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Introduction
• Human skin is a complex structure with different 

phenomena affecting the propagation of skin-injected 
substances, such as, partitioning, metabolic reactions, 
adsorption, and elimination.

• Additionally, the small physical dimensions and the 
large time scale of the problem incur further 
complexities in numerical modeling schemes

• Thus, it is believed that modeling of the transdermal 
drug delivery process can be improved by implementing 
meshless methods, which carry certain advantages in 
addressing these complications

• Here, the Localized Collocation Meshless Method is 
compared to published results from a commercial 
software package, SKIN-CAD® as well as 
experimental results
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Figure 1: Skin structure [1]



Pharmacokinetic Modeling
• Following Al-Qallaf, et al, an extended version of 

Fick’s second law governing the process of 
compound diffusion is employed in a multilayer, 
two-compartment model

• Layers: Stratum Corneum, Viable Epidermis and Dermis
• Compartments: Blood and tissue

• Considered method of compound delivery is 
direct needle injection into the dermis

• Bypassing the stratum corneum allows us to model the 
diffusive and metabolic process in viable tissue and 
blood compartments only.

• Improves numerical predictions that rely on various 
uncertain, empirically determined parameters affecting 
skin dynamic processes.

ERAU Math Department Colloquium                                         
Daytona Beach, FL, April 3, 2024

3

Figure 2: Transdermal Drug Delivery (TDD) Schematic



Mathematical Formulation for Skin Model
• In general, the one-dimensional flux per unit area, J, of substance transport by diffusion through a solvent follows Fick’s First Law:

𝐽𝐽 = −𝐷𝐷
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

• Accounting for conservation of mass of the substance, we arrive at Fick’s Second Law:
𝜕𝜕𝑐𝑐
𝜕𝜕𝑡𝑡

= 𝐷𝐷 𝜕𝜕2𝑐𝑐
𝜕𝜕𝑥𝑥2

, (in 1D)    and    𝜕𝜕𝑐𝑐
𝜕𝜕𝑡𝑡

= 𝐷𝐷𝛻𝛻2𝜕𝜕, (in 2D+)

• Considering first-order metabolic effects: 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝛻𝛻2𝜕𝜕 − 𝐾𝐾𝜕𝜕

• Finally, assuming linear coupling between substance concentrations that are bound and unbound with blood:
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷𝛻𝛻2𝜕𝜕 + 𝐾𝐾12𝜕𝜕𝑏𝑏
𝑉𝑉𝑏𝑏
𝑉𝑉𝑡𝑡
− 𝐾𝐾21𝜕𝜕 − 𝐾𝐾𝜕𝜕

𝑑𝑑𝜕𝜕𝑏𝑏
𝑑𝑑𝜕𝜕

= 𝐾𝐾21𝜕𝜕
𝑉𝑉𝑡𝑡
𝑉𝑉𝑏𝑏
− 𝐾𝐾12𝜕𝜕𝑏𝑏 − 𝐾𝐾𝑒𝑒𝜕𝜕𝑏𝑏

• Where:

ERAU Math Department Colloquium                                         
Daytona Beach, FL, April 3, 2024

4

• 𝜕𝜕, 𝜕𝜕𝑏𝑏 – drug concentration in tissue and blood compartments (kg/m3)
• 𝐷𝐷 – diffusion coefficient (m2/s)
• 𝐾𝐾 – metabolic reaction rate constant (1/s)

• 𝐾𝐾𝑒𝑒 – elimination rate constant (1/s)
• 𝑉𝑉𝑡𝑡 ,𝑉𝑉𝑏𝑏 – volumes of tissue and blood (m3)
• 𝐾𝐾12,𝐾𝐾21 – binding and unbinding rate constants (1/s)



A Brief Introduction on Meshless Methods

• The term “meshless” refers to a class of methods that do not require boundary 
and/or interior point discretization, polygonization, integration or point ordering 
structure (as in FDM)

• The RBF-based Localized Collocation Meshless Method, as extended from the 
Kansa Method uses a scattered, non-ordered point distribution throughout the 
domain and boundary to approximate differential operators in the governing 
equation
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Radial-basis Function Interpolation

• For this purpose, assume some domain, Ω, with boundary Γ
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Ω

Boundary data center

Internal data center

Γ

• Assume a finite number of points, 
NB, used as ‘data centers’ on the 
boundary

• Assume a finite number of points, NI, 
used as ‘data centers’ inside the 
domain of interest

• Resulting in a total number of points:
N = NB + NI

Figure 3: Domain and Boundary with Data Centers



Radial-basis Function Interpolation
• Assume a general field variable may be interpolated in terms of a finite number of 

expansion functions as:

𝜕𝜕 𝜕𝜕 = �
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗χ𝑗𝑗(𝜕𝜕)

• Where:
• 𝜕𝜕 – generalized spatial coordinates, in 2D, (x,y)
• 𝜕𝜕 – field variable (here, drug concentration)
• 𝛼𝛼 – expansion coefficients
• χ – arbitrary (prescribed) expansion functions

• This proposed expansion will later be introduced into the governing equations for the 
problem at hand
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Radial-basis Function Interpolation
• The expansion functions may be defined to belong to the family of Radial-Basis functions (RBF)
• Such functions consist of algebraic expressions uniquely defined in terms of Euclidean distance 

from an ‘expansion point’ or ‘data center’ to some general field point
• Many examples, but implemented here are inverse multiquadric RBF

χ𝑗𝑗 𝜕𝜕 =
𝑟𝑟𝑗𝑗
σ

2
+ 1

−1/2

• Where:
• 𝑟𝑟𝑗𝑗 – Euclidean distance from expansion point

𝑟𝑟𝑗𝑗 = 𝜕𝜕 − 𝜕𝜕𝑗𝑗
2 + 𝑦𝑦 − 𝑦𝑦𝑗𝑗

2
in 2D

• 𝜕𝜕𝑗𝑗 ,𝑦𝑦𝑗𝑗 – location of expansion point j
• σ – shape parameter

• Of paramount importance; affects the flatness of the basis function and is optimized for solution
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Radial-basis Function Interpolation
• From the expansion, field derivatives can be approximated by simple derivation of the 

interpolation function, χ𝑗𝑗, i.e.,
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= �
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗
𝜕𝜕χ𝑗𝑗
𝜕𝜕𝜕𝜕

• Thus, the Laplacian is,

𝛻𝛻2𝜕𝜕 = �
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗𝛻𝛻2χ𝑗𝑗

• And normal derivatives are,
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛

= �
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗
𝜕𝜕χ𝑗𝑗
𝜕𝜕𝑛𝑛
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Radial-basis Function Interpolation
• Recalling the expansion, 

𝜕𝜕 𝜕𝜕 = �
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗χ𝑗𝑗(𝜕𝜕)

• This can be introduced into the generalized boundary condition,

𝛾𝛾1 �𝜕𝜕(𝜕𝜕)
Γ

+ 𝛾𝛾2 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛

(𝜕𝜕)
Γ

= �𝛾𝛾3 Γ

• such that,

𝛾𝛾1 ��
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗χ𝑗𝑗(𝜕𝜕)

Γ

+ 𝛾𝛾2 ��
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗
𝜕𝜕χ𝑗𝑗
𝜕𝜕𝑛𝑛

(𝜕𝜕)

Γ

= �𝛾𝛾3 Γ

• This can be reduced to:

��
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗ψ𝑗𝑗(𝜕𝜕)

Γ

= �𝛾𝛾3 Γ
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Radial-basis Function Interpolation
• From the generalized boundary condition,

𝛾𝛾1 �𝜕𝜕(𝜕𝜕)
Γ

+ 𝛾𝛾2 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛

(𝜕𝜕)
Γ

= 𝛾𝛾3

• 1st kind boundary conditions:

�𝜕𝜕
Γ1

= �
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗χ𝑗𝑗 = �̂�𝜕 ∴ 𝛾𝛾1 = 1, 𝛾𝛾2 = 0, 𝛾𝛾3 = �̂�𝜕

• 2nd kind boundary conditions:

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝑛𝑛 Γ2

= �
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗
𝜕𝜕χ𝑗𝑗
𝜕𝜕𝑛𝑛

=
−1
𝐷𝐷
𝐽𝐽 ∴ 𝛾𝛾1 = 0, 𝛾𝛾2 = −𝐷𝐷, 𝛾𝛾3 = 𝐽𝐽
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Radial-basis Function Interpolation
• Recalling the expansion, 

𝜕𝜕 𝜕𝜕 = �
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗χ𝑗𝑗(𝜕𝜕)

• Using the steady-state, uncoupled problem to demonstrate, this can also be introduced into governing equations such that,
𝐷𝐷𝛻𝛻2𝜕𝜕 − 𝐾𝐾𝜕𝜕 = 0

𝐷𝐷�
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗𝛻𝛻2χ𝑗𝑗(𝜕𝜕) − 𝐾𝐾�
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗χ𝑗𝑗 𝜕𝜕 = 0

�
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗 𝐷𝐷𝛻𝛻2χ𝑗𝑗 𝜕𝜕 − 𝐾𝐾χ𝑗𝑗 𝜕𝜕 = 0

• This can be reduced to:

�
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗ϕ𝑗𝑗(𝜕𝜕) = 0
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Radial-basis Function Interpolation
• Collocating the expanded boundary condition equation at the NB boundary data centers and the expanded 

governing equation at the NI internal data centers leads to square linear algebraic set for the expansion 
coefficients as:

𝐴𝐴𝛼𝛼 = 𝑏𝑏

• Where, 

𝐴𝐴 =
ψ𝑗𝑗(𝜕𝜕𝑖𝑖)
ϕ𝑗𝑗(𝜕𝜕𝑖𝑖) 𝑁𝑁𝑁𝑁+𝑁𝑁𝑁𝑁

𝑏𝑏 = 𝛾𝛾3
0 𝑁𝑁𝑁𝑁+𝑁𝑁𝑁𝑁

• Leading to a solution for the expansion coefficients, 𝛼𝛼 by,

𝛼𝛼 = 𝐴𝐴−1𝑏𝑏
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Localized Collocation
• Despite the apparent accuracy and robustness of the Global RBF Meshless 

approach the issues of ill-conditioning and high memory and CPU power 
demands become notorious as the size of the problem increases particularly 
when dealing with 3D large-scale problems

• It becomes imperative to mitigate these issues, and is possible through 
localized expansion

• Rather than interpolating globally, the RBF interpolation is performed over 
local topologies of influence points with a handful of advantages

• Optimization of each local interpolation (shape parameter, σ)
• Reduces CPU and memory demands
• Can be implemented without user intervention, automating the process
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Localized Collocation
• Localized RBF interpolation is based on the selection of localized 

topologies of influence points as follows:

• The localized topology of NF influence points is automatically generated 
around each data center xc

• The RBF interpolation of a function φ(x) is performed over NF influence 
points in the topology of a data center xc. In addition, a series of NP
polynomials Pj(x) may be added to the expansion to ensure exact 
interpolation of constant and linear fields

ϕ 𝒙𝒙 = �
𝑗𝑗=1

𝑁𝑁𝐹𝐹

𝛼𝛼𝑗𝑗χ𝑗𝑗(𝒙𝒙) + �
𝑗𝑗=1

𝑁𝑁𝑃𝑃

𝛼𝛼𝑗𝑗+𝑁𝑁𝐹𝐹𝑃𝑃𝑗𝑗(𝒙𝒙)
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xc

Topology Data Center xc

Topology Influence Points

Figure 4: Localized Influence Topology

Where, ϕ =

ϕ(𝒙𝒙1)
⋮

ϕ(𝒙𝒙𝑁𝑁𝐹𝐹)
0
⋮
0



Localized Collocation
• Following a similar process as before, the expansion coefficients, α, may be determined as:

ϕ = 𝐶𝐶 α → α = 𝐶𝐶 −1 ϕ
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Where, 𝐶𝐶 =

χ1(𝒙𝒙1) ⋯ χ𝑁𝑁𝐹𝐹(𝒙𝒙1)
⋮ ⋱ ⋮

χ1(𝒙𝒙𝑁𝑁𝐹𝐹) ⋯ χ𝑗𝑗(𝒙𝒙𝑁𝑁𝐹𝐹)

𝑃𝑃1(𝒙𝒙1) ⋯ 𝑃𝑃𝑁𝑁𝑃𝑃(𝒙𝒙1)
⋮ ⋱ ⋮

𝑃𝑃1(𝒙𝒙𝑁𝑁𝐹𝐹) ⋯ 𝑃𝑃𝑁𝑁𝑃𝑃(𝒙𝒙𝑁𝑁𝐹𝐹)
𝑃𝑃1(𝒙𝒙1) ⋯ 𝑃𝑃1(𝒙𝒙1)
⋮ ⋱ ⋮

𝑃𝑃𝑁𝑁𝑃𝑃(𝒙𝒙𝑁𝑁𝐹𝐹) ⋯ 𝑃𝑃𝑁𝑁𝑃𝑃(𝒙𝒙𝑁𝑁𝐹𝐹)

0  ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

 𝑎𝑎𝑛𝑛𝑑𝑑 ϕ =

ϕ(𝒙𝒙1)
⋮

ϕ(𝒙𝒙𝑁𝑁𝐹𝐹)
0
⋮
0



Localized Collocation
• And test function derivatives at the data center, xc, can be found in a similar manner to those 

derivatives found for globally interpolated RBF, where the linear derivative operator, ℒ, is applied 
to the expansion as follows:

ℒϕ 𝒙𝒙𝑐𝑐 = �
𝑗𝑗=1

𝑁𝑁𝐹𝐹

𝛼𝛼𝑗𝑗ℒχ𝑗𝑗(𝒙𝒙𝑐𝑐) + �
𝑗𝑗=1

𝑁𝑁𝑃𝑃

𝛼𝛼𝑗𝑗+𝑁𝑁𝐹𝐹ℒ𝑃𝑃𝑗𝑗(𝒙𝒙𝑐𝑐)

• And thus, in matrix form,
ℒϕ𝑐𝑐 = ℒ𝑐𝑐 𝑇𝑇 α → ℒϕ𝑐𝑐 = ℒ𝑐𝑐 𝑇𝑇 𝐶𝐶 −1 ϕ
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Where, ℒ𝑐𝑐 =

ℒχ1(𝒙𝒙𝑐𝑐)
⋮

ℒχ𝑁𝑁𝐹𝐹(𝒙𝒙𝑐𝑐)
ℒ𝑃𝑃1(𝒙𝒙𝑐𝑐)

⋮
ℒ𝑃𝑃𝑁𝑁𝑃𝑃(𝒙𝒙𝑐𝑐)



Transient Solution
• The formulation of the Localized Collocation Meshless Method (LCMM) for transient problems follows 

a first-order forward differencing approximation of the time derivative to formulate an explicit (Euler) 
integration scheme as: 

𝜕𝜕(𝑘𝑘+1) = 𝜕𝜕(𝑘𝑘) + ∆𝜕𝜕 𝐷𝐷𝛻𝛻2𝜕𝜕(𝑘𝑘) + 𝐾𝐾12𝜕𝜕𝑏𝑏
(𝑘𝑘) 𝑉𝑉𝑏𝑏

𝑉𝑉𝑡𝑡
− 𝐾𝐾21𝜕𝜕(𝑘𝑘) − 𝐾𝐾𝜕𝜕(𝑘𝑘)

• Where the RBF interpolation of the field variable at the current time step (k) can be implemented to 
approximate the right-hand side of the discretized equation:

𝜕𝜕(𝑘𝑘+1) = 𝜕𝜕(𝑘𝑘) + ∆𝜕𝜕 𝐷𝐷�
𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗
(𝑘𝑘)𝛻𝛻2χ𝑗𝑗(𝜕𝜕) + 𝐾𝐾12𝜕𝜕𝑏𝑏

(𝑘𝑘) 𝑉𝑉𝑏𝑏
𝑉𝑉𝑡𝑡
− 𝐾𝐾21�

𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗
(𝑘𝑘)χ𝑗𝑗(𝜕𝜕) − 𝐾𝐾�

𝑗𝑗=1

𝑁𝑁

𝛼𝛼𝑗𝑗
(𝑘𝑘)χ𝑗𝑗(𝜕𝜕)

• Notice that as the field evolves in time, only the expansion coefficients need to be updated at each time 
step (the RBF interpolation remains unchanged)
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Transient Solution
• As the field solution is based on a set of two, linearly coupled equations, they must be 

simultaneously solved for to advance in time, where,

𝜕𝜕(𝑘𝑘+1) = 𝜕𝜕(𝑘𝑘) + ∆𝜕𝜕 𝐷𝐷𝛻𝛻2𝜕𝜕(𝑘𝑘) + 𝐾𝐾12𝜕𝜕𝑏𝑏
(𝑘𝑘) 𝑉𝑉𝑏𝑏

𝑉𝑉𝑡𝑡
− 𝐾𝐾21𝜕𝜕(𝑘𝑘) − 𝐾𝐾𝜕𝜕(𝑘𝑘)

𝜕𝜕𝑏𝑏
(𝑘𝑘+1) = 𝜕𝜕𝑏𝑏

(𝑘𝑘) + ∆𝜕𝜕 𝐾𝐾21𝜕𝜕(𝑘𝑘) 𝑉𝑉𝑡𝑡
𝑉𝑉𝑏𝑏
− 𝐾𝐾12𝜕𝜕𝑏𝑏

(𝑘𝑘) − 𝐾𝐾𝑒𝑒𝜕𝜕𝑏𝑏
(𝑘𝑘)

• Again, implementing the RBF interpolation of the field variable to approximate the RHS of the 
discretized equations

• Note, that the drug concentration in the blood compartment, 𝜕𝜕𝑏𝑏, is effectively a 1st order time-varying ODE, but 
inherits spatial dimensionality by its dependence on the concentration in the tissue compartment
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Pharmacokinetic Parameters

• LCMM is used to model diffusion of Verapamil (a calcium channel blocker used 
for treatment of HBP, angina, tachycardia, migraines, and other afflictions) given 
the extent of experimental work on identifying pharmacokinetic parameters, as 
well as traditional numerical models of Verapamil in the literature

• Recall Verapamil is delivered by microneedle array, and so pharmacokinetic 
parameters are required for Verapamil in the viable epidermis only

• The pharmacokinetic parameters required are:
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• 𝐷𝐷 – diffusion coefficient (m2/s)
• 𝐾𝐾 – metabolic reaction rate constant (1/s)
• 𝐾𝐾𝑒𝑒 – elimination rate constant (1/s)

• 𝑉𝑉𝑡𝑡 ,𝑉𝑉𝑏𝑏 – volumes of tissue and blood (m3)
• 𝐾𝐾12,𝐾𝐾21 – binding and unbinding rate 

constants (1/s)



Pharmacokinetic Parameters
• Verapamil:

• Diffusion coefficient, 𝐷𝐷 = 7.8 � 10−8 [𝜕𝜕𝑐𝑐2/𝑠𝑠]
• Metabolic reaction rate constant, 𝐾𝐾 = 5.61 � 10−4 [1/𝑠𝑠]

• Three experiments by Anderson et al., Eichelbaum et al. and Koike et al. give values for:
• the elimination rate constant (𝐾𝐾𝑒𝑒)
• binding and unbinding rate constants (𝐾𝐾12,𝐾𝐾21)
• and the volume distribution of tissue and blood (𝑉𝑉𝑡𝑡 ,𝑉𝑉𝑏𝑏)

ERAU Math Department Colloquium                                         
Daytona Beach, FL, April 3, 2024

21

Pharmacokinetic Parameters
Ke [1/s]
(x10-4)

K12 [1/s] 
(x10-4)

K21 [1/s] 
(x10-4)

Vt [mL] 
(x104)

Vb [mL] 
(x104)

Anderson, et al 1.58 2.19 1.11 5.18 2.63
Eichelbaum, et al 0.79 2.12 2.78 13.14 27.39

Koike, et al 1.5 6.22 3.94 8.34 6.47



Pharmacokinetic Parameters
• In Al Qallaf et al, six different cases were modeled; two for each of the three 

experimentally derived sets of pharmacokinetic parameters
• One case with metabolic effects, 𝐾𝐾 = 5.61 � 10−4 [1/𝑠𝑠]
• One case without metabolic effects, 𝐾𝐾 = 0.0 [1/𝑠𝑠]
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Test Cases

Case K [1/s]
(x10-4)

Ke [1/s]
(x10-4)

K12 [1/s] 
(x10-4)

K21 [1/s] 
(x10-4)

Vt [mL] 
(x104)

Vb [mL] 
(x104)

1 0 1.58 2.19 1.11 5.18 2.63
2 5.61 1.58 2.19 1.11 5.18 2.63
3 0 0.79 2.12 2.78 13.14 27.39
4 5.61 0.79 2.12 2.78 13.14 27.39
5 0 1.5 6.22 3.94 8.34 6.47
6 5.61 1.5 6.22 3.94 8.34 6.47



Computational Domain
• The 2D computational domain models the planar region surrounding a single 

microneedle within the microneedle array

• To reiterate, as the Verapamil is delivered via microneedle injection, diffusion through 
the stratum corneum can be neglected 

• Additionally, the assumption is made
that there is no back-propagation of
Verapamil into the stratum corneum,
given it’s low permeability
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Figure 5: Microneedle Configuration in Model Schematic



Computational Domain
• Thus, the 2D computational domain is given with the following dimensions, boundary 

conditions and boundary condition values.

ERAU Math Department Colloquium                                         
Daytona Beach, FL, April 3, 2024

24

1

2

3

4

5

6

7

8

Index Length [cm] Boundary Condition Boundary Value
1 0.025 1st Kind 0 mg∙mL-1

2 0.036 Symmetry, 2nd Kind 0 mg∙mL-1∙cm-1

3 0.01 2nd Kind 0 mg∙mL-1∙cm-1

4 0.016 1st Kind 0 mg∙mL-1

5 0.005 1st Kind cneedle

6 0.016 1st Kind 0 mg∙mL-1

7 0.01 2nd Kind 0 mg∙mL-1∙cm-1

8 0.036 Symmetry, 2nd Kind 0 mg∙mL-1∙cm-1

Figure 6: Simplified 2D Computation Domain



Computational Domain

• The data centers are distributed with an 
average spacing of:

∆𝜕𝜕 = ∆𝑦𝑦 = 0.001 𝜕𝜕𝑐𝑐

• Considering Fourier stability limits, the 
time step was:

∆𝜕𝜕 = 0.01 𝑠𝑠𝑠𝑠𝜕𝜕𝑠𝑠𝑛𝑛𝑑𝑑𝑠𝑠
𝜕𝜕 ∈ 0: 8 ℎ𝑠𝑠𝑜𝑜𝑟𝑟𝑠𝑠
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Figure 7: 2D Domain with Data Centers



Computational Domain

• Where the boundary condition at the microneedle tip is meant to 
match the prescribed substance input concentration time history such 
that:

𝜕𝜕𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒 = �
43𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚
𝑖𝑖𝑖𝑖 0 < 𝜕𝜕 ≤ 4 ℎ𝑠𝑠𝑜𝑜𝑟𝑟𝑠𝑠

0𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚

𝑖𝑖𝑖𝑖 𝜕𝜕 > 4 ℎ𝑠𝑠𝑜𝑜𝑟𝑟𝑠𝑠
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Figure 8: Microneedle Concentration Boundary Input



Numerical Results

• The time-accurate field solution for case 6 is given below
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Figure 9: Field Solution for Verapamil Concentration in the Blood and Tissue Compartments 

Blood CompartmentTissue Compartment



Numerical Results

• Previous numerical models were 1D field solutions, and experimental 
results are effectively 0D in space, only measuring blood 
concentrations over time

• Thus, to gauge the accuracy of results, we observe over the 8-hour 
time history:

• Verapamil concentration in blood
• Cumulative permeated Verapamil from the microneedle
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Numerical Results:
Verapamil Concentration in Blood

• Volume averaged concentration of Verapamil in the blood compartment

• The time-history trend appears accurate, while also matching maximum values for all 
cases compared to 1D numerical results from Al Qallaf
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Figure 10: Verapamil Concentration in Blood from (a) 2D LCMM Model and (b) 1D SKIN-CAD® Model



Numerical Results:
Cumulative Permeated Verapamil

• Integrated flux at the tip of the microneedle; accumulated Verapamil concentration entering the 
tissue compartment

• Likewise, the time-history trend appears similar to the 1D numerical results from Al Qallaf
however there are some discrepancies; (1) maximum value and (2) trend after 4 hours
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Figure 11: Cumulative Permeated Verapamil from (a) 2D LCMM Model and (b) 1D SKIN-CAD® Model



Numerical Results:
Cumulative Permeated Verapamil

• Increasing vs. decreasing values after 4 hours
• At 4 hours, the microneedle concentration, 𝜕𝜕𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒,  falls to 0 mg/mL
• Thus, Verapamil can no longer enter the control volume, and flux at the surface must invert
• This indicates that the LCMM model is capable of capturing behavior not observed in the 1D 

model

• Maximum values discrepancies may be
a consequence of:

• Average spacing: affects numerical
derivative approximation

and
• 1D vs. 2D boundary conditions: affects

accumulation of Verapamil in volume
and the resulting gradient 
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Figure 12: Microneedle Concentration Boundary Input
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