data point corre-

sponds to 1 of 10 different tools and all the inputs are the same, that is, from pooled

hg38 removal reads. (D) The L1 distances between observed and expected abundan-

ces are used to measure the consistency of different pipelines across simulated data-

sets. (Color version of this figure is available at Bioinformatics online.)

Table 1. Generation of non-redundant database for each test data

Study group Initial

database

Finding

phase

Correction

phase

Refinement

phase

Simulated data 15 639 273 24 22

Human-spike-in

samples

15 639 3051 182 74

Plasma cfDNA 15 639 9104 1566 550

Fig. 4. Pipeline performance on CAMI data for microbiome discovery at species

resolution. For the medium and high complexity datasets, plotted values are the

average of two or five samples, respectively. (A) Precision-recall plot by complexity.

(B) L1 distance by complexity
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3.5 Contamination in the sequencing experiment
Sequence-based microbiome analyses for low biomass clinical sam-
ples can be significantly confounded by the contamination. We used
the CSMD pipeline to detect the experimental contaminants from
the human-spike-in samples.

Even though hg38 removal phase identified and filtered most of the
human reads (�94%), extra human-derived reads removal phases
identified a lot of reads from human or low complexity sequences
(�4%) in the human-spike-in samples, which may complicate and bias
the microbial profiling of other tools. At last, less than 1% of reads
were left after human sequence subtraction (Supplementary Table S7).

Like with the simulated dataset, CSMD identified or rectified nu-
merous species unlikely to be present in the human-spike-in samples
(Table 1). Finally, 74 species were identified as positive contami-
nants in these samples (Supplementary Table S8). Among of them,
six species were found to be predominant in the bacterial compos-
ition with the sum of the abundance beyond 50% of classified reads.
These are Mesorhizobium sp. UASWS1009, Bradyrhizobium eryth-
rophlei, Escherichia coli, Acinetobacter gandensis, Cloacibacterium
normanense and Acidovorax sp. JS42. Their coverage profiles are
shown in Supplementary Figure S6A, which indicates their presence
in the samples. The species, Enterobacter cloacae, which was identi-
fied by ‘high-precision pair of taxonomic classification tools’ in
McIntyre et al. (2017), seemed to have an insufficient and inconsist-
ent coverage across the genome and failed to pass the coverage
evaluation (Supplementary Figure S6B). Through profiling each con-
trol sample using the results from microbiome discovery, similar
bacterial compositions were observed (Supplementary Figure S7).
Thus, CSMD can be employed to detect experimental contaminants
that can easily integrate into the filtering pipeline.

3.6 Cell-free plasma DNA data
Having established the pipeline with high performance in simulated
samples and contaminants finding in control samples, we next show
the application in profiling of microbiome contents in low biomass
clinical samples. A recent study held by Stanford University used
cell-free DNA from the plasma to investigate the microbial diversity
within the human body (Kowarsky et al., 2017). A sub-cohort with
32 pregnant women was involved and cell-free DNA from their 120
plasma samples throughout their pregnancies was collected and
sequenced on the Illumina platform.

About 75 million reads were obtained for each cfDNA plasma
sample, of which 92% of reads passed quality control. Aside from
that 86% of all were identified as hg38 reads, additional 5% human
or low complexity reads were detected and removed. Finally, an
average of 0.71% of input reads, with a total of 62 million,
remained as candidate non-human, quality-filtered Illumina micro-
bial sequence reads (Supplementary Table S7).

A summary of this bacteriome database generation is detailed in
Table 1. Finally, the cfDNA Bacteria Reference Database includes
550 assembly sequences that are likely to be of importance in studies
of the cfDNA-derived microbiome each for a species representative
(Supplementary Table S9).

Using the CSMD generated comprehensive and minimally non-
redundant database, the bacterial taxa of each cfDNA sample were
characterized. Surprisingly, no species were found in 16 (13.3%) of
the 120 samples. Among the rest of 104 (86.7%) samples, there was
a large variability in the number of identified species ranging from 1
to 227 with a median of 14. To determine those bacteria likely to
show meaningful distribution in the human body, we limited our
analysis to those bacteria which were identified in more than 12
(>10%) samples (Supplementary Figure S8).

4 Discussion

Various clinical samples contain small quantities of microbial bio-
mass relative to that of the human host. Microbiome analyses of
these samples are challenging due to factors including host contam-
ination and inefficient detection procedures (Minich et al., 2018;

Salter et al., 2014). Overabundance of human-derived reads leads
traditional analyses to confound true microbial community data or
host sequences that may map to microbial genomes due to insensi-
tive mapping tools. Many studies that attempt to use traditional
methods to evaluate these low-biomass microbiome samples fail to
adequately address concerns about false positive signals and host
content removal.

In contrast to methods based on microbiome-rich analysis, CSMD
was developed to efficiently identify and quantify microbial content in
low biomass clinical samples (Figure 1). CSMD accurately and effi-
ciently subtracts host-derived data to enhance the true microbial signals
(Figure 2). Subsequently, it integrates the entire microbial signal from
all study samples to generate a comprehensive and non-redundant ref-
erence database (Figure 3) that greatly improves the sensitivity and pre-
cision of taxonomic classification for each tested sample
(Supplementary Figure S3). To accurately and comprehensively identify
the microbial species within a study, a convergent process of species-
level target microbiome refinement is designed. Starting from a highly
redundant broad coverage species warehouse, CSMD narrows down
its detection from a long list of alternatives to a group of much more re-
liable candidate species reference genomes. This stepwise process
ensures that the sensitivity and precision of the database gradually im-
prove after the three phases of species discovery, correction, and refine-
ment. The major benefits of this approach are as follows: (i) The
mapping process sees better sequence information utilization as related
but irrelevant reference sequences are discarded from the database. (ii)
CSMD allows for better taxonomic resolution through a statistical
modeling of genome coverage profiles as well as the use of much more
accurate (as opposed to fast) alignment tools thanks to a reduction in
reference database size. (iii) The decreased redundancy and increased
specificity increase the number of mapped and uniquely mapped reads.

In microbiome analysis of low microbial biomass clinical samples,
the host is often the major source of contamination overwhelming the
microbial signal or confounding it with homologous regions in the host
genome. Therefore, the accurate removal of human-derived data
becomes essential. Based on previous work from Kostic et al. (2011)
and Zhang et al. (2015), we devised an efficient computational subtrac-
tion method for human data. Compared with commonly used pro-
grams, CSMD demonstrated higher sensitivity in the detection of
human reads. Compared to GATK PathSeq, CSMD provides an advan-
tage in specificity which plays a critical role in the analysis of low mi-
crobial load samples (Figure 2). The species identification and
quantification also benefit from the better depletion of human sequence
for all tested programs except marker gene approaches which showed
poor performance for low-biomass data because of insufficient usage
of data (Supplementary Figure S2 and Supplementary Table S5).

Efficient analysis of low biomass clinical microbiome data suf-
fers from difficulties that arise from a rapidly growing and poorly
curated pool of microbial reference genomes. The large and un-
wieldy database becomes a new barrier in high-resolution micro-
biome discovery (Dadi et al., 2017). CSMD utilizes all the replicate
samples under study and an initial high-redundancy database to gen-
erate a comprehensive and non-redundant reference for the study
data. The scale of initial database is highly correlated with taxonom-
ic breadth and depth (Tessler et al., 2017). As such, CSMD begins
with a sufficiently large database with species resolution satisfying
the need for both breadth and depth in the investigation of microbial
diversity in low biomass samples. The convergent process of data-
base refinement drives the discovery of the true microbiome present
in the sample. The coverage profile modeling of each candidate spe-
cies genome supports the refinement procedure and contributes to
the detection and classification of redundant, and true positive com-
munities within the study dataset (Lindner, et al., 2013; Sampson,
et al., 2011). CSMD automatically integrates coverage modeling to
improve performance in three ways. First, false positives that are
often present as outliers in coverage depth profiles are identified and
removed. Second, genomes with inconsistent coverage can be deter-
mined as low confidence species present in the sample. Third, a spe-
cies present in the sample can be validated based on the coverage
depth profile. All of these avoid mistakenly discarding species based
on low abundance (Shin et al., 2016; Zhang et al., 2017).
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As early studies realized (Chen et al., 2010; Fettweis et al., 2012;
Griffen et al., 2011), the well-curated specific databases speed up
the species-level classifications and provide much higher sensitivity
and accuracy for microbiome profiles derived from the study sam-
ples (Supplementary Figure S3). These improvements likely stem
from reductions in ambiguous mapping that can plague large redun-
dant databases. Better identification and phylogenetic classification
of sequences substantially improve our ability to separate health-
associated communities from those associated with diseases.

Some limitations of the CSMD pipeline have been recognized
despite tackling some important challenges in microbiome analysis
for low microbial biomass clinical samples. First, species present in
the samples with insufficient sequencing are identified and filtered
in coverage analysis. This is an unavoidable issue because species
identification relies on the coverage information from the whole
genome requiring a suitable signal. More efficient sequencing such
as KatharoSeq (Minich et al., 2018) has been proposed. Second,
some species identified by CSMD should be further validated ex-
perimentally using qPCR or culture. Another potential limitation
may be the coverage bin width used to detect species. Using a 5k
bp window worked empirically for our controls, but other setting
may lead to some true positive species to be missed based on un-
even coverage and will be tested in future practice. Lastly, CSMD
simply finds the species, the investigator is responsible for the
interpretation of their relevance to health with consideration of
other conditions such as study design and decontamination
procedure.

In conclusion, CSMD is a viable, powerful and freely available
pipeline program for high-resolution microbiome profiling of
low microbial biomass clinical samples using metagenomic
shotgun sequencing. It can maximally eliminate the interference
from the host with minimal loss of microbial signal and effectively
detect microorganisms present in the sample with minimal
false positives.
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