

SCHOLARLY COMMONS

National Training Aircraft Symposium (NTAS)

2024 - Catalyzing Change: Accelerating Advanced Air Mobility and Prioritizing Aviation Mental Health

Examination of Urban Air Mobility Integration into the National Airspace System

Richard Stansbury stansbur@erau.edu

Clyde Rinkinen Embry-Riddle Aeronautical University, rinki613@erau.edu

William B. Coyne Embry-Riddle Aeronautical University, coynea7e@erau.edu

Mykyta Zhyla Embry-Riddle Aeronautical University

Randon Senn Embry-Riddle Aeronautical University

See next page for additional authors

Follow this and additional works at: https://commons.erau.edu/ntas

Part of the Aviation Safety and Security Commons

Stansbury, Richard; Rinkinen, Clyde; Coyne, William B.; Zhyla, Mykyta; Senn, Randon; and Bowden, Maaliyah, "Examination of Urban Air Mobility Integration into the National Airspace System" (2024). *National Training Aircraft Symposium (NTAS)*. 6. https://commons.erau.edu/ntas/2024/poster/6

This Poster is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in National Training Aircraft Symposium (NTAS) by an authorized administrator of Scholarly Commons. For more information, please contact commons@erau.edu.

Presenter Information

Richard Stansbury, Clyde Rinkinen, William B. Coyne, Mykyta Zhyla, Randon Senn, and Maaliyah Bowden

Examination of Urban Air Mobility Integration into the National Airspace System Richard Stansbury¹, Clyde Rinkinen², William B. Coyne², Mykyta Zhyla², Randon Senn², and Maaliyah Bowden²

Background

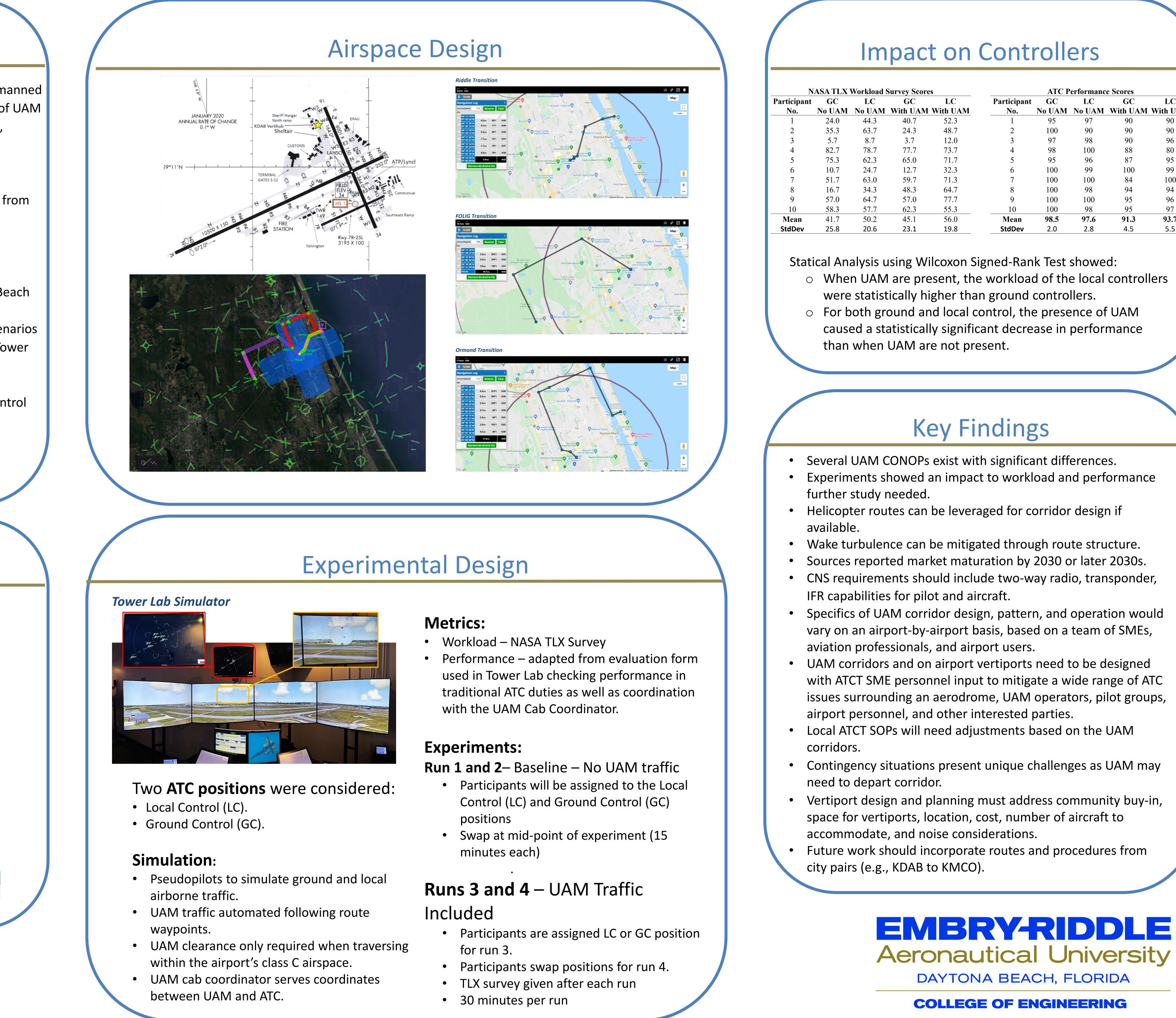
Sponsored by the FAA under the FAA Center of Excellence for Unmanned Aircraft Systems (UAS), this project sought to identify the impact of UAM on the National Airspace System with respect to air traffic control, infrastructure, and operations.

Milestones:

- The research team examined published concepts of operations from the FAA, NASA, and industry with a focus on approaches UAM airspace integration, infrastructure enhancements, and new regulations, policies, and procedures.
- Based on the literature review, the team proposed an airspace concept to support UAM operations in the vicinity of Daytona Beach International Airport.
- Team constructed a simulation of the airspace concept with scenarios involving traditional crewed aircraft and UAM using the ERAU Tower Lab simulators.
- Experiments were conducted to assess the impact of UAM on workload and performance for local control (LC) and ground control (GC) ATC controllers.
- Through the development of the airspace concept and the experiments, the team provided a set of key findings and recommendations to the FAA.

Airspace Requirements

Communication, Navigation, Surveillance:


- Supports RNP 0.3 Operations.
- ADS-B In and Out.
- Mode C capability.
- Two-way voice communications.

Standard	Flight Phase		Verti	Vertical Speed (fpm)		Horizontal speed (kt)	
Vehicle	Approach / De	eparture		500		< 45 – 130 >	
Speeds	Cruise			N/A		130	
	Take-off			500		N/A	
	Landing			3.00		N/A	
	Stall			N/A		73	
Approximate	Separation		Vertical	Longitudinal	Later	ral	
Separation Criteria	UAM-Cargo/UAM		250 ft	ft 250 ft		TBD	
	UAM-VFR		4000 ft	000 ft 450 ft		le	
	UAM-IFR		1000 ft	00 ft 2 miles		es	
	UAM-AFR		500 ft	t ½ mile		*BOS	
Corridor	Corridor	RNP	Radius	One-way	corridor	dor Two-way corridor	
Width	2xRNP	0.3	1,800 f	t 3,60	O ft	7,200 ft	

The FAA's Center of Excellence for UAS Research

ASSURE Alliance for System Safety of UAS through Research Excellence

Embry-Riddle Aeronautical University, Daytona Beach, FL (1) Departments of Electrical Engineering and Computer Science (EECS) & (2) Applied Aviation Sciences (AAS) Air Traffic Management Program

Survey Scor	es	ATC Performance Scores							
GC	LC	Participant	GC	LC	GC	LC			
With UAM	With UAM	No.	No UAM	No UAM	With UAM	With UAM			
40.7	52.3	1	95	97	90	90			
24.3	48.7	2	100	90	90	90			
3.7	12.0	3	97	98	90	96			
77.7	73.7	4	98	100	88	80			
65.0	71.7	5	95	96	87	95			
12.7	32.3	6	100	99	100	99			
59.7	71.3	7	100	100	84	100			
48.3	64.7	8	100	98	94	94			
57.0	77.7	9	100	100	95	96			
62.3	55.3	10	100	98	95	97			
45.1	56.0	Mean	98.5	97.6	91.3	93.7			
23.1	19.8	StdDev	2.0	2.8	4.5	5.5			