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Abstract 

The purpose of the research was to create and validate a safety performance decision-making 

tool to transform a reactive safety model into a predictive, decision-making tool, specific to 

large, collegiate Title 14 of the Code of Federal Regulations (CFR) Part 141 flight training 

organizations, to increase safety and aid in operational decision-making. Using Monte Carlo 

simulation, the study conducted simulation runs based on true operational ranges to simulate the 

operating conditions possible within large, collegiate CFR Part 141 flight training organizations 

with varying levels of controllable resources in terms of personnel (Aviation Maintenance 

Technicians and Instructor Pilots) and expenditures (active flight students and available aircraft). 

The study compared the output from three different Verification Scenarios. ANOVA testing 

indicated no significant differences appeared among the three different groups. Four What-if 

Scenarios were conducted by manipulating the controllable inputs. Changes to the controllable 

inputs are reflected by variations to the outputs demonstrating the utility and potential for the 

safety performance decision-making tool. The outputs could be utilized by safety personnel and 

administrators to make more informed safety-related decisions without expending unnecessary 

resources. 

Keywords: safety management systems, risk management, safety, decision-making, flight 

training, Monte Carlo simulation 
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Development of a Safety Performance Decision-Making Tool for Flight Training 

Organizations1 

Introduction 

With the introduction and requirement of a Safety Management System (SMS) in 

aviation, the focus is shifting from traditional forms of reactive data collection and analysis to 

approaches and techniques that bolster and improve the effectiveness of the organization’s SMS. 

A vital portion of this process includes the development and implementation of safety 

performance indicators (SPIs). International Civil Aviation Organization (ICAO) Document 

9859, Safety Management Manual, and ICAO Annex 19 define an SPI as a data-driven safety 

constraint used for observing and evaluating an organization’s safety performance. SPIs are used 

to monitor and mitigate known safety risks to elicit corrective action before an adverse event 

occurs (Pierobon, 2016). 

The purpose of the research was to create and validate a safety performance decision-

making tool to transform a non-statistical model composed of 12 SPIs determined by Anderson 

et al. (2020) to be most indicative of flight risk specific to flight schools, into a predictive, safety 

performance decision-making tool. The model uses what-if scenarios to evaluate how changing 

controllable input variables affect the level of operational risk within the system, portrayed 

within the model as the risk score outputs. These risk score outputs provide a keen insight into 

the overall level of risk within the organization (see Figure 1).  

 

 

 
1 This article is based on the Doctoral Dissertation of Marisa D. Aguiar, submitted to the Department of Doctoral 

Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Embry-Riddle 

Aeronautical University. 
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Figure 1 

Risk Indicator Score Card 

 

Note. Risk level 1-5 with the lowest level being a 1 and highest level being a 5. 

 

The extant literature indicated a deficit of predictive, safety performance decision-making 

tools specific to flight schools and flight departments; therefore, this research fills an operational 

need within the industry. The study also extends the research conducted by Anderson et al. 

(2020) by expanding the non-statistical model into a safety performance decision-making tool 

utilizing Monte Carlo simulation to improve the accuracy and robustness of the flight training 

organization’s SMS and the understanding of the factors most substantially contributing to flight 

risk within flight schools. As a safety decision-making tool, the model can  also be used by the 

administration within a flight school to rationalize new hires, acquire technology , and initiate 

other safety-related measures by modeling the potential of modifying resources, or controllable 

inputs, without the risk associated with expending the organization’s resources. Providing flight 

schools with a safety decision-making tool will enhance the risk management component of the 

organization’s SMS by substituting a reactive approach to safety with a predictive approach, and 

providing insight into the impact changes to operating conditions may have on the safety of the 

overall operation.  

3

Aguiar et al.: Development of a Safety Decision-Making Tool

Published by Scholarly Commons, 2024



 

Literature Review 

 Safety Performance Monitoring 

Mitigative actions based on the analyses of previous accidents and incidents are both 

reactive and insufficient to further the progress of proactive safety management (ICAO, 2013). 

Additionally, the absence of accidents and incidents within flight training organizations does not 

assume operations are functioning at the optimum level of safety (Adjekum, 2014; Cassens, 

2010; Keller, 2015; Mendonca & Carney, 2017). A modern approach to safety management 

includes proactively addressing safety risks rather than relying on inspections and remedial 

actions.  

Forecasting to improve safety outcomes 

Aviation safety has been managed based on analyzing accidents and incidents after they 

have already occurred. Although this strategy has allowed the industry to make strides in 

improving safety, a major drawback is the reactive nature of this approach, as safety analysis 

based on hindsight has restricted the process to primarily focusing on innately negative aspects, 

such as errors and failures within the system (Patriarca et al., 2019). The cyclical approach of 

measuring, analyzing, and providing feedback through a robust SMS has the potential to provide 

a more holistic, data-driven approach to safety monitoring. Rather than focusing solely on 

historical events or reports, monitoring should take a more proactive approach by assessing the 

various components of the system and how they contribute to the functioning of the system as a 

whole. This could be accomplished by incorporating forecasting techniques into the safety risk 

management element of an organization’s SMS to aid in understanding the performance 

variability that occurs within complex systems like aviation.  
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Monte Carlo Simulation and Applications in Aviation Research 

Monte Carlo simulation provides a useful methodology to propagate uncertainties further 

evolving reactive safety models and indices into innovative and predictive models useful for 

forecasting safety performance (Hacura et al., 2001). Monte Carlo methods use repeated random 

sampling to estimate the many potential outcomes that cannot be determined with certainty. 

Monte Carlo simulation is particularly useful for modeling complex systems where uncertainty 

exists to assess the impact of risk and has led to several innovative improvements in various 

fields, such as physics, game theory, finance, maritime, nuclear, and aviation (Hacura et al., 

2001).  

Safety assessments should consider the potential impact of any safety-related event. 

Minor, or less serious, events may happen more frequently, testifying to the importance of 

including occurrence statistics rather than solely accident statistics (Di Gravio et al., 2015). 

Monte Carlo simulation has the potential to provide an analytical model, based on historic data 

distributions, allowing the decision-maker to model potential events and determine how these 

less serious events, or occurrences, impact the safety of the system.  

Over the past decade, Monte Carlo simulation has been used for modeling and calculating 

aircraft collision risk both on the ground and in the air. Jacquemart and Morio (2013) created a 

Monte Carlo simulation to evaluate conflict probabilities between aircraft, demonstrating the 

utility of Monte Carlo simulation for air transportation safety. Belkhouche (2013) utilized Monte 

Carlo simulation for collision risk modeling and assessment for autonomous air vehicles to 

calculate the probability of a mid-air collision occurring in the presence of uncertainties. 

According to Belkhouche (2013), Monte Carlo methods have an important advantage in aircraft 

collision risk modeling because it does not explicitly use speed and orientation information, such 
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as collision cone angles, to calculate the probability of a collision occurring in the presence of 

uncertainties in non-linear systems with non-Gaussian, or non-normal, distributions; rather, 

collision risk is expressed as simple inequalities allowing for the estimation of probability under 

difficult and varying scenarios. In their text, Dunn and Shultis (2011) exemplify the application 

of Monte Carlo methods across domains and situations of varying complexity. Careddu et al. 

(2008) and Stroeve et al. (2013) have used Monte Carlo methodologies to validate advancements 

made on runway incursion events. Di Gravio et al. (2015) conducted a study aimed at improving 

Air Traffic Management safety by creating a statistical model of safety events using Monte Carlo 

simulation to predict safety performance, validating the utility of Monte Carlo simulation in 

improving air transportation safety. The extant literature indicates a deficit of Monte Carlo 

simulation models to be used as safety decision-making tools specific to flight training 

organizations. 

Theoretical Framework 

The theoretical framework driving the research was founded upon a model developed by 

Anderson et al. (2020); a sequential, mixed-method design study was conducted, including a 

qualitative data collection and analysis phase, followed by a quantitative data collection and 

analysis phase. Subject Matter Experts (SMEs) in the area of maintenance and flight operations 

selected the appropriate Safety Performance Indicators (SPIs). Once the appropriate SPIs had 

been selected, formulas were developed to quantify each selected SPI, based on monthly, 

operational data, see Anderson et al. (2020). Expert elicitation was used to establish inter-rater 

reliability for the assessment of SMEs’ evaluations. Twelve SPIs were selected for use within the 

model. SPIs 1-6 MX encased the maintenance side of operations; SPIs 1-6 FLT includes 

indicators relevant to flight operations (see Figure 2). 
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Figure 2 

Diagram of the Non-Statistical Model Developed by Anderson et al. (2020) Composed of SPIs 

and Associated Indicators. 

 

 

 

Similar Efforts 

Southwest Airlines and a Brazilian low-cost carrier are conducting similar efforts relevant to 

commercial flight operations. Both airlines are in the process of developing or have developed an 

algorithm that provides a risk score for both the operation and individual safety scores for each 

department. Using the foundations of ICAO Annex 19 and FAA guidance, Mendonca and 

Carney (2017) have also developed a model for flight schools; however, the model focuses 

specifically on using the four components of SMS and is intended to encourage a thriving safety 

culture among flight training operatives. Additionally, the model developed by Mendonca and 

Carney (2017) has no predictive capabilities. 
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Methodology 

 Monte Carlo simulation methodologies was used to build a safety decision-making tool 

based on SPIs determined by Anderson et al. (2020) to represent flight risk within flight training 

organizations to evaluate predictive, what-if scenarios to evaluate how the variations to 

controllable input variables affect the risk score outputs indicating the level of risk posed to safe 

operating conditions. The study used the quantitative method to convert a non-statistical model 

into a safety decision-making tool, utilizing Monte Carlo simulation; this simulation will allow to 

run what-if scenarios to assess how modifications to the controllable input variables impact the 

level of operational risk within an organization’s flight department. The use of Monte Carlo 

simulation is valuable in accommodating the uncertainty and variability of 22 uncontrollable 

input variables, as the only controllable input variables are the four listed below. The remaining 

variables were subject to uncertainty. 

• The number of full-time instructor pilots, 

• The number of aviation maintenance technicians available,  

• The number of active flight students, and  

• The total number of aircraft in the fleet.  

Population and Sample 

The target population to which the model generalizes is large, collegiate 14 CFR Part 141 

flight training organizations within the United States operating under the specifications defined 

by the FAA within Title 14 of the Code of Federal Regulations Part 141 (FAA, 2017). The 

sampling data used to determine the probability distributions of the uncontrollable input 

variables within the model consisted of two-years of operational data from both flight and 
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maintenance operations dating from September 2017 to September 2019 for a flight training 

organization in the United States.  

The study conducted simulation runs based on the true operational ranges specified below 

to simulate the range of operating conditions possible within a flight training organization with 

varying levels of resources with respect to personnel (Aviation Maintenance Technicians and 

Instructor Pilots), students, and aircraft: 

• Aviation Maintenance Technicians available: 14-35 

• Aircraft available: 50-82 

• Full-time Instructor Pilots: 100-200 

• Active Flight Students: 335-1300 

These ranges were selected because they are reflective of the higher and lower operational limits 

of the sample data drawn for the organization. The model could easily be adapted for use in any 

flight training organization with flight data acquisition abilities and an operational SMS. 

Design of the Mathematical Model 

Figure 3 depicts the structural definition of the model used for the Montecarlo simulation. 

The green-colored squares depict the four controllable input variables. The light-blue colored 

ovals represent the 22 uncontrollable input variables specified as probability distributions 

supplying an array of random values to the model based on probability distributions drawn from 

the raw data sample. The blue rounded rectangular boxes are SPIs and depict calculation nodes 

producing the results of the model. The orange trapezoid represents a value that is input as a 

constant. The impact value was input into the model as a constant value of 1 indicated no 

damage or injuries incurred was selected for the purpose of this study. The pink hexagons 

represent the risk score output variables. 
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Figure 3 

Structural Definition of the Model 

 

 
 

 

Data Analysis Approach 

 Various trials of the model were completed using different random number generator 

seed values to confirm the output of the simulation produced consistent results across trials. The 

distributions of the output variables were compared with descriptive statistics from simulation to 

simulation to demonstrate consistency. ANOVA testing was used to assess the model’s 

reliability (Hoyt, 1941) (see Appendix A). 

The study ran the simulation with 10,000 trials for a given scenario with manipulated 

controllable input values. The mean, standard deviation, maximum, and minimum values were 

used to determine the impact on either the flight or maintenance score and the overall risk score. 

ANOVA testing was also used to test for differences across sets of results (Hoyt, 1941). A 

Generalized Sensitivity Analysis (GSA) (Spear & Hornberger, 1980) was conducted to analyze 

the results of the what-if scenarios.  
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Results 

Validity Testing 

Three verification scenarios of the model were conducted to test validity. The shape of 

the distributions of the uncontrollable input variables from all the verification trials are the same 

as the distributions drawn from the raw data sample (see Appendix A).  

Monte Carlo Simulation Results 

To demonstrate the utility of the safety performance decision-making tool for real world 

use, the controllable input values used to generate the what-if scenarios within the Monte Carlo 

simulation model were determined based on permutational variations of ranges of normal 

operating conditions specific to flight training organizations. These permutations were conducted 

by varying the level of personnel, including available aviation maintenance technicians and 

instructor pilots, as low, moderate, or high. Similarly, permutations of resource expenditures, 

including aircraft available and active flight students, were also varied by degrees of low, 

moderate, or high.  

Each trial was computed using the specified controllable input variables capturing the 

output in a separate results matrix for each trial. This allowed the model to compute the risk 

score outputs, depicted as probability results, for the controllable input values given for each 

simulation trial (see Table 1). 
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Table 1 

Controllable Inputs for What-if Scenarios 1, 2, 3, and 4  

What-if 

Scenario 

Controllable 

Input  
Value Description  

Scenario 1 AMTs 14 Low personnel, high expenditures 

 Aircraft 82  

 IPs 100  

 Students 1300  

    

Scenario 2 AMTs 22 Moderate personnel, high expenditures 

 Aircraft 82  

 IPs 138  

 Students 1300  

    

Scenario 3 AMTs 35 High personnel, low expenditures 

 Aircraft 50  

 IPs 200  

 Students 335  

    

Scenario 4 AMTs 35 High personnel, moderate expenditures 

 Aircraft 56  

 IPs 200  

 Students 681  

Note. AMTs = Aviation maintenance technicians; Aircraft = Aircraft available; IPs= Full-time 

instructor pilots; Students = Active flight students.  

 

What-if Scenario 1 was conducted with the intent of simulating a scenario where 

personnel, including AMTs and instructor pilots, are low, but the necessary expenditures, 

including aircraft and active flight students, are high. Based on the specific controllable input 

variables used, results indicated What-if Scenario 1 had the highest mean value for the Overall 

Risk Score and the Flight Score, indicating a higher level of operational risk associated with 

conditions where a flight instructor capacity of 100 full-time instructors is not adequate to meet 
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the demands of 1300 flight students, increasing the level of operational risk, specifically in the 

flight department. (see Table 2).  

What-if Scenario 2 was conducted with the intent of simulating a scenario like What-if 

Scenario 1; however, in What-if Scenario 2, the number of personnel, including AMTs and 

instructor pilots, was increased from 14 AMTs to 22 and 100 instructor pilots to 138. The 

expenditures, consisting of aircraft and active flight students, remained high. Intuitively, both the 

Flight and Maintenance Scores improved from What-if Scenarios 1 to 2 indicating a reduction in 

the level of operational risk by closing the gap between the number of instructor pilots and active 

flight students, reducing the Overall Risk Score. The lowest Maintenance Score occurred in 

What-if Scenario 2, indicating the ratio of 22 technicians to 82 aircraft is optimal (See Table 2).  

What-if Scenario 3 was conducted with the intent of simulating a scenario opposite of 

What-if Scenarios 1 and 2 where there is an excess of personnel and a low level of expenditures, 

including a low number of flight students and few aircraft available. The excess of personnel 

drove the Maintenance Score up from the previous trials indicating an excess of available 

maintenance technicians increased the level of risk within the maintenance department, 

negatively impacting safety. The Flight Score was the lowest in What-if Scenario 3, indicating a 

1:1 ratio of instructor pilots to flight students is optimal. Of all four what-if scenarios, What-if 

Scenario 3 had the lowest Overall Risk Score (M = 0.8845, SD = 0.0955) indicating the safest 

level of operating conditions compared to the other three trials (See Table 2).  

Finally, What-if Scenario 4 was conducted with the intent of simulating a scenario like 

What-if Scenario 3; however, aircraft was increased from 50 to 56, and the number of flight 

students was increased from 335 to 681. The number of available personnel remained high. 
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Within What-if Scenario 4, the Flight Score increases from 1.441 to 1.621, indicating the level of 

risk increases as the gap between the number of personnel and expenditures closes (see Table 2).  

 

Table 2 

What-if Scenario Comparisons   

 
What-if 

Scenario 1 

What-if 

Scenario 2 

What-if 

Scenario 3 

What-if 

Scenario 4 

Output Score M (SD) M (SD) M (SD) M (SD) 

Maintenance 1.39 (0.17) 1.283(0.16) 1.396(0.16) 1.317 (0.16) 

Flight 2.621 (0.26) 2.248 (0.26) 1.441 (0.26) 1.621 (0.26) 

Damage & 

Related 

Impact 

0.084 (0.07) 0.084 (0.07) 0.084 (0.07) 0.084 (0.07) 

Overall Risk  1.237 (0.10) 1.092 (0.10) 0.8845 (0.10) 0.9149 (0.09) 

 

 

Results indicate the lowest risk score for maintenance occurred in What-if Scenario 2, 

where the level of personnel was moderate, yet expenditures, including aircraft and students, 

were high.  The lowest risk score for flight occurred in What-if Scenario 3, where the level of 

personnel was high, and expenditures were low. The Damage and Related Impact Score 

remained constant throughout; thus, no visual comparisons were made. What-if Scenario 3 also 

had the lowest Flight Score and Overall Risk Score, indicating operations are at the lowest level 

of risk when the level of personnel is high, yet the number of expenditures remains low. 

Although intuitive, this demonstrates the real-world utility of the model (see Figure 4).  
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Figure 4 

 

Maintenance, Flight and Overall Risk Score What-if Scenario Comparison Chart 

 

 
 

 

 

Reliability Testing 

Table 4 depicts the results of the reliability testing when different samples of random 

numbers drove the model’s uncontrollable input variables (Hoyt, 1941). For each group of 

results, three different seed values generated three different samples of random numbers. Thus, 

the model ran 10,000 trials, producing 10,000 results for each of the three different samples of 

random numbers. Table 4 also shows the mean and standard deviation of the outputs for each of 

these runs. Since no significant differences appeared among the different sets of results, the 

results are considered statistically reliable. Assumptions for ANOVA were tested. The large 

sample size of the simulated data fulfills the normality assumption. Levene’s testing verified the 

satisfaction of the homogeneity assumption. A non-significant Levene’s statistic test (p > 0.05) 

indicates the homogeneity of variance among the test groups. As shown in Table 4, the p-values 

0

0.5

1

1.5

2

2.5

3

Maintenance Flight Overall Risk

Risk Score for What-if Scenarios

Scenario 1 Scenario 2 Scenario 3 Scenario 4
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for all cases are greater than 0.05, indicating there are no significant differences among the three 

samples; therefore, the results produced by the model are statistically reliable. 

 

Table 4 

Comparison of Results with Different Random Number Seed Values 

 

Output 
Seed 

Value 
Mean 

Standard 

Deviation 

ANOVA 

F 

ANOVA 

P-value 

Maintenance 

Score 
99 1.49 0.1686 3.6446 0.3071 

 50 1.491 0.1606   

 10 1.492 0.1638   

      

Flight Score 99 1.781 0.2627 81 0.0704 

 50 1.784 0.2628   

 10 1.792 0.2692   

      

Damage & 

Related 

Impact Score 

99 0.0835 0.0687 0.25 0.7048 

 50 0.0829 0.0692   

 10 0.0833 0.0680   

      

Overall Risk 

Score 
99 1.015 0.0978 36 0.1051 

 50 1.016 0.0958   

 10 1.018 0.0986   

Note. No significant differences appear among the different sets of results;  

thus, the results are considered statistically reliable. 

 

Discussion and Conclusions 

Results of the four what-if scenarios indicate the lowest risk score for maintenance 

occurred in What-if Scenario 2, where the level of personnel was moderate, yet number of 

aircraft and students were high. The lowest risk score for flight and lowest overall risk occurred 
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in What-if Scenario 3, where the level of personnel was high, and number of aircraft and students 

were low.  

Changes to the controllable input variables are reflected by variations to the risk score 

outputs demonstrating the utility and predictive potential for the safety performance decision-

making tool. The risk score outputs produced from the what-if scenarios could then be utilized 

by safety personnel and administration to make more informed safety-related decisions, based on 

the mean level of operational risk predicted, without expending unnecessary resources. The 

lowest Overall Risk Score occurs in What-if Scenario 3, indicating this flight training 

organization should strive to maintain an appropriate balance of high personnel to low 

expenditures to maintain the optimum level of operational safety. 
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Appendix A 

Table A1 

Descriptive Statistics of the Raw Data Sample  

 
SPI Variable Lower Limit Higher Limit Mean SD 

1-MX Logistical delay time 100 310 203.8579 46.7893 

2-MX AMTs Available a 14 35 21 3.5033 

 Fleet flight time 4000 13500 7365.717 1674.774 

3-MX Percent of AC available 70 100 83.8003 4.6361 

 Total AC available a 50 82 62.236 6.2056 

4-MX Fleet flight time 4000 13500 7365.717 1674.774 

 Total MX orders processed 100 1200 514.9677 118.706 

5-MX Unscheduled MX orders 

<$10K 
300 1000 468.1397 132.7093 

 FAA occurrences 0 40 6.32 4.7847 

 Fleet flight time 4000 13500 7365.717 1674.774 

6-MX Total MX orders processed 100 1200 514.9677 118.706 

 AC dispatched w/ MX error 0 2 0.12 0.3317 

      

1-FLT Unstable approaches 0 946 78.0129 229.9836 

 Flap overspeeds 0 3 0.56 0.7118 

 G exceedances 0 3 0.44 1.0033 

 Tail strikes 0 10 1.64 1.9339 

 RPM overspeeds 0 3 0 0 

 Hard landings 0 7 1.2 1.6583 

 Fleet flight time 4000 13500 7365.717 1674.774 

2-FLT Annual SC survey results 1 5.76 4.6 0.0181 

3-FLT Traffic conflicts 0 18 8.04 3.0752 

 Fleet flight time 4000 13500 7365.717 1674.774 

4-FLT Full time Ips a 100 200 138 8.8600 

 Active flight students a 335 1300 656 179.8793 

5-FLT Months as an IP 0 12 10 0 

6-FLT Event reports 25 150 67.3372 20.5756 

      

Damage & 

Related 

Impact 

FAA incident reports 

0 3 0.2 0.4082 

 Unsched MX > $10K 0 3 0.96 1.5133 

 NTSB reports 
0 3 0.16 

0.3742 

 

 Fleet flight time 4000 13500 7365.717 1674.774 
a Controllable input variable 
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Table A2 

Probability Distributions for Uncontrollable Input Variables  

 

Uncontrollable Input Variable Data Type Probability Distribution 

Fleet flight time (hobbs) Continuous Normal 

Logistical Delay Time (minutes) Continuous Weibull 

Percentage of aircraft available Discrete Uniform 

Number of total maintenance 

orders processed 

 

Discrete Logistic 

Unscheduled maintenance orders 

under $10k 

Discrete Binomial 

FAA occurrences reports Discrete Geometric 

Number of aircraft dispatched 

with maintenance errors 

 

Discrete Bernoulli 

Number of reported tail strikes Discrete Poisson 

Number of hard landings Discrete Poisson 

Number of unstable approaches Discrete Lognormal 

Number of RPM overspeeds Discrete Poisson 

Number of G exceedances Discrete Poisson 

Number of flap overspeeds Discrete Poisson 

Number of traffic conflicts Discrete Binomial 

Number of months flight 

instructors are active at 

institution (average) 

Continuous Certain 

Number of events reported 

(ASAP and event) 

 

Discrete 

 

Negative Binomial 

Number of NTSB accident 

reports 

Discrete Binomial 

Impact value Discrete Certain 

Number of FAA incident reports Discrete Binomial 

Number of unscheduled 

maintenance reports > $10,000 

Discrete Poisson 
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Figure A1 

Probability Density Distribution of the Maintenance Score in Verification Trial 1 

 

 

Figure A2 

Probability Density Distribution of the Flight Score in Verification Trial 1 
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Figure A3 

Probability Density Distribution of the Damage & Related Impact Score in Verification Trial 1 

 
 

Figure A4 

Probability Density Distribution of the Overall Risk Score in Verification Trial 1 
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