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Abstract 

Increased availability of data and computing power has allowed organizations to apply machine 

learning techniques to various fleet monitoring activities. Additionally, our ability to acquire 

aircraft data has increased due to the miniaturization of small form factor computing machines. 

Aircraft data collection processes contain many data features in the form of multivariate time 

series (continuous, discrete, categorical, etc.), which can be used to train machine learning 

models. Yet, three major challenges still face many flight organizations: 1) integration and 

automation of data collection frameworks, 2) data cleanup and preparation, and 3) developing an 

embedded machine learning framework. Data cleanup and preparation have been a well-known 

challenge since database systems were first invented. While integration and automation of data 

collection efforts within many organizations is quite mature, there are special challenges for 

flight-based organizations (i.e., the automatic and efficient transmission of aircraft flight data to 

centralized analytical data processing systems). Furthermore, this creates additional constraints 

for the operationalization of embedded machine learning methods for classical tasks such as 

classification and prediction; and magnifying design challenges for the more novel prescriptive 

based architectures. Our research is focused on the application of a design pattern for a) the 

integration and automation of data collection and b) an organizationally embedded ensemble 

machine learning method.  

 Keywords: machine learning, unsupervised teaching, integrated systems, theory of 

polymorphic learning, flight data, Garmin G1000® 
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Introduction 

Airline fleet monitoring processes are not new or novel. Since the advent of commercial air 

travel, organizations have implemented such procedures with the goal of comparing fleet 

performances in terms of aircraft deterioration and fuel consumption (Taylor, 1969). More 

recently, studies have been conducted utilizing data analytics frameworks and machine learning 

frameworks with the goal of detecting anomalies in the physical aircrafts themselves 

(Gorinevsky et al., 2012) to reduce delays that occur as a part of turnaround operations (Wu, 

2008), improve operational efficiency (Sumathi et al., 2017), or to predict failures or life of 

aircraft (Zaccaria et al., 2018). However, there is dearth of literature pertaining to the standards 

for operationalizing a machine learning framework in the context of flight data. This manuscript 

details an approach for standardizing and cleaning flight data, and its subsequent incorporation in 

the proposed unsupervised ensemble machine learning framework, that leverages Principal 

Component Analysis (PCA) and Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN). Analysis of data collected from 65,525 flight logs across six Cessna 172 aircraft is 

presented. This manuscript is guided by the research question: how can an unsupervised 

ensemble machine learning architecture be used to standardize quantitative parameters for flight 

operations and flight outlier detection?  Additionally, the manuscript details what can be 

predicted from this architectural design pattern. 

Background 

Airplane monitoring systems are not new or novel with variants of systems in use for 

several decades (Miligan, 1995; Taylor, 1969). Airplane monitoring systems serve the role of 

capturing data from sensors pertaining to its structure, engine, cabin environment, and inflight 

entertainment systems (Gao et al., 2018). Data is routed from sensors, usually through wires, 
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though wireless transmission has also been implemented in some aircraft. Monitoring systems 

also aid with improving efficiency of aircraft maintenance through predictive maintenance 

(Zelenika et al., 2020). Instruments have also been developed that can evaluate aircraft takeoff 

performance in real-time that aid pilots in making decisive choices as to whether to takeoff or not 

(Miligan et al., 1995). 

Airplane fleet monitoring systems play an integral role in overall operating costs for 

commercial airlines by allowing more efficient and effective maintenance to be done on 

airplanes (Dupuy et al., 2011). Aircraft operators use either a preventative or condition-based 

approach towards maintenance. Prevalence of monitoring systems and the prompt analysis of 

data collected from fleets can allow for more timely and effective maintenance activities, which 

will reduce aircraft downtime while also reducing operational costs arising from maintenance 

(Dupuy et al., 2011). There has been a trend for applying statistical techniques to data collected 

from fleets of commercial aircraft to identify aircraft anomalies or abnormal trends (Gorinevsky 

et al., 2012; Sumathi et al., 2017). Application of technologically supported data analytics can 

have positive impacts in terms airplane maintenance, fleet management, and operations (Sumathi 

et al., 2017). Use of such technology can also allow for aircraft operators to take proactive 

measures to reduce delays and identify root causes of delays (Wu, 2008). While big data 

analytics and statistical analysis techniques have been utilized in the context of aircraft fleet data, 

there is a dearth of literature in the context of utilizing machine learning to analyze datasets 

obtained from flights. 

Unsupervised Machine Learning 

Machine learning refers to the domain of computing centered around algorithms and 

statistical models that allow systems to accomplish tasks without specifically being programmed 
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for that task (Mahesh, 2020). Machine learning has been widely applied across various industries 

to enable systems to learn from data and to extract useful patterns or information from large sets 

of data.  Unsupervised machine learning (ML) facilitates “analysis of raw datasets, thereby 

helping in generating analytic insights from unlabeled data” (Usama et al., 2019, p. 65580). This 

in turn eliminates the need for manual feature engineering or labeling of data. Unsupervised 

machine learning techniques require no prior training. They identify features from a given 

dataset and respond to new data based on previously learned features (Mahesh, 2020). Examples 

of unsupervised learning algorithms include, but are not limited to, k-means clustering and 

principal component analysis. 

Principal Component Analysis 

Principal Component Analysis (PCA) is an example of an unsupervised ML framework 

(Usama et al., 2019).  PCA is defined as a “mathematical algorithm that reduces the 

dimensionality of the data while retaining most of the variation in the data set” (Ringnér, 2008).  

It is a multivariate statistical technique used to analyze data sets containing multiple correlated 

dependent variables (Abdi & Williams, 2010). PCA involves the transformation of dataset 

attributes or features into a set of uncorrelated attributes referred to as Principal Components 

(Howley et al., 2005). The input to PCA is a dataset with n dimensions.  PCA rotates the dataset 

to ensure maximum variability while reducing dimensionality from n to k, such that 99% of 

variance present in the dataset is retained in k principal components (Usama et al., 2019).  PCA 

has been used with a great degree of success in a wide variety of domains (Abdi & Williams, 

2010; Cao et al., 2018; Usama et al., 2019; Wang & Zhai, 2017) and, as such, would be a good 

choice to analyze flight data which has been described as highly dimensional and multiple 

correlated data features (Memarzadeh et al., 2020). 
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Density-Based Spatial Clustering of Applications with Noise  

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is one of the most 

widely used and frequently referenced clustering methods (Ester et al., 1996; Scitovski & Sabo, 

2020).  DBSCAN is a non-parametric density-based clustering technique, which is not predicated 

on assumptions about the probability distribution; data can be gathered from samples whose 

distributions are not predetermined (Potvin & Roff, 1993).  Based on spectral clustering 

algorithms, DBSCAN clusters together with lots of close neighbors and identifies point outliers 

that are isolated in low-density areas, whose nearest neighbors are too far away.  The usage of 

DBSCAN for flight data is not without precedence.  It has been applied to flight anomaly 

detection (Alhussein & Ali, 2020; Sheridan et al., 2020), rotary-wing data analysis (Shin & 

Hwang, 2016), and aviation operations using energy metrics (Puranik & Mavris, 2018). 

Gaps in Research 

Research in using specific machine learning models, or methods, for the analysis of flight 

data is reasonably developed across the research spectrum using the keywords: machine learning 

architecture, flight data, and outlier detection.  However, there is a dearth of literature pertaining 

to the operationalization of a design pattern for an unsupervised machine learning architecture 

for outlier detection. In our survey of literature, only one source was found when searching for 

literature using machine learning architecture, flight data, and outlier detection (Cook et al., 

2019). This specific study was however primarily centered around anomaly detection in the 

context of internet of things (IoT) devices.  

The research presented in this manuscript is focused on the broader applications of the 

interstitial design gaps of an integrated organization machine learning system. In addition, the 
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findings contribute towards a theory of polymorphic learning, a machine learning method that 

works through a continuum of micro-tactical use cases through to macro-strategic use cases. 

Methods 

This study leverages a design science research methodology. Design science research 

should strike a balance between utility-driven research and the demands of methodological 

research rigor (Peffers et al., 2007). The fundamental divide is between knowledge questions and 

practical difficulties. A knowledge question is a lack of information that they desire to reduce, 

but a practical problem is a difference between stakeholder goals and experiences that they wish 

to reduce. For instance, asking what the relationship is between team communication structure 

and systems integration build failures is a knowledge question, as opposed to asking how to 

reduce the frequency of build failures in integrated systems engineering projects. 

All forms of scientific investigation are inextricably entwined with contemporary problems. 

For illustration, an empirical research question is a knowledge issue that necessitates further 

investigation for the researcher to respond. However, carrying out empirical research is a 

practical matter in and of itself. Examining the research problem, planning, and validating the 

research are important. To establish whether a solution design would solve the problem, a 

problem solver must predict what would occur if it were implemented in the problem domain.  

This is a question of knowledge. The reciprocal recurrence of practical difficulties and 

knowledge questions may cause confusion, making it simple for the researcher to overlook 

important problems to solve or questions to pose. Addressing practical problems, which are 

knowledge questions, the design science researchers should define the knowledge space using C-

K Theory (Hatchuel & Weil, 2003; Ondrus & Pigneur, 2009). 
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To precisely define a design scenario is the central tenet of C-K theory. An architectural 

artifact is an incomplete description of something that is largely undeveloped. This defines the 

proposed architecture as a concept. This first step of C-K Theory establishes a formal boundary 

between a concept space known as C and knowledge space known as K.  A design's creative 

component is the outcome of two different expansions: C-expansions, which are sometimes 

referred to as "new ideas," and K-expansions, which are essential to authenticate these ideas or to 

extend them into effective designs (Hatchuel & Weil, 2009). 

Artifacts created or researched in software engineering research include algorithms, 

methodologies, approaches, tools, notations, and even conceptual frameworks used in the field.  

Practical problems with the creation, construction, or maintenance of integrated systems are a 

constant in the field of systems engineering. In this regard, and for purposes specific to this 

research, the unsupervised ensemble machine learning architecture is the design science artifact.  

When it comes to artifact design, empirical research can be applied in two different ways: to 

validate an artifact before it is used, or to evaluate how well a design is implemented after it has 

been used (Wieringa, 2010). This also holds true for the field of aerospace engineering (Vincenti, 

1993).  Consequently, research questions under the auspices of design science can take on the 

following forms for a given design artifact: How to operationalize said artifact? What is the 

design prediction? What design trade-offs can be ascertained?  How is the design valued?  What 

is the design’s effectiveness towards a given domain?  At its core, our design science research 

question is congruent with the first two questions in the list: How can our proposed unsupervised 

ensemble machine learning architecture be used to standardize quantitative parameters for flight 

operations and flight outlier detection?  Additionally, what can be predicted from this 

operationalization of this architectural artifact? 
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The architecture for this research starts with the aircraft themselves. We randomly selected six 

Cessna 172 aircraft from our fleet of university aircraft (K-State, 2022). Each aircraft selected 

contained a Garmin G1000 electronic flight instrument systems (EFIS) device.  Additionally, all 

aircraft are part of the university’s professional pilot training program (i.e., these are aircraft 

strictly used for student pilot training). Each aircraft maintains an active flight log. These flight 

logs are stored on Secure Digital (SD) memory cards. The G1000 stores flight logs in a series of 

flat files via a structured comma-separated values format (CSV). The data on each card is 

manually extracted, loaded, and transferred (ETL) into a Microsoft SQL Server database engine 

(see Figure 1). 

 

Figure 1 

Conceptual Space, The Concept of Operation 

 

Next, using C-K Theory, we move from the conceptual C-Space to the physical K-Space 

(Knowledge Space). The K-Space considers the actual implementation of the proposed 

architecture. In the K-Space architecture, we have more couple more steps that we need to 

describe. First, we bring the flight data into the SQL Server database as raw data. Second, we 
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perform feature engineering on the data to make it palatable for the machine learning framework. 

This primarily consisted of a) converting the raw textual datatypes into numerical decimal 

floating-point values and b) replacing null data values with zeroes using an ISNULL() SQL 

function (e.g., Structured Query Language function). The researchers found 3.71% of missing 

data across all data features in this study. Data analysis where less than 5% of the data is missing 

is statistically inconsequential (Shafer, 1999). A multitude of imputation methods for missing 

data exist as our data was not greater than the 5% threshold (Bennett, 2001; Dong & Peng, 

2013). Once feature engineering is completed, the flight logs are unified using SQL Views.  

These are virtual tables that allow us to rapidly iterate on the data output without disturbing the 

base physical data within the database. This also allows us to easily split the data up into 

Location Data and Operations Data (see Figure 2). 
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Figure 2 

Knowledge Space, The Physical Architecture

 

 

After the data has been standardized (and centralized) within the SQL Server engine, we 

can easily access the data using Python’s database connectivity interface library (i.e., PyODBC 

database connection library). The centralized data view 25 data features (see Figure 3). With the 

aim of forming groups, cluster analysis is a set of useful exploratory techniques that can be used 

whenever we want to confirm the existence of similar behavior between observations (aircraft 

operating parameters) or the detection of outliers that deviate from the existence of similarly 

clustered dimensionally reduced data features (Fávero & Belfiore, 2019).  
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Figure 3 

 

Definition of Centralized Data View 

 

 
 

At this stage of the architecture, we utilized machine learning capabilities such as Principal 

Component Analysis (PCA) and Density-Based Spatial Clustering of Application with Noise 

(DBSCAN). The rationale behind this was that SQL (Structured Query Language), while great 

for data engineering, does not have the same maturity as Python in terms of machine learning 

capabilities (Blacher et al., 2022). At this point, PCA and DBSCAN can be leveraged from 

within Python to determine standard operating characteristics of the fleet sample as well as to 

identify operating outliers based on the dimensionally reduced eigenvalues. 

The last step of the process was focused on data verification.  We first verified the location 

data by geo-mapping the flight paths to determine that the data we imported was indeed correct.  

After reviewing the location data output on Google Earth, we were able to determine that the 

data translations from the prior feature engineering processes did not impact the data output 
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required to make this an operational machine learning architecture (see Figure 4). Consequently, 

this test allowed us to move forward with unsupervised machine learning portion of our 

architecture.  

 

Figure 4 

Location Data, Salina (SLN) to Kansas City (MCI) 

 

  

 

Results 

After processing and unifying 65,525 flight log entries, we were able to determine accurate 

operating parameters using a standard correlation plot (see Figure 5). The rank order column 

within the correlation plot is greyed due to it not being a derived data feature and not part of the 

operational flight data features. Correlations between altitude (AltB and Alt_MSL), oil 

temperature (E1_Oil_T), and engine revolutions per minute (E1_RPM) were positive. Indicated 

air speed (IAS) is positively correlated with oil temperature (E1_Oil_T) and engine revolutions 

per minute (E1_RPM). Additionally, outside air temperature (OAT) is negatively correlated with 

indicated air speed (IAS), oil temperature (E1_Oil_T) and engine revolutions per minute 

(E1_RPM). These correlations were measured using Pearson Correlation Coefficients (see 
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Figure 5). The correlation coefficient is a standardized coefficient. If the absolute value is exactly 

1, then all data points fall on a straight line and a linear equation accurately captures the 

relationship between X and Y. The regression slope determines the direction of the correlation: a 

value of +1 indicates that all data points lie on a line where Y increases as X increases, and a 

value of -1 indicates the opposite. A value of 0 suggests that the variables are not linearly 

dependent on one another. 

Figure 5 

Feature Correlations 
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These coefficients are exploratory and provide us with a way towards a) selecting important data 

features and b) implementing PCA and DBSCAN. In looking at specific relationships within the 

PCA model, we were able to get excellent variance values in our model metrics across many data 

features (see Table 1). According to the UCLA: Statistical Consulting Group (2021), variance 

values above 0.70 are considered fair, values above 0.80 are considered good, and values above 

0.90 are considered excellent. 

 

Table 1 

PCA Explainable Variance 

    

Data Features 
PCA Variance 

Explained 

DBSCAN 

Silhouette Score 

['ias', 'e1_oil_t', 'e1_rpm'] 0.967 0.761 

['vspd', 'pitch', 'roll'] 0.944 0.843 

['oat', 'ias', 'e1_oil_t', 'e1_rpm'] 0.897 0.760 

['amp1', 'volt1', 'vspd'] 0.739 0.843 

['mag_var', 'hdg', 'vspd'] 0.728 0.799 

Scale Range 0 to 1 -1 to 1 

     

 

In evaluating DBSCAN, we can use what is called the Silhouette Coefficient (also known 

as the Silhouette Score). Since we cannot use any type of visualization to validate clustering 

when dimensions are greater than 3, the silhouette score is quite helpful when dealing with 

higher dimensions. The silhouette value gauges an object's cohesion with its own cluster in 

comparison to other clusters (separation). A high number on the silhouette implies that the object 
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is well matched to its own cluster and poorly matched to nearby clusters. The silhouette has a 

range of -1 to +1 (Shahapure & Nicholas, 2020). While largely dependent on use case and the 

configuration of DBSCAN, silhouette values above 0.50 are considered fair, values above 0.60 

are considered good, and values above 0.70 are considered excellent (Ogbuabor & Ugwoke, 

2018; Trivedi & Patel, 2020). In looking over the results, the Silhouette Scores illustrate the 

viability of DBSCAN for analyzing the operational characteristics of our flight data. 

Discussion 

The original premise of this research is focused on the operationalization of an integrated 

organizational machine learning architecture for aviation flight data to be used towards a) 

standardizing operational flight parameters using unsupervised learning methods, and b) 

identification of operational outliers using unsupervised learning methods. Thirdly, the scope of 

this research also includes a design pattern prediction for the proposed architectural artifact.   

The proposed machine learning architecture was not just proposed but tested using real flight 

data, from a real training fleet. Early in our data capture (at roughly 5,000 flight log samples) it 

was becoming clear that more data was needed to standardize the flight operational parameters 

for principal component analysis (PCA). An interesting observation we found in our data 

analysis is we approximated a single anomaly detection hit rate for every 20,000 flight log 

samples.    

Given our total sample size of 65,525 flight log entries under analysis, using all data 

features, PCA was able to detect 3 anomalous outliers (see Figure 6). Overall, the architecture’s 

use of an unsupervised machine learning method was able to standardize operational flight 

parameters. 
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Figure 6 

PCA, Macro-Strategic Analysis of Features 

 

 

 

Regarding identifying operational outliers using unsupervised learning methods, we 

developed and implemented the architecture. New terminology was also developed to distinguish 

between convergent data behavior and divergent data behavior. Convergent data behavior is non-

anomalous behavior (e.g., operational parameters are within the normal converged data space). 

Divergent data behavior is a candidate for anomalous behavior (e.g., operational parameters are 

within the abnormal divergent data space). Additionally, this allowed us to leverage PCA as a 

Macro-Level detection framework. This architecture distinguished itself in its ability to a) 

standardize operating parameters into dimensionally reduced eigenvalues that are easily 

captured, and b) identify anomalous behavior within the divergent data space. 

Finally, the proposed organizational machine learning architecture illustrated a useful 

design pattern with a predicted system capability to standardize operational fleet parameters and 

detect operational outliers. An emergent system property of the architecture (Weinstock, 2010) 

was the ability of the architecture to perform standardization and outlier detection at both the 
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macro-strategic and micro-tactical levels (see Figure 7). This demonstrates that unsupervised 

machine learning methods, which do not require training data, have utility for analyzing flight 

data.  

 

Figure 7 

Micro-Tactical Analysis of Features 

 

 

 

Limitations, Conclusion, and Future Work 

The research has some limitations. First, the machine learning architecture was built on 

data from a fleet of Cessna 172s from within a training environment. If one were to standardize 

operational fleet parameters based on flight log data, the data model would need to be extended 

to take this into account. Eigenvalue standardization is specific to a given aircraft and flight 

environment. An additional area for improvement is the wireless transmission of data from the 

fleet to the to the centralized database. Current technologies are very costly and are usually 

cloud-based, further increasing their subscription costs for data processing. Automated data 

transfers can be done much cheaper if the fleet operator has the willingness to engage in 
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infrastructure development as well as the research efforts in unsupervised machine learning 

methods.   

In implementing a design science research methodology, we focused on validating the 

architectural artifacts and evaluating it following implementation. It can be inferred from the 

results that the proposed architecture provides value at multiple levels. The implementation of 

this proposed architecture isn’t very difficult provided sufficient fluency in data engineering, 

python programming, structured query language (SQL), and unsupervised machine learning. One 

way to measure the effectiveness of a given architecture is to evaluate its scalability. The 

proposed architecture was implemented on a single laptop (Intel i7 processor, 32 gigabytes of 

random-access memory, and 1 terabyte of hard drive space) which is a testament to 

architecture’s scalability and portability. The addition of more data to the database did not result 

in any discernable performance problems. This architecture is highly modular and can easily be 

implemented in a cloud environment should an enterprise build-out be needed.  
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