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ABSTRACT

The increasing reliance on Global Positioning System (GPS) technology across various

sectors has exposed vulnerabilities to malicious attacks, particularly GPS jamming and spoof-

ing. This thesis presents an analysis into detection and mitigation strategies for enhancing

the resilience of GPS receivers against jamming and spoofing attacks. The research entails

the development of a simulated GPS signal and a receiver model to accurately decode and

extract information from simulated GPS signals. The study implements the generation of

jammed and spoofed signals to emulate potential threats faced by GPS receivers in practical

settings. The core innovation lies in the integration of machine learning techniques to detect

and differentiate genuine GPS signals from jammed and spoofed ones. By leveraging the

machine learning capability of the Support Vector Machine (SVM) algorithm to classify sig-

nal attributes as nominal or abnormal and an Artificial Immune System (AIS) framework to

create an optimized Health Management System (HMS), the system adapts and learns from

various signal characteristics, enabling it to make informed decisions regarding the authen-

ticity of the received signals. After conducting training, validation, and fault detection, the

model successfully returned an average 95.3% spoofed signal detection rate. The proposed

machine-learning-based detection mechanism is expected to enhance the robustness of GPS

receivers against evolving spoofing techniques.
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1 Introduction

This chapter provides the motivation, problem statement, and outline for the topics

studied in this thesis.

1.1 Motivation

The Global Positioning System (GPS) is as relevant and timely a topic as there is. The

use and dependency on GPS is ubiquitous in today’s world. Applications range from personal

navigation, to power grids, emergency services, air traffic control, shipping, all the way to

precision guided munitions. Throughout the world, people have instant access to accurate

GPS positioning and navigation capabilities at their fingertips. Due to its prevalence, the

desire to better understand and model GPS signals and receivers has also increased. With

advances in digital electronics and computing, Software Defined Radios (SDRs) came about,

providing users with the ability to program their own GPS receivers and better understand

their internal functions [3]. As GPS has modernized, expanded its capabilities, and increased

redundancy, researchers have sought to delve into the properties of GPS signal generation as

well. Transmit-capable SDRs are now available to allow individuals to do just this. These

devices also have the ability to create and transmit spoofed signals [9]. This thesis makes

use of several of these concepts in a fully simulated environment.

With the incredible capabilities of GPS also come several threats and challenges. GPS

signals are subject to degradation if there are obstacles disrupting the signal’s path between

satellites and receivers, which is prevalent in urban settings. Both in civilian and military

applications, GPS signals can be attacked, resulting in a range of consequences for the end-

user. Such attacks can result in the GPS receiver either not working at all, thus unable to

determine the user’s position, or cause the receiver to display an incorrect position. These

effects, some intentional, some not, are currently being felt throughout the world.

For example, in an article published by Forbes magazine in December 2023, GPS spoof-

ing emanating from Iran affected business and commercial aircraft, leading them astray

and nearly into Iranian airspace without clearance [10]. In the article, Tegler details other
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instances of GPS jamming and spoofing currently in use, such as from Israel, where the

Israeli Defense Forces broadcast a jammer to affect the accuracy of precision-guided missiles

and rockets fired into Israeli territory from Hezbollah [10]. In a later article, Tegler again

notes similar occurrences now emanating from Russia during its war with Ukraine [11]. In

these instances, which occurred mostly toward the end of 2023 and early 2024, transmitters

jammed GPS to deny service to aircraft as well as spoofed aircraft “in such a fashion that

their instruments would indicate they were flying in a circle far from their actual location”

[11]. These examples sound a clear alarm that electronic warfare is truly prevalent and not

just a military problem.

To best mitigate these attacks, an understanding of the properties of GPS signals and the

inner workings of GPS receivers is required. Fortunately, this can be done in the simulation

environment to visualize the data and its components. The rapidly expanding and advancing

field of Artificial Intelligence and Machine Learning can be used to analyze GPS data and

detect jamming or spoofing.

1.2 Problem Statement

The critical service that GPS provides is currently at risk, facing escalating threats from

spoofing and jamming attacks, necessitating the need for satellite-based navigation security.

However, the first step in establishing such security measures is detection – the ability to

differentiate nominal GPS data from spoofed or jammed signals. This research examines

how GPS spoofing and jamming can be detected using machine learning.

Much of the prior work performed in the field of GPS modeling revolves around SDRs,

which are pieces of hardware that typically process raw radio frequency data from an analog

front-end using processors to obtain position, navigation, and timing (PNT) solutions in

software [3] [12]. However, research is limited in the field of modeling the entire structure

and contents of the GPS signal and further applying a simulated signal to a simulated receiver

to decode the data and output position information. This thesis delves into the development

and evaluation of a machine learning-based approach within a fully simulated environment to
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discern authentic GPS signals from spoofed or jammed counterparts, addressing a pressing

need for robust security measures in GPS technology.

1.3 Thesis Outline

Following this section, Chapter 2 begins with a detailed overview of the subjects discussed

in this thesis. It explains the GPS system, its components, the properties of the satellite

signals, receiver architecture, and vulnerabilities faced by GPS. This chapter provides full

insight into the process of how a user obtains his or her position on Earth using GPS.

Chapter 3 describes the machine learning framework used for this study. It presents the

framework of a Health Management System (HMS) and defines concepts of self and non-

self discrimination, antibody generation, detection, and false alarms. It also explains the

function and use of the SVM algorithm and it applications.

Chapter 4 presents the methodology used in the development of the simulation envi-

ronment. This chapter details the structure and composition of the GPS signal as well as

the generation of jammed and spoofed signals. It also provides the mathematical descrip-

tion of how a GPS receiver operates and accomplishes its functions of acquisition, tracking,

psuedorange calculation, and position determination.

Chapter 5 summarizes the obtained results for the integrated simulation environment.

It details how the machine learning system was trained, validated, and reveals two different

testing approaches. A comparison is presented between the different testing techniques and

an analysis is conducted into the parameters used for training and validation in each scenario.

Finally, Chapter 6 states the conclusions obtained as a result of this thesis. It discusses

further research opportunities and relevant methodologies to expand upon the preliminary

work completed during this thesis.
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2 Background

This chapter presents a background of previous work performed in this field, an intro-

duction to the Global Positioning System (GPS), the composition of the GPS signal, the

inner workings of GPS receivers, and some of the operational challenges regarding the use

of GPS.

2.1 Literature Review

There have been several instances of prior research in the field of GPS spoofing detection

using machine learning. One technique is the use of a neural network, which is a computa-

tional model inspired by the structure and functioning of biological neural networks in the

human brain. It consists of interconnected nodes, or artificial neurons, organized in layers,

in which the network adjusts the weights of connections between neurons based on a speci-

fied loss function, aiming to minimize the difference between predicted and actual outputs.

For example, the inputs, or features, used by Bose to train the model are carrier-to-noise

density ratio, psuedorange, carrier phase, and Doppler shift [13]. However, Bose used an

actual antenna to capture authentic GPS signals and a SDR to model the spoofed signals

and the simulated response, resulting in 99% accuracy in classification between spoofed and

authentic signals [13].

A subset of neural networks is deep learning. This field involves models with many hid-

den, or intermediate, layers, enabling them to learn hierarchical representations of data and

achieve enhanced performance in various domains. Deep learning models for GPS spoofing

detection have been used by Jiang et al. [14], Jullian et al. [15], and Sun et al. [16]. In

these studies, sensors on mobile platforms, such as drones and ground vehicles, are used to

obtain GPS signals and Kalman filters are used to remove the noise from the raw sensor

measurements. These studies also utilize a multitude of varying features, ranging from 8 to

32, to train and validate the deep learning models. These studies had spoofing detection

success rates between 83 and 99 percent.

Other related works use Support Vector Machines (SVM), which are basic classifying
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machine learning algorithms that will be explained in depth in Chapter 3, as this technique

is applied in this thesis. For example, Semanjski achieved a 96% detection rate applying

SVM classification with seven features to GPS signal data generated by a simulator in an

anechoic chamber [9]. In a comparison between six supervised and three unsupervised ma-

chine learning models, Khoei et al. determined that SVM had the best detection rate, but

slowest prediction time [17]. Similarly, Nayfeh compared a SVM algorithm to six other ma-

chine learning algorithms designed to detect spoofing in a drone with an onboard Raspberry

Pi processor [18]. Using eight features, Nayfeh instead determined that the Random Forest

algorithm, which is a tree-based machine learning model, produced the optimal results (with

the metrics of accuracy and time required to process) [18]. On the contrary, Aissou et al.

used a SDR and compared four different tree-based machine learning models, with XGBoost

producing the best accuracy (over 95%) and the fastest detection time (2 ms), beating Ran-

dom Forest [19]. In summary, depending the application, one could use different machine

learning techniques to obtain optimized results.

What differentiates this research effort from previous related work is the fully simulated

modeling of the GPS signal and receiver and the use of unique features in the SVM algo-

rithm. Where other models solely generate GPS Coarse Acquisition (C/A) codes, this model

represents a realistic GPS signal structure complete with C/A codes, Precise (P) codes, and

the entire navigation message in accordance with the published GPS Interface Specification

Document, IS-GPS-200 [20]. This thesis analyzes the composition of GPS signals, creates

a simulation model of the signals, and uses the ascertained structure to model jamming

and spoofed signals. This thesis further models a GPS receiver to acquire these signals and

output position information and other features to be analyzed by a SVM machine learning

algorithm to determine if the GPS is being jammed, spoofed, or reading nominal data.

2.2 Global Positioning System

The Global Positioning System is a critical satellite-based navigation system operated

by the United States Space Force, which provides positioning, navigation, and timing data
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to both military and civilian users around the world. It comprises a network of satellites

and ground control stations that work together to ensure accurate and continuous coverage.

GPS was initially developed by the US Department of Defense for military use but has

since become an essential tool for various civilian applications, including navigation in cars,

smartphones, and other devices. It operates by transmitting signals from at least four

satellites to a GPS receiver, which then calculates its precise location based on the time it

takes for the signals to reach it. The system’s wide availability and high level of precision

have revolutionized countless industries, from transportation and logistics to agriculture and

emergency services. With its global reach and accuracy, GPS continues to play a vital role

in modern society.

2.2.1 Control Segment

The control segment of a satellite navigation system, such as the GPS, is a crucial com-

ponent responsible for the overall operation and management of the system. It consists of

a global network of ground stations that perform various tasks to ensure the system’s ef-

fectiveness and accuracy. Ground stations continuously monitor the health and status of

the satellites in the constellation. This includes tracking their position, altitude, velocity,

and other critical parameters. The control segment tracks the signals transmitted by the

satellites to determine their current positions accurately. This information is essential for

maintaining precise satellite orbits and ensuring reliable navigation data. If necessary, the

control segment can make adjustments to the orbital parameters of the satellites. This may

involve executing maneuvers to correct the satellite’s position, altitude, or velocity. The con-

trol segment is also responsible for updating the navigation data broadcast by each satellite.

These data include information about satellite orbits, clock corrections, and other essential

parameters required for accurate positioning and navigation. By continuously monitoring,

tracking, and adjusting the satellites, the control segment maintains the accuracy and relia-

bility of the navigation data provided to users.
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2.2.2 Space Segment

The space segment serves the primary function of transmitting radio navigation signals

containing essential data messages sent from the control segment to enable GPS receivers

to calculate precise positions, navigate accurately, and perform various other location-based

tasks. The GPS space segment consists of a constellation of 32 satellites distributed across

six nearly circular orbital planes, ensuring that at least four satellites are always visible to a

user anywhere on Earth. An illustration is depicted in Figure 2.1.

Figure 2.1 GPS Satellite Constellation [1]

A minimum of 24 operational satellites are required for the GPS to function. GPS

satellites are typically referred to as Space Vehicles (SVs) and this terminology will be used

interchangeably in this study. The SVs in the GPS constellation are placed in a Medium

Earth Orbit (MEO), which has an orbital period of approximately 12 hours. This orbit

ensures that the satellites move at a moderate speed, allowing them to cover a large area while

still providing accurate and consistent positioning data. The MEO also allows for a sufficient

number of satellites to be visible from any given point on Earth, ensuring continuous and
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reliable coverage. Each GPS satellite transmits its data by modulating, or superimposing,

it onto the same carrier frequency. This means that all the SVs transmit their signals on

the same frequency, making it easier for GPS receivers to detect and process the signals

from multiple satellites simultaneously. The data messages sent by the satellites contain

vital information such as satellite positions, clock corrections, and other navigation data

necessary for calculating accurate positioning information.

2.2.3 User Segment

To utilize the data transmitted by the satellites, a radio receiver/processor, capable

of operating at high GPS frequencies, must be used together with an antenna to capture

the signal. These software and hardware components, referred to as the user segment, are

responsible for signal processing and data calculations to determine global spatial positioning.

The user segment is critical for decoding the GPS signal and extracting vital information

such as satellite positions and clock corrections. By performing these operations, the user

segment enables accurate and reliable positioning information to be obtained, which is then

used for various applications such as navigation, mapping, and timing synchronization.

2.3 GPS Signal Properties

GPS broadcasts its navigation message, Precise (P) code, and Coarse/Acquisition (C/A)

code modulated together onto a carrier frequency. Modulation is the process whereby some

characteristic of one wave is varied in accordance with some characteristic of another wave.

This process allows several different waveforms, each carrying their own information, to be

combined into a single signal. There are several carrier frequencies used by GPS satellites in

the L-band of the electromagnetic spectrum for differing purposes and as the system evolves

and updates. The primary carrier frequencies are L1, which contains both P-code and C/A

code, and L2, which contains the P-code only. Newer carrier frequencies include L1C, L2C,

and L5. Each of these carriers are on a different microwave frequency, providing redundancy

and, when used together by a capable modern or future receiver, increased accuracy and

robustness. Having a receiver capable of processing data from more than one GPS carrier
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frequency increases its resistance to jamming or spoofing. However, for the purposes of this

thesis, only the L1 carrier will be used, as it can be processed by all current receivers. Also

referred to as the legacy signal, the L1 carrier broadcasts at a frequency of 1575.42 MHz and

contains all the information necessary to obtain position, velocity, and timing data.

2.3.1 Carrier Frequency

The GPS system’s high carrier frequencies were originally intended for military use. High

frequency minimizes ionospheric interference and reduces interference from other high power

radio signal transmitters. Notably, because each satellite transmits on the same carrier

frequency, a captured signal will contain data from every visible satellite. GPS signals

utilize code division multiple access (CDMA) to share similar timing and frequency among

all GPS satellites by splitting the designated frequency band into sub-channels or sub-bands.

This results in each SV having a unique carrier timing and frequency shift to allow receivers

to decode specific satellite signals from the aggregate of signals broadcast on the carrier

frequency. This multiplexing method involves modulating data onto the carrier wave through

binary phase shift keying (BPSK). BPSK uses direct sequence spread spectrum (DSSS) of

binary bits to modulate data. After the data are modulated onto the carrier signal, BSPK is

utilized to phase shift the carrier signal by 180 degrees whenever there is a change in binary

value, indicated by either a rising or falling edge. This phase shifting process helps encode

the data onto the carrier wave in a way that can be decoded by GPS receivers. By shifting

the phase of the carrier signal at specific points dictated by the modulated data, the receiver

can accurately extract the transmitted information from the signal.

As the name implies, the carrier frequency simply “carries” the GPS data at high fre-

quency. GPS receivers immediately demodulate, or effectively remove, the carrier frequency

and lower it to an intermediate operating frequency to extract the information from the

signal. The intermediate frequency is necessary to allow the internal receiver hardware to

function effectively at a single lower frequency that will not risk damaging the sensitive

electronics, as higher frequencies would, and not require several different processors for each
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shifted frequency.

2.3.2 C/A Code

The L1 carrier uses the C/A code for DSSS, operating at a rate of 1,023,000 bits per

second, and modulating data at a rate of 50 Hz. The code sequence repeats every millisecond.

The contents of the C/A code consist of 1,023 bits known as chips, because they do not

actually carry real data. The actual message is superimposed onto the carrier. C/A-codes

sit on the quadrature (Q) branch of the L1 waveform. The C/A code is a Gold code,

a non-encrypted pseudo-random number (PRN) sequence used to spread the spectrum of

the navigation message. Each GPS satellite has its own unique C/A code, which is nearly

orthogonal, or having very low cross correlation with the other codes, enabling each satellite

to transmit its navigation message on the same frequency without interference.

The unique C/A codes are produced by combining two bit streams, where one bit is

delayed by a number of periods. Each SV delays a specific number of periods, allowing the

receiver to interpret the message by shifting the two bits until they line up to determine

which SV sent the message [2]. This concept is displayed in Figure 2.2. The C/A code is

used for civil applications because it is not encrypted, and its PRN sequences are available

without a license. It operates exclusively in the L1 band, making it suitable for civilian use

and study.

2.3.3 P-Code

The P code provides high-precision positioning and timing information and is primarily

used by the U.S. military and its allies in its encrypted form, the P(Y) code. The P(Y) code

on the L1 frequency is correlated to the C/A code, requiring the receiver to first lock onto

the C/A code and then transfer the lock to the P(Y) code. A newer standalone code, known

as the M-code, also exists exclusively for military use and does not require any other signals.

Whereas the C/A code serves to identify which SV transmitted which signal, the P code

serves as the principal navigation ranging code. It transmits at 10.23 MHz, ten times higher

than the C/A code, and sits on the in-phase (I) branch of the L1 waveform. The P code
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Figure 2.2 GPS Signal Correlation [2]

contains more refined data than the initial coarse acquisition code, with over 15 times the

chip length, and is far more complex. Due to the size of the P-code, 10.23 million bits, the

sequence repeats every seven days, with each SV transmitting a different part of the code

to enable the receiver to have all of the information at all times. Sophisticated attacks on

GPS, such as spoofing, seek to replicate the P code with false signals, as this would affect

the position and ranging calculations of the receiver.

2.3.4 Navigation Message

The navigation message serves as the foundation for calculating precise positioning solu-

tions and is essential for accurate navigation using GPS receivers. The navigation message

is a structured data frame consisting of 37,500 bits, divided into 25 frames, transmitted at

50 bits per second. A frame consists of five subframes. The first subframe provides essen-

tial information such as the GPS date, time, and status. Subframes two and three contain

ephemeris data, which includes precise orbital parameters defining the satellite’s position
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and velocity. These parameters are crucial for accurately determining the satellite’s position

at any given time. Subframes four and five contain the almanac, which provides information

about all satellites in the GPS constellation, including their PRN codes [2]. Almanac data

allows for rough initial localization of the user’s receiver during signal acquisition. Addi-

tionally, these subframes include satellite health and status information and data about the

ionosphere, aiding in error correction during signal propagation.

Each subframe contains ten 30-bit words, which take 0.6 seconds each to transmit. Every

subframe starts with telemetry (TLM) and HOW (handover word) words [2]. These are

critical for the GPS receiver to decode the navigation message. The TLM contains a unique

and known 8-bit binary preamble that the receiver searches for to indicate the beginning

of the subframe. The HOW contains the GPS time of the week, which is required for

time calculations. Following the actual data bits, there are six parity bits at the end of every

subframe that the receiver checks to determine if there are any errors in the transmitted data.

Subframes one through three are updated every 30 seconds, while the data in subframes four

and five are updated every 12.5 minutes. The structure and contents of the navigation

message are displayed in Figure 2.3.

The 50 Hz navigation message is “Modulo-2” added (using an “exclusive or” XOR gate)

to both the C/A and P codes and mixed into the carrier frequency in accordance with the

BPSK operation described above [20]. Figure 2.4 displays this final signal, consisting of the

C/A code (represented by C) added to the navigation message (denoted by D) modulated

onto the carrier frequency [3]. Note that the actual signal also includes the P code added to

the navigation message, but it is omitted in this figure for clarity.

2.4 GPS Receiver Architecture

The operation of a GPS receiver primarily consists of three tasks - acquisition, tracking,

and pseudorange and position calculation.
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Figure 2.3 GPS Navigation Message Structure [2]

Figure 2.4 BPSK Modulation of the GPS Signal [3]

2.4.1 Acquisition

Prior to initiating the acquisition phase, the GPS receiver front end must first mix the

incoming signal with a local oscillator to produce a lower intermediate frequency (IF) at
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which the hardware components of the receiver can operate. The IF signal is then amplified

and filtered to remove unwanted frequencies, such as noise and interference, and enhance

the desired signal. Finally, the signal is demodulated from the carrier to extract the original

information.

The acquisition phase requires the GPS receiver to determine which of the 32 GPS satel-

lites are visible to the receiver from the aggregate of the SV signals. During this phase, the

receiver searches for unique satellite signals and identifies their presence, providing estimates

for carrier frequency and code phase. Due to the effects of Doppler Shift and the varying po-

sitions of each SV, the frequency of the carrier wave will be slightly different for each signal.

The same is true for the code phase, which refers to where the signal’s message begins in the

bit train of 1,023 bits. The receiver stores these two parameters to begin the pseudorange

calculation.

The receiver determines which satellites are in view based upon their uniquely identified

PRN codes and which SVs provide an adequately strong signal. Any SV signals that are

below a certain threshold for signal strength are ignored. For example, SVs that are in view

but have weak signals could be the result of an orbital position too low on the horizon, forcing

the signal to travel through more of the troposphere, which leads to signal degradation.

This enables the receiver to detect and synchronize with the visible strong incoming satellite

signals. The receiver then transitions to the tracking phases, provided that a minimum of

four SVs are acquired.

2.4.2 Tracking

The tracking phase refines the acquisition results, monitors any changes in carrier fre-

quency and code phase, and demodulates the incoming signal to obtain the 50 Hz navigation

data bits. In most receivers, this function can begin as soon as the first SV is acquired, al-

lowing tracking and further acquisition of additional SVs to occur simultaneously.

Tracking involves maintaining a consistent lock on the received signals. Once acquired,

the receiver continuously tracks the signals from the satellites by adjusting the phase and

14



frequency of its local oscillator to match those of the satellite signals. This phase and

frequency adjustment is crucial for maintaining a stable and accurate lock on the signals,

even in the presence of noise and interference.

2.4.3 Pseudorange and Position Calculation

Pseudorange and position calculation is the final phase of GPS operation, which involves

decoding the 50 Hz navigation bits (message) according to the Interface Control Document

for GPS (ICD-GPS-200) standard [20]. The goal is to extract essential information such as

the pseudorange, receiver position, and receiver clock offset from the received data bits.

The first step in this process is to identify the start of the subframe within the received

data. Each subframe contains specific types of data, including the GPS time of week (TOW),

ephemeris data (which describes the satellite’s orbit), and satellite clock correction informa-

tion. Once the start of the subframe is found, the receiver can begin decoding the data

bits to extract this information. The decoding process involves using various algorithms

and calculations to extract the pseudorange, ephemeris, and TOW. Once the pseudorange,

ephemeris, and TOW are obtained for each satellite in view, the receiver can calculate the

satellite clock correction and satellite position. These calculations involve correcting for

errors such as atmospheric delays and satellite clock drift.

Finally, using the pseudoranges and satellite positions, the receiver can calculate its own

position and clock offset relative to the GPS system. This is achieved by measuring the

time it takes for the signals to travel from the SVs to the receiver. By comparing the

time of signal transmission (as encoded in the navigation message) with the time of signal

reception, the receiver can calculate the pseudoranges, or straight-line distances, to multiple

satellites. Using these pseudoranges and the known positions of the satellites (as provided

by the ephemeris data within the navigation message), the receiver can initially triangulate

its own position in three-dimensional space.

This initially obtained position, however, is an estimate with large uncertainty. This is

due to the fact that pseudoranges, as indicated by the name, are not the actual distances
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from the receiver to satellites. These pseudorange calculations, shown in Equation 2.1, must

undergo corrections for orbital errors (dρ), troposheric (dtrop), ionospheric (dion), multipath

(ϵmp), noise (ϵp) and relativistic effects [2].

p = ρ+ dρ + c(dt− dT ) + dtrop + dion + ϵmp + ϵp (2.1)

In Equation 2.1, ρ represents the true range, c is the speed of light, dt is the satellite clock

offset from GPS time and dT is the receiver clock offset from GPS time [2].

All of these effects influence the signal travel time. GPS time is meticulously monitored

and maintained by the U.S. government using atomic clocks on Earth. The atomic clocks on

the satellites are not as accurate as the terrestrial atomic clocks and are subject to drift due

to the aforementioned physical effects. Therefore, the ground segment of the GPS includes

clock corrections within the navigation message that must be implemented by the receiver.

After obtaining these clock corrections from the TOW and the corrections for atmospheric

and relativistic effects (also encoded in the navigation message), the receiver updates the

pseudorange calculations to obtain the true ranges. The receiver clock offset is used to correct

for any timing errors in the receiver’s internal clock. This timing correlation process is why

four, rather than only three, satellites are required to produce an accurate GPS position on

Earth, in a process known as trilateration, illustrated in Figure 2.5.

2.5 GPS Threats and Challenges

The GPS faces a range of threats and challenges that can affect its accuracy and reliability,

such as multipath, shadowing, dropouts, jamming, and spoofing.

2.5.1 Multipath

Multipath refers to the phenomenon in which GPS signals reflect off nearby objects, such

as buildings or terrain, before reaching the receiver, as illustrated in Figure 2.6. This can

cause the receiver to receive multiple versions of the same signal, which can lead to errors

in calculating the receiver’s position. Multipath signals can be stronger or weaker than
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Figure 2.5 GPS trilateration. A GPS receiver determines its position by calculating
pseudoranges r1, r2, and r3 and adjusting for timing inaccuracies to correct range error, ∆r

[4].

the direct signal depending on the reflection environment and the distance of the reflecting

object. These reflections can distort the signal’s path and introduce timing errors, which

can lead to incorrect position estimates or degraded navigation performance.

To mitigate the effects of multipath, several approaches can be taken. The placement of

the GPS antenna can significantly impact multipath. When possible, installing the antenna

in an open area away from reflective surfaces, such as on the roof of a vehicle or in an

unobstructed location, can reduce the likelihood of multipath. Additionally, some antennas

are designed to be less sensitive to reflections, such as antennas with a low elevation angle

or antennas with a narrower beam width. These antennas can help reduce the impact

of multipath on the received signal. Using multiple antennas with different orientations

or locations can also help mitigate the effects of multipath by providing redundant signal

paths. This redundancy can help improve the reliability of the received signal and reduce
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Figure 2.6 Phenomenon of Multipath Signal [5]

the impact of multipath. Advanced signal processing techniques, such as signal filtering,

adaptive algorithms, and Kalman filtering, can be used to mitigate the effects of multipath.

These techniques can help identify and correct for multipath-induced errors in the received

signal. In some applications, carrier phase measurements can be used to estimate the direct

path of the signal, which can then be used to estimate the multipath error. This can help

improve the accuracy of the position estimate and reduce the impact of multipath.

2.5.2 Shadowing

Shadowing, also known as signal blockage, occurs when the receiver is unable to receive

direct line-of-sight signals from the satellites due to obstructions, such as mountains, in urban

environments with tall buildings, or in forested areas with dense vegetation. This can result

in reduced signal strength and accuracy, as well as intermittent signal dropouts.

Mitigation measures to counter the effects of shadowing are similar to those for mul-

tipath, including antenna design, selecting receiver placement, and using advanced signal

processing techniques. Additional techniques include employing dual-frequency receivers or

augmented GPS systems. Dual-frequency GPS receivers, which can receive signals from

both the L1 and L2 frequency bands, can help mitigate the effects of shadowing. By using
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signals from multiple frequency bands, these receivers can help reduce the impact of shad-

owing and improve the accuracy of the position estimate. Augmented GPS systems, such as

the Wide Area Augmentation System (WAAS) or the European Geostationary Navigation

Overlay Service (EGNOS), can help improve the accuracy and reliability of GPS in areas

with obstructions. These systems provide additional corrections and integrity monitoring,

which can help mitigate the effects of shadowing and improve navigation performance.

2.5.3 Dropouts

Dropouts are a common issue in GPS systems that occur when the receiver loses its

lock on the GPS signal, often due to changes in the environment or interference from other

electronic devices. Deliberate jamming can also cause dropouts. This can result in a loss of

positional accuracy or, in some cases, a complete loss of signal.

Similar mitigation measures can be taken to avoid dropouts, to include using advanced

signal processing techniques, using dual-frequency receivers, or using augmented GPS sys-

tems. In addition, using multiple GPS receivers or antennas or antennas with different

orientations or locations can also help mitigate the effects of dropouts by providing redun-

dant signal paths. These redundancies can help improve the reliability of the received signal

and reduce the impact of dropouts.

2.5.4 Jamming

Jamming refers to the deliberate interference with GPS signals, often for malicious pur-

poses. Jamming devices can disrupt the GPS signal by transmitting noise or other signals on

the same frequencies used by GPS satellites. This can result in a loss of signal lock and a loss

of positional accuracy. Jamming can be especially problematic in areas where GPS signals

are weak or where the signal strength is low, such as in urban environments or indoors.

Signal filtering techniques can be used to remove or reduce the effects of jamming on the

received signal. However, if the jamming signal is similar to the actual signal this technique

may not work. Advanced signal processing algorithms are in development and may be used

to detect the presence of jamming and take appropriate action, such as alerting the user
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or switching to an alternative positioning method. However, as jamming attacks become

increasingly sophisticated, the reliability of these systems can falter. This is why this thesis,

and other recent research, proposes the use of machine learning to detect jamming.

Other current mitigation measures similarly include antenna design, receiver redundancy,

and the use of augmented GPS systems. Some GPS antennas with low elevation angles or

narrower beam widths can be more robust to jamming and the use of multiple receivers or

receivers capable of operating on multiple bands can also potentially reduce the effects of

jamming.

2.5.5 Spoofing

Spoofing is a form of cyber-attack in which a malicious actor transmits fake GPS signals

to a receiver, tricking it into believing it is at a different location. At the signal level, this is

performed by altering the P code, resulting in differing range calculations. This can be used

to mislead or manipulate the receiver, potentially leading to serious consequences. Spoofing

attacks can be highly sophisticated and difficult to detect, making them a significant threat

to GPS systems. Figure 2.7 depicts such an attack, in which jamming is used to suppress the

authentic GPS signals originating from the SVs and spoofed signals are sent to the receiver

instead, resulting in a change in position for the drone.

In addition to many of the aforementioned techniques to attempt to mitigate spoofing,

encryption is often the best method to prevent spoofing. Adding cryptographic authenti-

cation to GPS signals can help prevent spoofing attacks by ensuring that the signals are

coming from legitimate satellites. This is what the military uses in its M code and P(Y)

code signals; however, these are not available to the general public, causing spoofing to be a

pervasive issue. The navigation message includes an anti-spoof flag that the control segment

can enable to notify receivers if spoofing threats are expected. When this flag is enabled,

receivers may use different algorithms to conduct position and ranging calculations. The

intent is for receivers to ignore the signals that are flagged, but this often can not occur

because sophisticated spoofing can affect the signals coming from all satellites. The exact
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Figure 2.7 Coordinated Jamming and Spoofing Attack [6]

details on this technique are not available in the public domain, thus providing the impetus

to conduct research into machine learning-based spoofing detection for civilian applications.

2.6 Contributions

The research in this thesis contributes to the field of machine learning and GPS modeling

by presenting accurate models of GPS signals and a receiver combined with the implemen-

tation of a Health Management System (HMS) machine learning algorithm. The simulated

GPS signal generates both the I and Q components of the GPS signal, which includes the

C/A code and P code, as well as the full structure of the navigation message modulated

onto a carrier frequency. This robust model is fully in accordance with IS-GPS-200. The

GPS receiver is modular, containing the ability to conduct acquisition, tracking, and posi-

tion calculation phases together or separately, as well as the ability to alter properties of

the receiver that would otherwise not be possible in hardware, such as the local oscillator

frequency. By manipulating some of these receiver properties, the effects of jamming and

spoofing may be simulated. Finally, Support Vector Machine (SVM) is integrated into a

HMS for the purpose of off-nominal GPS signal (jamming or spoofing) detection, validating

this technique as useful and promoting future work in this field.
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3 Methodology

3.1 Health Management Framework

This section presents a detailed examination of the machine learning methodology used

in this thesis. The threat detection strategy based on the Artificial Immune System (AIS)

coupled with Support Vector Machine (SVM) creates an optimized Health Management

System (HMS) capable of detecting off-nominal conditions. The SVM is a machine learning

algorithm that uses a hyperplane to separate different classes of data points. The AIS is

a bio-inspired algorithm that models the human immune system’s ability to recognize and

respond to foreign threats. It uses the principles of clonal selection and affinity maturation

to generate a diverse population of “antibodies” that can detect various types of threats. By

combining the AIS and SVM, the threat detection strategy can effectively identify patterns

indicative of off-nominal conditions in the data. This approach allows for the development

of a robust and adaptive HMS that can accurately detect and respond to emerging threats.

3.1.1 Support Vector Machine Algorithm

Support Vector Machines are a class of supervised machine learning algorithms used

primarily for classification tasks [21]. They are based on the principle of structural risk

minimization, which aims to minimize the generalization error and maximize the geometric

margin between two classes [22]. SVMs are widely used in various application areas such as

pattern recognition, image recognition, and fault diagnosis.

In this study, SVM is used to develop a classification model for detecting nominal and

off-nominal GPS data. The goal is to find an optimal hyperplane that separates the input

data from the two classes, with the maximum margin between the support vectors (the

nearest data points of each class) [22]. The input data are first transformed into a high-

dimensional feature space using a kernel function, such as the Radial Basis Function (RBF)

kernel, which makes the data linearly separable by the hyperplane. The hyperplane is defined

by the equation:
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y = f(x,w) = wTx+ b (3.1)

where w is an n-dimensional weight vector and b is a bias value. The optimal hyperplane

maximizes the margin between the two classes in the feature space, effectively separating

the data points into their respective classes. Figure 3.1 depicts an example of two distinct

sets of support vectors separated by a hyperplane in two and three dimensions.

Figure 3.1 2-D (left) and 3-D (right) SVM Hyperplane Development [7]

In summary, the SVM implementation uses a classification model that can effectively

differentiate between nominal and off-nominal data. The model is trained using input data

transformed into a high-dimensional feature space, and the resulting hyperplane is optimized

to maximize the margin between the support vectors of the two classes.

3.1.2 AIS Antibody Generation

The process of generating antibodies for the AIS is fundamental in the development of

an effective Health Management System. This process is based on gathering nominal data

in supervised and controlled conditions that accurately represent ideal nominal conditions.

These nominal data are then passed through a Variable Detector (V-detector) algorithm,

which uses a negative selection process to generate antibodies or detectors that are specifically

tailored to the system’s feature space.

The AIS paradigm encompasses several algorithms designed to simulate the behavior of
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the human immune system and adaptively respond to threats, to include Negative Selection

Algorithm (NSA), V-Detector Algorithm, and Clonal Selection Algorithm (CSA). NSA is

inspired by the process of negative selection in the immune system, where T cells learn

to distinguish between self and non-self antigens. In the context of AIS, NSA generates

a set of detectors (or antibodies) that recognize normal, or self, data patterns. Any data

patterns not recognized by the detectors are considered non-self and are flagged as anomalies.

The V-Detector algorithm is based on the concept of clonal selection, where B cells in the

immune system undergo rapid proliferation to respond to threats. In the context of AIS,

the V-Detector algorithm generates a population of candidate detectors and uses a fitness

function to select the most promising detectors. These selected detectors are then cloned,

mutated, and selected again, resulting in a population of highly specialized detectors that

can recognize specific non-self patterns. The CSA is a variant of the V-Detector algorithm

that is used to generate highly specialized detectors. It uses an affinity maturation process

to improve the performance of detectors over time. During affinity maturation, the detectors

are exposed to a diverse set of non-self patterns, and those that respond most strongly to

these patterns are selected for further proliferation and refinement. This process results in

a population of highly effective detectors that can accurately recognize non-self patterns.

These algorithms are used in various applications, including anomaly detection, pattern

recognition, and data classification. They are highly adaptable and can be customized to

suit the specific requirements of different applications. The method utilized in this study

involves the V-Detector Algorithm and CSA.

The V-detector algorithm uses an optimization process to determine the radius of each

antibody cluster, ensuring that the non-self region coverage is maximized without overlapping

the self. This optimization process takes into account several factors, including distance

thresholds, proximity to the self, and the radius of the antibody clusters. These factors

are used to guide the selection of candidate detectors, ensuring that they are well-suited to

detecting abnormal conditions while minimizing the risk of false positives. By optimizing
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the generation of variously-sized antibodies, the V-detector algorithm ensures that the HMS

is capable of accurately detecting off-nominal conditions while minimizing the risk of false

alarms. This is illustrated in Figure 3.2, where the red circles of varying sizes represent the

antibodies that encompass the non-self region, and the blue represents the detectors of the

self region.

Figure 3.2 Antibody Generation

3.1.3 Self and Non-self Discrimination

The AIS paradigm uses the principle of self/non-self discrimination to differentiate be-

tween different classes of data. It operates similarly to the immune system of living beings,

as it distinguishes between entities that belong to the organism (self, S ) and those that do

not (non-self, S). Implementing AIS strategies can be challenging due to the large amount

of data required for training to provide information about nominal and off-nominal system

behaviors.

When applied to dynamical systems, the self refers to the space of nominal data, and the
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non-self refers to the space of off-nominal data, where failure data or off-nominal data are

considered abnormal.

The selection of features that represent the dynamics of the system and are sensitive

to nominal and off-nominal conditions is crucial in the development of the scheme. These

features are variables that define the dynamics of the system and are expected to have

an impact on the abnormal conditions considered, in terms of occurrence, presence, type,

severity, and consequences. Features can include parameters such as temperature, pressure,

vibration, or other relevant variables that are indicative of system health. The choice of

features is essential as it directly affects the success and performance of the HMS. By selecting

relevant features and effectively distinguishing between self and non-self, the AIS coupled

with SVM can create an optimized HMS capable of detecting off-nominal conditions.

In this application with GPS signals, the self data are nominal GPS signals and the non-

self are spoofed or jammed signals. The features used are PRN code, code phase error, and

carrier frequency error. These errors, or shifts, are described in Chapter 2 and are directly

related to the Doppler shift. As the satellites are moving away from or closer towards the

receiver while in their respective orbits, the signal experiences a Doppler shift, resulting in

a change in the true carrier wave frequency and phase, or location, of the beginning of the

data bits. The derivative of these features indicates the amount of Doppler shift. If these

features indicate an irregular shift pattern or a slope much higher or lower than expected

via the Doppler effect, the HMS will classify the data as not nominal, or non-self.

Since each SV has its own unique PRN code, this feature is used to determine if the

receiver is able to successfully determine which SVs sent which individual signals. This

correlation is important because it is the first step in determining the ranges to the SVs.

Since the SVs are constantly emitting signals, the receiver receives each individual signal

nearly simultaneously, combining them into a single signal. The ability to find the PRN codes

to separate the individual signals from the combined signals indicates nominal behavior. In a

spoofed or jammed instance, an attacker may alter or swap satellite PRN codes to deceive the
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receiver, resulting in either a partial or complete lack of correlation or the receiver thinking

it has locked onto a different satellite than it is actually locked onto.

The (self, S ) represents the subset of the system feature space Σ that corresponds to

normal GPS signals while non-self, S corresponds to abnormal conditions [23]:

S ∩ S = 0 and S ∪ S = Σ (3.2)

The features of the system are typically normalized to the range [0, 1] based on known

reference values under abnormal conditions. This normalization ensures that features from

different systems can be compared and combined in a meaningful way. Depending on the

dimension of the feature space, different shapes can be considered for the self/non-self dis-

tinction to define the boundaries between normal and abnormal conditions. For example, a

hypercube or hyperplane may be used for a two-dimensional feature space, while a hyper-

ellipsoid may be used for a higher-dimensional feature space.

The goal is to establish a boundary between two sets of patterns by classifying them as ei-

ther normal or anomalous. When the system incorrectly classifies self patterns as anomalous,

it generates false positives. These false positives occur when normal patterns are mistakenly

identified as abnormal, leading to erroneous alarms or alerts. On the other hand, when

non-self patterns are not classified as anomalous, the system generates false negatives. False

negatives occur when anomalous patterns go undetected and are incorrectly classified as

normal, potentially leading to undetected anomalies or failures. Figure 3.3 portrays this

concept.

The application of the SVM self and non-self discrimination regions applied to GPS

signal features is depicted in Figure 3.4, with the blue representing the self region, the red

representing the non-self, and the dots representing analyzed data points. In this example,

the code phase shift of SV 3 is compared to the frequency shift of SV 4.
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Figure 3.3 AIS Self/Non-Self Distinction Environment [8]

Figure 3.4 Generation of Self and Non-Self Regions
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3.1.4 Detection Rates and False Alarms

The performance evaluation of the HMS primarily revolves around two key metrics: false

alarms (FA) and detection rate (DR). False alarms occur when the system incorrectly iden-

tifies an abnormal condition in the absence of any actual anomaly. This metric is calculated

as the percentage ratio between the number of instances where an abnormal condition was

declared and the total number of samples collected during tests conducted under normal

conditions. On the other hand, the detection rate represents the percentage ratio between

the number of instances where an abnormal condition was correctly identified and the total

number of samples collected during tests conducted under abnormal conditions.

It is important to note that false alarms can occur when detectors are triggered erro-

neously, leading to an incorrect identification of abnormal conditions even when none are

present. Understanding the estimated percentage of false alarms in the HMS is critical for

assessing the overall performance and accuracy of the model.

In the integration of SVM, the analysis of performance involves the use of a confusion

matrix. This matrix provides detailed parameters that offer insights into the performance

of the algorithm. Specifically, it includes true positives (TP), false positives (FP), true

negatives (TN), and false negatives (FN), which are defined in Table 3.1.

Table 3.1 Confusion Matrix Terminology

Term Definition

True Positive (TP) Correct identification of abnormal conditions
False Positive (FP) Erroneous identification of normal conditions as abnormal
True Negative (TN) Correct identification of normal conditions
False Negative (FN) Erroneous identification of abnormal conditions as normal

The effectiveness of a detection system is measured by its ability to minimize both false

positives and false negatives, ensuring accurate classification of patterns as either normal or

anomalous. By analyzing these parameters, a comprehensive understanding of the perfor-

mance and effectiveness of the algorithm can be obtained.
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3.2 Numerical Simulations

This section details the simulation environment used in the formulation of this thesis.

3.2.1 GPS Signal Generation

The simulated GPS signal was developed in MATLAB in accordance with the Interface

Control Document for GPS (ICD-GPS-200) [20]. The ICD-GPS-200 is published by the

U.S. government and details the exact structure of the GPS signal, from the C/A and P

code generation, to the navigation message structure, and to the BPSK modulation onto the

carrier. The signals used in this study represent the combined signal a GPS receiver would

receive, consisting of up to 32 individual SV signals added together.

The first input to the code is the length of the signal, which can be between 0.02 and 750

seconds. This time represents the desired length of the navigation message to be simulated,

with 750 seconds encompassing the entire 12.5 minutes of the 25 frame navigation message

and 20 milliseconds representing the time is takes to generate one bit. Due to computation

times and file size, the signals used in this thesis are 100 milliseconds long, representing the

time it would ordinarily take an actual SV to transmit just over four bits of navigation data.

However, by manipulating the transmit sample time to directly influence the step size of

the data set, the code simulates the entire navigation message structure in what is actually

a short signal reception time. This step size serves as the second input to the code. The

third input is the ephemeris data or satellite positions in the Earth-centered, Earth-fixed

(ECEF) coordinate system (X, Y, and Z positions). These positions are obtained from the

almanac published by the U.S. Department of Defense, which contains coarse orbit and

status information for each satellite in the constellation and an ionospheric model. Almanac

information is transmitted by each SV in subframes 4 and 5 of the navigation message.

For the purposes of this study, the signals are generated at one epoch of time and the SV

positions within the constellation are captured at that specific time (midnight on February

13, 2011).

The C/A PRN codes were created in MATLAB using the gnssCAcode function, which

30



generates coarse acquisition codes for the designated number of satellites. This process

consists of manipulating two polynomials, referred to as G1 and G2, that are populated

using a Tapper Feedback Shift Register, detailed in IS-GPS-200N Section 3.3.2.3 [20] and

illustrated in Figure 3.5. However, the MATLAB function automates this, resulting in

the generation of the chips of ones and zeroes that represent each SV’s unique PRN code.

MATLAB also has a function, gpsPCode, to generate the far more complex precision code

for a GPS satellite, as defined in IS-GPS-200N Section 3.3.2.2 [20].

Figure 3.5 C/A Code Generation Process

IS-GPS-200 also details the composition of each subframe of navigation data (previously

referenced in Figure 2.3). In addition to the almanac data, which provides details about the

entire constellation, the rest of the navigation message consists of SV health, time corrections

for clock drift due to relativistic and ionospheric effects, and refined individual SV data.

The developed code includes the template for each page of every subframe to be populated;

however, for the purposes of jamming/spoofing detection, many pieces of data, such as SV

health, for example, are omitted, by setting their value to zero, because they are irrelevant

to the actual signal characteristics and position determination.

Once the navigation message structure and contents are generated, it is modulated onto
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both the C/A code (at a frequency of 1.023 MHz) and the P code (at 10.23 MHz) using

the bitxor MATLAB command. These two signals are then modulated onto the L1 carrier

frequency of 1575.42 MHz using a cosine wave for the P code and a sine wave for the C/A

code.

The code yields two carrier components that are in phase quadrature with each other.

These two components are orthogonal, or separated by a phase shift of 90 degrees. The

in-phase (I) component consists of the P code XOR added to the navigation message, while

the quadrature-phase (Q) component consists of the C/A code XOR added to the navigation

message, using the MATLAB command bitxor.

Figure 3.6 displays the resulting combined I and Q data in the time domain and Figure

3.7 portrays the I and Q components separately.

Figure 3.6 Simulated Combined GPS Signal Output

3.2.2 GPS Receiver Design

The GPS receiver model used in this study was created in Simulink and MATLAB and

consists of three processes - acquisition, tracking, and pseudorange and position calculation.

The receiver’s primary function is to capture the incoming signal, accurately demodulate

the carrier wave, C/A code, and P code, and utilize the transmitted data bits to compute

its own position and timing information. This procedure is depicted in Figure 3.8.
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Figure 3.7 Simulated GPS I and Q Data

Figure 3.8 GPS Receiver Structure

Front End Design

In a typical GPS receiver front end, the signal received by the antenna is converted into

a discrete time (DT) signal. This signal then undergoes filtering, amplification, and finally

down-conversion from the L1 frequency to an intermediate frequency (IF), in a process known

as superheterodyning. However, for this project, which involves a software-only implemen-

tation of the GPS receiver, these hardware components are largely omitted. Instead, it is

assumed that the signals have been pre-processed appropriately.

Whereas a typical hardware GPS receiver may use an IF of 9.548 MHz and a sampling

frequency of 38.192 MHz, the values used in this software receiver are 9.207 MHz and 32.768

MHz, respectively [12]. These values were chosen for computing speed and efficiency. En-

suring the IF is a multiple (in this case, nine) of the C/A code chip rate of 1.023 MHz, this

allows for optimal BPSK. Similarly, the selected sampling frequency allows for 215 samples
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per millisecond, which is crucial to the Fast Fourier Transform (FFT) in the acquisition

stage, which requires the input be of size 2N .

Acquisition

The initial stage within a GPS receiver is known as the Acquisition stage. During this

phase, the receiver processes the combined signals from the satellites to determine which of

the 32 satellites are visible at a given time. Additionally, rough estimates of the incoming

signal’s carrier frequency and code phase are calculated. This estimation is crucial due to the

Doppler effect experienced by received signals, where the frequency and code phase, which

are used by the receiver to synchronize with the transmitted signal, observed at the receiver

are shifted due to the relative motion between the transmitting satellite and the receiver.

Doppler shifts in carrier frequency can range between ±10 kHz for moving receivers and

±5 kHz for stationary receivers [3]. Doppler shifts in code phase typically reach up to ±6

chips per second for moving receivers and ±3 chips per second for static receivers [12]. These

expected values, which remain relatively constant per received signal, serve as critical feature

parameters to be analyzed by the machine learning algorithm in this study. If the Doppler

shift values deviate over time or appear unrealistic, it would indicate the likelihood of an

unauthentic GPS signal.

For the GPS receiver to determine which SVs are in view, it must correlate the PRN codes

found in the combined signal with locally generated carrier waves and PRN codes. This may

be done serially, which entails sweeping through all 1,023 possible phase shifted versions of

all 32 PRN codes, resulting in 32,736 PRN codes to check, which can be computationally

intensive. To mitigate this, the code phase parameter can be parallelized through the use of

a FFT, converting the signal to the frequency domain. This method significantly enhances

efficiency by eliminating the need to sweep through all 1,023 code phase for every PRN.

In this approach, each of the possible frequency bins is examined simultaneously, and the

code phase search is parallelized such that each SV undergoes the same number of searches

as the total number of frequency bins. In this application, the total number of frequency
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bins is set at 21, spanning a search band of 10 KHz with a frequency interval of 500 Hz. The

Simulink model searches these 21 frequency bins concurrently.

The process begins with circular cross-correlation between the incoming signal and the

locally generated carrier and PRN code, ensuring accurate alignment without phase shifts.

The incoming signal is then multiplied by a locally generated carrier wave at all 21 possible

frequencies, generating two local oscillator multiplications. These multiplications are com-

bined into a complex signal and sampled at a frequency of 32.768 MHz over a 1 millisecond

interval before being subjected to a 32,768-point FFT.

Concurrently, the PRN code is generated and transformed into the frequency domain

using the same method. The resulting PRN code FFT output is complex conjugated and

multiplied with the carrier FFT, forming the correlation process. The correlation result is

then transformed back into the time domain using an IFFT, and its absolute value is squared

to yield the time domain correlation value between the input and the generated PRN code.

If, during the examination of a particular frequency and PRN code combination, the

magnitude of the peak in the correlation output surpasses a predefined threshold, set to 2.5

for this receiver, it signifies the presence of a satellite signal. This peak magnitude serves as

an indicator of signal visibility, suggesting that the examined frequency and PRN code are

aligned with the incoming signal’s characteristics. Consequently, this outcome prompts the

identification of the code phase and confirmation of the carrier frequency associated with

the detected satellite signal.

The developed Simulink receiver model allows for the ability to either conduct or bypass

the acquisition phase. For the purposes of this thesis, the acquisition phase is not truly

necessary, as it does not matter which SVs are transmitting the signals, provided there are

at least four, to conduct trilateration and timing calculations. Therefore, the tracking phase

includes a block in which the user can manually input the desired acquisition results that

would have been output from the acquisition phase, namely, the SV number (as indicated

by the PRN code), carrier frequency, and code phase.

35



Figure 3.9 Nominal Receiver Output for PRN Code Correlation

A combined signal consisting of four SVs was used in this study. Under nominal condi-

tions (no jamming or spoofing) the GPS receiver successfully correlates each PRN code to

the applicable SV, as shown in Figure 3.9.

The five-digit binary sequence of 1s and 0s correlates to the flat portions of the plots,

with an amplitude of 1.5x104 representing the ones and -1.5x104 representing the zeros. This

confirms that the receiver is able to determine which part of the signal was sent by which

SV. For a transmission time longer than 0.1 seconds, or with a smaller sampling rate, this

same five-digit pattern would repeat itself. This correlation data is the first feature that is

used by the machine learning algorithm.
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Tracking

The parameters estimated during the Acquisition stage are then passed to the Tracking

stage. Here, the receiver continuously monitors changes caused by Doppler shifting and

variations in the code phase and carrier frequency over time within the current data block.

This tracking process refines the parameter estimates obtained during Acquisition, ultimately

providing accurate values for these two parameters.

The tracking loops within GPS receivers play a crucial role in generating local replicas of

the incoming signals’ carrier frequency and C/A code, essential for accurately demodulating

and extracting navigation data. These loops include a Phase-Locked Loop (PLL) for the

carrier frequency and a Delay-Locked Loop (DLL) for code phase tracking.

The PLL, employing a Voltage Controlled Oscillator (VCO), replicates the frequency of

the incoming signal’s carrier. It operates by comparing the phase of the received signal with

the local replica and adjusting the VCO frequency accordingly. This adjustment process

is facilitated by a loop discriminator, which generates an error signal based on the phase

difference between the received and local signals. An Infinite Impulse Response (IIR) filter

is then applied to smooth this error signal, ensuring stable demodulation and minimizing

oscillation.

However, conventional PLLs face challenges when dealing with GPS signals modulated

using Binary Phase Shift Keying, as they are highly sensitive to the 180-degree phase shifts

induced by navigation data bit transitions. To mitigate this issue, a specialized variant of

the PLL, known as a Costas loop, is employed.

The Costas loop distinguishes itself by its insensitivity to 180-degree phase shifts. It

achieves this by multiplying the input signal with both the local carrier and a 90-degree

phase-shifted version of the carrier. This arrangement allows the loop to utilize the carrier

loop discriminator, feeding back information to the VCO to ensure that all signal energy

remains in the in-phase (I) component [3]. By effectively addressing the challenge posed by

phase transitions in BPSK modulation, the Costas loop enables robust and accurate carrier
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tracking in GPS receivers.

A frequency discriminator within the Costas loop ensures that the energy remains in

the in-phase component and produces an output that reflects the phase error between the

input signal and the local carrier. The carrier loop discriminator is constructed using an

arctan discriminator, chosen for its precision despite its higher computational cost. This

discriminator is formulated based on the equation:

ϕ = tan−1(
Q

I
) (3.3)

In Equation 3.3, ϕ represents the phase error, while I and Q denote the in-phase and

quadrature signals of the Costas loop, respectively. This equation captures the relationship

necessary for accurately determining the phase error within the carrier loop, enabling precise

tracking of the incoming signal’s carrier frequency. Notably, the discriminator outputs a

value of 0 when the phase error of the real part is either 0 degrees or ±180 degrees. This

unique property makes the Costas loop robust against the 180-degree phase shifts induced

by navigation bit transitions.

The nominal recorded carrier frequency errors of the four SVs used in this thesis are

displayed in Figure 3.10. As expected, the carrier frequency for each SV shifts approximately

linearly with time. The longer the transmission time, the greater the shift from the original

carrier frequency of the SV. The slope of the lines correlates to the expected Doppler shift

of approximately ±5 kHz that is modeled in this study.

Code tracking in GPS receivers is achieved through a Delay-Locked Loop (DLL), specif-

ically designed to synchronize the phase of a specific PRN code in the incoming signal with

a locally generated code sequence. The DLL utilized in GPS receivers is often referred to

as an early-late code tracking loop. After removing the carrier frequency from the incoming

signal using a precisely aligned local carrier, the signal is multiplied by three variations of a

locally generated PRN code, each offset by ±1
2
a chip. These variations correspond to the

early, prompt (present), and late versions of the local PRN code (E; P; L). Subsequently,

38



Figure 3.10 Carrier Frequency error due to Doppler shift

the results of these multiplications are integrated over a certain number of samples, yielding

correlation values between each local code replica and the incoming signal’s code. If, for

instance, the late replica exhibits the highest correlation, it indicates that the PRN code

needs to be delayed by ±1
2
a chip, as depicted in Figure 3.11.

While simple DLLs with only three correlators are effective when the local carrier wave

remains constant in both frequency and phase, variations between the local carrier wave and

the incoming signal’s carrier introduce noise and make code phase tracking challenging. To

address this, a DLL with six correlators was implemented. Three correlators are dedicated

to the local carrier replica, while the remaining three are used for a 90-degree shifted version

of the replica. This configuration ensures that the code tracking loop remains insensitive

and independent of phase variations between the incoming signal and the local carrier. Any

discrepancies in phase between the incoming signal and the local carrier are compensated

for by dynamically adjusting the energy allocation between the in-phase (I) and quadrature

(Q) arms of the tracking loop [3].
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Figure 3.11 Code phase tracking. Three local codes are generated and correlated with the
incoming signal. (a) The late replica has the highest correlation, so the code phase must be
decreased, i.e., the code sequence must be delayed. (b) The prompt code has the highest

correlation [3].

To provide feedback to the PRN code generator and adjust the code phase accordingly,

a code loop discriminator is employed. The choice of discriminator, as described in Table

3.2, depends on the specific application requirements and the expected level of signal noise.

Table 3.2 Types of Delay Lock Loop Discriminators [3]

Type Discriminator, D Description

Coherent IE − IL Does not require the Q branch but requires a
good carrier tracking loop for optimal func-
tionality

Noncoherent (I2E +Q2
E)− (I2L +Q2

L) Early minus late power. The discriminator
response is nearly the same as the coherent
discriminator inside ±1

2
chip.

Noncoherent
(I2E+Q2

E)−(I2L+Q2
L)

(I2E+Q2
E)+(I2L+Q2

L)
Normalized early minus late power. The dis-
criminator has a great property when the
chip error is larger than a 1

2
chip, helping

the DLL to track noisy signals.
Noncoherent IP (IE − IL)+QP (QE −QL) Dot product. This discriminator uses all six

correlator outputs.

In this application, where independence from the Costas PLL of the carrier tracking is

desired, a discriminator that considers both the in-phase and quadrature arms of the signal
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is necessary. While an early-late power discriminator could suffice, the normalized early-

late discriminator, shown in Equation 3.4, offers increased performance across a range of

Signal-to-Noise Ratios (SNRs).

(I2E +Q2
E)− (I2L +Q2

L)

(I2E +Q2
E) + (I2L +Q2

L)
(3.4)

This discriminator leverages both the in-phase and quadrature arms, rendering it resilient to

variations in PLL performance. It is particularly advantageous due to its ability to maintain

performance consistency even when the SNR varies, which is likely for GPS applications.

The nominal recorded code phase errors of the four SVs used in this thesis are displayed in

Figure 3.12. Like the the carrier frequency, the code phase for each SV shifts approximately

linearly with time. The longer the transmission time, the greater the shift from the original

code phase, or starting point of the message. Again, the slope of the lines correlates to the

expected Doppler shift of approximately ±3 chips per second that is modeled in this study.

Figure 3.12 Code Phase error due to Doppler shift
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To streamline the tracking system and reduce computational complexity, the code track-

ing loop is combined with the carrier tracking loop, as displayed in Figure 3.13. Initially,

the prompt code derived from the code phase loop is applied to the input signal for de-

modulating the C/A code, resulting in an output carrying the input’s carrier with phase

modifications from the navigation data. This modified signal serves as input to the carrier

loop, which produces a local replica set at the carrier frequency of the input. Subsequently,

this local replica is utilized to eliminate the incoming signal’s carrier, yielding a C/A code

devoid of carrier frequency. This stripped signal is then fed back into the code tracking loop.

In essence, the code loop generates the local PRN code to nullify the code from the incoming

signal, while the tracking loop generates local carrier replicas to eliminate the carrier from

the signal for use in the code loop.

The computed code phase and carrier frequency values, along with their associated

Doppler shifts are saved and utilized to demodulate the incoming signal. The code phase

and carrier shifts, or error values, serve as the inputs to the machine learning algorithm.

Pseudorange and Position Calculation

This phase consists of decoding the 50 Hz Navigation data bits from the demodulated

signal according to ICD-GPS-200. This extracted navigation data contains essential infor-

mation required by the receiver from each satellite. The decoded information is then used

to determine relative time, pseudoranges, and ultimately, the position of the receiver. The

block diagram for this process is shown in Figure 3.14.

This portion of the receiver was built in MATLAB in accordance with Borre et al. [3],

ICD-GPS-200 [20], and Tsui [12]. The process begins with identifying the subframe start,

which marks the beginning of decoding the received data bits. Once the subframe start is

determined via the preamble, several key parameters are calculated. The first is the pseudo-

range, which provides an estimate of the distance between the receiver and the satellite. The

pseudoranges to each satellite can be calculated by linearizing a system of four equations

with four unknowns (assuming the minimum four SVs), as detailed by Tsui [12].
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Figure 3.13 Combined DLL and PLL tracking loops

The ephemeris data and the Time Of Week (TOW) are essential for precise positioning

calculations and are also calculated along with the pseudoranges, as the satellite positions

must be known prior to estimating the distance based upon the time difference between

signal transmission and reception. This is an iterative process as the pseudoranges are

updated based upon the clock corrections and updating satellite positions. The satellite

clock correction accounts for any discrepancies between the satellite’s onboard clock and

the receiver’s clock, ensuring accurate timing synchronization. Additionally, the satellite

position is calculated to accurately determine the satellite’s coordinates in space.

Finally, the receiver calculates its own position and clock offset. By combining the pseu-
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Figure 3.14 Pseudorange and position calculation process

dorange measurements from multiple satellites with their respective positions, the receiver

employs trilateration to determine its own coordinates on Earth’s surface. Additionally, the

receiver clock offset is determined to synchronize its internal clock with the GPS system time.

The code conducts coordinate conversions from Cartesian to geodetic (ECEF) to Universal

Transverse Mercator (UTM) to reveal the receiver position on Earth in meters north and

east.

Overall, this process involves a series of calculations based on received data bits, sub-

frame synchronization, and satellite information to accurately determine both satellite and

receiver positions, as well as their respective clock corrections. However, like the acquisition

model, this position calculation code is not essential for the baseline task that was set out

to be achieved in this thesis, which is to simply analyze the characteristics of the simulated

GPS signal, namely its PRN code, carrier frequency error, and code phase error to deter-

mine authenticity. This analysis of these features can be done prior to the decoding and

pseudorange calculation portion.

3.2.3 Jammed/Spoofed Signal Generation

The effect of jammed and spoofed signals may be simulated by altering either the source

signal, the receiver, or both. For the purposes of this study, the jammed signals were

simulated by altering the local oscillator frequency in the receiver. This simulates the effect

of an adversary overwhelming the receiver with interfering signals, essentially raising the

noise floor such that the receiver is no longer able to discern between the SV signals and the

jammed signals. This results in a complete inability to correlate PRN codes to their SVs, as

shown in Figure 3.15, for example. Due to this attack, the GPS receiver would not be able
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to conduct its pseudorange measurements and therefore be unable to determine its position.

Figure 3.15 Jammed receiver output. No PRN code correlation possible.

To simulate a spoofing attack, the source signal is modified to replicate an authentic

signal. This requires a high degree of sophistication because, if the signal does not fully

model the characteristics of an actual GPS signal, it may have the same effect as jamming

the receiver. For this thesis, several attempts were made to alter the characteristics (ampli-

tude/phase/content) of the P code to simulate a spoofed signal. However, these attempts

were unsuccessful. The closest results to a true spoofed signal were obtained by altering the

initial carrier frequency and code phase of the transmitted signal. The resulting PRN code

correlation plots are displayed in Figure 3.16.

As seen in the plots, the output is different from the jamming effect; however, the intended

result of fooling the receiver into thinking that an SV’s signal belongs to a different SV is

not fully realized. In this case, the receiver will continue to cycle through the tracking loops

in an attempt to find the closest PRN code correlation and will likely not reach a position

calculation, unless the pattern of the plot happens to match the PRN sequence for one of

the 32 satellites.

The code phase error and carrier frequency error for the spoofed signal per SV are dis-

played in Figure 3.17. These plots represent unrealistic GPS signals because the Doppler

shift is not consistent, as it would be from a signal being transmitted from a satellite. This
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Figure 3.16 Spoofed Receiver Output for PRN Code Correlation

Figure 3.17 Spoofed Receiver Output for carrier frequency shift and code phase shift

data serves as an example case to train the machine learning algorithm to identify the pres-

ence of a possible spoofed signal. Since a spoofed signal would be originating from Earth
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and may be stationary at some points and moving at others, these plots could very well be

representative of what a spoofed signal’s characteristics may contain. Therefore, the code

phase error and the carrier frequency error serve as the second and third features fed into

the training and validation of the machine learning algorithm, and provide greater fidelity

than the PRN code correlation feature for the spoofed instance.

3.2.4 Simulation Environment & Machine Learning Architecture

The offline simulation environment used in this thesis consists of the integration of simu-

lated GPS signals, the modeled GPS receiver, and the AIS-SVM machine learning algorithm.

First, the nominal, jammed, and spoofed GPS signals are generated in MATLAB and

Simulink. For the purposes of this study, the generated signals consist of four “in-view”

SVs combined into one signal. Next, the generated signals are input into the Simulink

receiver model. If more than four SVs were in the signal, the receiver model would conduct

acquisition to determine which SVs are in view and select those with the highest peak

frequency correlation. However, since the generated signals presented to the receiver already

contained only four satellites that were purposely designed to be in view of the receiver,

the receiver model skips the acquisition phase and conducts tracking. From the completion

of the tracking phase, the receiver outputs the three features used in this thesis – PRN

correlation, code phase error, and carrier frequency error. These features, for both nominal

and off-nominal cases, are fed into the machine learning algorithm.

The HMS first conducts initial training given the nominal data to determine the self and

non-self regions. Next, the AIS-SVM validates the model by comparing nominal data to the

already trained-upon nominal data. Once the model outputs an acceptably low false alarm

rate, the spoofed data features are input into the HMS. These off-nominal data are then

classified into the self and non-self regions that were previously developed through training

and confirmed through model validation. Lastly, the machine learning algorithm reports the

spoofing detection rate, or what percentage of spoofed signals were successfully identified as

off-nominal. This overall process is depicted in Figure 3.18.
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Figure 3.18 Simulation Environment Architecture
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4 Results

The Health Management System was trained using three sets of aforementioned features

per SV:

Table 4.1 AIS-SVM Features

Label Feature

Feature0 PRN Correlation Data
Feature1 Code Phase Error
Feature2 Carrier Frequency Error

These features were analyzed in two different models: a local model, which compares every

combination of SV feature per SV, and a crossed model, which compares every combination

of all features for all SVs. The local model results in 12 combinations of feature analysis,

while the crossed model results in 54 combinations of analysis.

4.1 HMS Training & Validation

The HMS is trained using the nominal GPS signal data to determine the self and non-

self regions. The three individual features for each SV are provided to the HMS as training

data to populate the AIS, resulting in a feature space of 12 for the local model and 54 for

the crossed model. Of the 12 local feature combinations, the three for SV 1 are displayed in

Figures 4.1, 4.2, and 4.3. The blue area represents the self region, and the red area represents

the non-self region.

For the crossed model training, again only three of the 54 combinations are shown. This

time, however, the features being compared are the different PRN code correlations for each

of the four different SVs. These training results are displayed in Figures 4.4, 4.5, and 4.6.

Next, the models are validated to confirm that the algorithm properly identifies the

nominal data as nominal. Three of the local models are shown in Figures 4.7, 4.8, and 4.9.

The green symbols represent the presented nominal data points.
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Figure 4.1 Trained Local AIS-SVM Model for SV 1 PRN correlation vs. SV 1 Code Phase
Error

Figure 4.2 Trained Local AIS-SVM Model for SV 1 PRN correlation vs. SV 1 Carrier
Frequency Error

Figure 4.3 Trained Local AIS-SVM Model for SV 1 Code Phase Error vs. SV 1 Carrier
Frequency Error
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Figure 4.4 Trained Crossed AIS-SVM Model for SV 1 PRN correlation vs. SV 2 PRN
correlation

Figure 4.5 Trained Crossed AIS-SVM Model for SV 1 PRN correlation vs. SV 3 PRN
correlation

Figure 4.6 Trained Crossed AIS-SVM Model for SV 1 PRN correlation vs. SV 4 PRN
correlation
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Figure 4.7 Validated Local AIS-SVM Model for SV 1 PRN correlation vs. SV 1 Code
Phase Error

Figure 4.8 Validated Local AIS-SVM Model for SV 1 PRN correlation vs. SV 1 Carrier
Frequency Error

Figure 4.9 Validated Local AIS-SVM Model for SV 1 Code Phase Error vs. SV 1 Carrier
Frequency Error
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Three of the crossed model validations are displayed in Figures 4.10, 4.11, and 4.12. Since

the green symbols are all within the blue regions, it indicates that the models can properly

classify the nominal data as self.

Figure 4.10 Validated Crossed AIS-SVM Model for SV 1 PRN correlation vs. SV 2 PRN
correlation

Figure 4.11 Validated Crossed AIS-SVM Model for SV 1 Code Phase Error vs. SV 3 PRN
correlation

All four SVs had 0% ”false alarms” for all features in both the local and crossed models,

meaning that the HMS was able to successfully identify the inputted data as nominal data,

when it was compared to the training data.
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Figure 4.12 Validated Crossed AIS-SVM Model for SV 2 Carrier Frequency Error vs. SV 4
Carrier Frequency Error

4.2 Local Model Detection Results

Next, using the off-nominal (spoofed) data, the HMS is analyzed to determine how well

the model detects failure. Three of the local model detection results are shown in Figures

4.13, 4.14, and 4.15. These validations, displaying the detection results for the three feature

combinations of SV 1, resulted in spoofing detection rates of 95.5%, 86.1%, and 96.0%,

respectively. These results indicate that the model is successful in distinguishing between

nominal and off-nominal GPS signals based upon the given feature characteristics. The lower

detection value for PRN correlation and carrier frequency error simply indicates that these

two features are not closely coupled, as their characteristics vary significantly. Different

signal features would likely produce better results. Table 4.2 displays the spoofing detection

results for all four SVs.

4.3 Crossed Model Detection Results

Three examples of the crossed model detection results can be seen in Figures 4.16, 4.17,

and 4.18. Over the 54 feature combinations between the four SVs, the crossed model pro-

duced a slightly lower average spoofing detection rate, 94.4%, than the local model.

54



Figure 4.13 Trained Local AIS-SVM Model with Failure Data Validation for SV 1 PRN
correlation vs. SV 1 Code Phase Error

Figure 4.14 Trained Local AIS-SVM Model with Failure Data Validation for SV 1 PRN
correlation vs. SV 1 Carrier Frequency Error

Figure 4.15 Trained Local AIS-SVM Model with Failure Data Validation for SV 1 Code
Phase Error vs. SV 1 Carrier Frequency Error
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Table 4.2 Local Model Detection Rate Results

Local Fault Detection Spoof Detection Rate

SV 1
Feature0 x Feature1 95.5%
Feature0 x Feature2 86.1%
Feature1 x Feature2 96.0%

SV 2
Feature0 x Feature1 97.0%
Feature0 x Feature2 91.6%
Feature1 x Feature2 95.5%

SV 3
Feature0 x Feature1 99.5%
Feature0 x Feature2 91.6%
Feature1 x Feature2 95.5%

SV 4
Feature0 x Feature1 99.5%
Feature0 x Feature2 97.0%
Feature1 x Feature2 98.5%

Local Model Average 95.3%

Figure 4.16 Trained Crossed AIS-SVM Model with Failure Data Validation for SV 3 PRN
correlation vs. SV 4 PRN correlation
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Figure 4.17 Trained Crossed AIS-SVM Model with Failure Data Validation for SV 3 Code
Phase Error vs. SV 4 Carrier Frequency Error

Figure 4.18 Trained Crossed AIS-SVM Model with Failure Data Validation for SV 1 Code
Phase Error vs. SV 4 Code Phase Error

57



5 Discussion, Conclusions, & Future Work

5.1 Analysis of Results

A summary of the average spoofing detection results is displayed in Table 5.1.

Table 5.1 Average Detection Rate Results (Local and Crossed Models)

HMS Model Spoof Detection Rate

Local Model Average 95.3%
Crossed Model Average 94.4%

The crossed model has a spoofing lower detection rate than the local model due to the

increased number of combinations of uncorrelated features being compared to one another

in the crossed model. Since the different SVs have different PRN codes as well as code phase

shifts and carrier frequency shifts based upon if the SVs are moving toward or away from the

receiver, the characteristics of the signals are significantly different, yielding slightly lower

detection rates. The three features used in this study (especially the PRN code) are highly

dependent upon the particular SV in consideration. When features between varying SVs

are compared against one another, the feature space increases significantly, and thus the self

regions become larger to cover the increased variation in suspected correlation. This results

in a lower detection rate because a spoofed signal may fall in this expanded self region.

As more features and/or more SVs are added to the model, spoofing detection rates

would increase. Overall, however, the high detection rates and low false alarm rates validate

that the HMS is able to classify nominal and failure conditions accurately.

5.2 Conclusions

The Global Positioning System is continually being modernized to provide greater preci-

sion, accuracy, and resilience to attacks. As the use of and dependency on the GPS continue

to increase, so will the threats. Jamming, spoofing, and other cyber-attacks are serious issues

posed to both military and civilian applications. As advancements in Artificial Intelligence

and Machine Learning rapidly increase in scope and application, surely they will have a role

in GPS jamming and spoofing detection.
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This thesis proposes an architecture that uses an Artificial Immune System and Support

Vector Machine algorithm to create a Health Management System for the detection of GPS

jamming and spoofing. This machine learning system was validated using simulated GPS

signal data, simulated GPS receiver output, and simulated GPS jamming and spoofing sig-

nals. The results prove that the model can successfully differentiate between nominal and

failure data with high accuracy.

5.3 Future Work

Additional work is needed to further refine and increase the robustness of the initial

results obtained in this study. There are several areas of improvement, to include increasing

the number of features to train the HMS, generating more realistic and robust spoofed signals

that more accurately and fully ”fool” the GPS receiver, and integrating the three separate

parts of the simulated receiver to obtain position and timing information.

This thesis focused only on the analysis of three signal characteristics that are indepen-

dent of actual receiver position. Future work should include the full receiver model with

acquisition and position calculation enabled. When paired with a more robustly designed

spoofing signal, this approach can be applied to a moving receiver, on a drone for example,

and simulate the drone changing its position due to a spoofing attack. Then, if the machine

learning model is brought online to conduct spoof detection in real time, the failure detection

results could be used by the drone to reject the spoofed signals and revert to its previous

position.
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