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INTRODUCTION

ANALYSIS

NEXT STEPS 

This research enhances a novel finite element physics-informed neural network (FE-

PINN) framework in order to optimize efficiency and results. The enhancements include 

tuning hyperparameters and considering new methodology in constructing the model 

architecture. This study achieved near convergence of model prediction to actual data and 

successfully incorporates finite element discretization into a neural network model.

PURPOSE 

A novel type of PINN, (finite-element physics informed neural network) or 

FE-PINN, was created in previous work  to utilize the weak form of 

equilibrium alongside finite element time stepping methodology to determine 

future displacement of an idealized spring system a single degree of freedom 

problem. The ODE presenting the weak form of equilibrium which is enforced 

via the physics loss is as follows:

𝑹𝑹 = 𝑀𝑀𝑼̈𝑼 + 𝐶𝐶𝑼̇𝑼 + 𝐾𝐾𝑼𝑼

Hyperparameter Tuning : 

• The aim of this study is to find the optimal architecture for this FE-PINN 

solving a simple spring-mass system displacement with the incorporated 

time-stepping methodology

• Several configurations are to be tested: 

• Varying the number of neurons per layer and number of layers 

• Giving different weights to data and physics losses

• Implementing new strategies in applying the weak form of 

equilibrium

• Decreasing the timesteps 

Part 1: Varying Neurons with 5 layers

Actual Data: 

50 Neurons per layer:  10 Layers:

200 Neurons per layer:  20 Layers:

METHODS
Part 2: Timestep Variation 

0.1 Seconds 0.01 Seconds 

0.001 Seconds 0.0005 Seconds 

0.0001 Seconds 0.00001 Seconds 

RESULTS

1. Create a more robust FE-PINN model that applies to 
2 and 3 dimensional problems

2. Analyze new structures and approaches to 
incorporating time-stepping into the PINN 
architecture 

3. Train the model on noisy data 
4. Use nongenerated datasets 
5. Incorporate a stopping clause to end training when 

model predictions are adequate
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• PINNs leverage a universal approximation theorem to accurately predict system response 
and estimate parameters (Raissi 2019)

• PINNs have a limited implementation in civil engineering due to the requirement for 
previously known physics equations which can be very complex to determine and depend 
on many factors

• This study proposes a hybrid approach which enhances PINNs with the finite element 
method to efficiently and accurately estimate parameters and model physical systems.

• The novelty of this study is the implementation of finite element time stepping 
methodology into the PINN framework and employing a weak form of equilibrium in the 
forcing function

• The framework is more versatile and can be applied to various civil engineering challenges 
including inverse and forward problems

• This study will build off of previous work to enhance the architecture of the FE-PINN 
model to achieve optimal results 

BACKGROUND

Artificial Neural Networks (ANN): A type of machine learning model 
inspired by the structure of biological neural pathways. They are composed of 
layers of nodes (aka artificial neurons) connected by vectors that can be 
described by weights and biases. The nodes contain activation functions that 
help to capture nonlinear relationships between data. During training, data 
passes through the system and a loss between actual and predicted value is 
calculated. The loss is backpropagated through the model and weights and 
biases are updated to minimize loss. 
Deep learning: Refers to when an artificial neural network has many layers, 
allowing it to better construct relationships between inputs and outputs from 
large and diverse datasets .
Physics-informed neural networks (PINNS): Implement governing physical 
principles into neural network losses during the training process, thus 
enforcing adherence to the physics equations. PINNs are effective in solving 
inverse problems and estimating a model’s parameters from limited data.  
(Raissi 2019).

Fig. 1. ANN model.

• From the hyperparameter tuning results, increasing the 
number of layers and neurons per layer improves the 
results 

• Interpretation of the initial 
hyperparameter experiments is difficult as 
they do not follow a set pattern 

• It is desirable to balance good results with 
computational efficiency 

• The largest improvement in results was derived from 
decreasing the timesteps between training datapoints 

• One downside to decreasing the timesteps 
is the increase in computation power 
required to train the model and increase 
in the training duration 

• Improvements were also observed by decreasing the 
model’s learning rate, utilizing a reLU activation function 
as opposed to a hyperbolic tangent, and incorporating an 
additional physics loss from the velocity estimation as 
opposed to the solely equilibrium-based loss
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