GEM3 PROPELLANT VIABILITY TEST

Matthew Karten, Jacob Blanton, Aidan Fogleman, Ryan Meierjohan, Timothy Schroeder

Characterize GEM3 combustion using thrust scalability to benefit the aerospace industry and space exploration overall.

TESTS AND TRIALS

• Substance Analysis Trials

• Combustion Analysis Trials

• Full System Tests

APPLICATIONS

MATERIAL COMPATIBILITY

Compatible Storage Materials	Compatible Plumbing Materials	Incompatible Plumbing Materials
High-Density Polyethylene (HDPE)	Stainless Steel 316	Copper
Kynar (Polyvinylidene fluoride)	Aluminum	Brass
	Most plastics	Black-dyed plastics

 Currently used for RCS and military
Project explores viability as main propellant for orbital LVs

TIMELINE **1 - 31 JUN** 11 AUG 2024 -5 MAY - 6 JUL 1 - 31 JUL 7 JUL - 24 AUG 2025 **30 JUN 2025** 2024 2024 2024 Substance Analysis Documentation Feed System Full System Test Combustion and Publication Design and Analysis Trials Design and Trials Assembly Experimentation with DSSP

FUTURE OF PROPELLANT

GEM3 is a liquid monopropellant that can be ignited and throttled with a voltage. Given its viability, GEM3 can greatly simplify liquid engines, decrease launch costs, and serve as a non-toxic replacement for hydrazine.