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Godunov-type upwind flux schemes of the two-dimensional finite volume discrete 
Boltzmann method 

Leitao Chen and Laura Schaefer 

Department of Mechanical Engineering, Rice University, Houston, Texas 77005, USA 

Abstract: A simple unified Godunov-type upwind approach that does not need Riemann solvers for the 
flux calculation is developed for the finite volume discrete Boltzmann method (FVDBM) on an 
unstructured cell-centered triangular mesh. With piecewise-constant (PC), piecewise-linear (PL) and 
piecewise-parabolic (PP) reconstructions, three Godunov-type upwind flux schemes with different orders 
of accuracy are subsequently derived. After developing both a semi-implicit time marching scheme 
tailored for the developed flux schemes, and a versatile boundary treatment that is compatible with all of 
the flux schemes presented in this paper, numerical tests are conducted on spatial accuracy for several 
single-phase flow problems. Four major conclusions can be made. First, the Godunov-type schemes 
display higher spatial accuracy than the non-Godunov ones as the result of a more advanced treatment 
of the advection. Second, the PL and PP schemes are much more accurate than the PC scheme for velocity 
solutions. Third, there exists a threshold spatial resolution below which the PL scheme is better than the 
PP scheme and above which the PP scheme becomes more accurate. Fourth, besides increasing spatial 
resolution, increasing temporal resolution can also improve the accuracy in space for the PL and PP 
schemes. 

Keywords: lattice Boltzmann method; discrete Boltzmann method; finite volume method; Godunov flux; 
unstructured mesh; boundary condition 

1. Introduction 

The conventional lattice Boltzmann method (LBM) solves the lattice Boltzmann equation (LBE) in a 
Lagrangian space by coupling the discretization of the particle velocity space and configuration space. 
With such a coupling mechanism, the Courant-Friedrichs-Lewy (CFL) number can be chosen to be exactly 
one globally, which means that after each streaming step, the particle distribution functions (PDFs) along 
all lattice velocities will stop perfectly at grid points. Such a unique feature allows the LBM to achieve 
second-order accuracy in space with a first-order advection scheme. However, it is this same feature that 
makes the LBM suffer from several pitfalls, one of which is that the LBM cannot perfectly capture curved 
boundaries due to its uniform mesh structure [1]. Some pioneering work [2-5] showed that the LBE can 
simply be considered a special finite-difference version of the more generalized discrete Boltzmann 
equation (DBE) that is Eulerian in nature. Therefore, one can completely avoid the velocity-configuration 
coupling by solving the DBE instead of the LBE, which subsequently enables the use of an arbitrary mesh. 
Following this idea, many Eulerian discrete Boltzmann methods (DBM) have been developed to 
incorporate complex geometries. Among these, the finite volume discrete Boltzmann method (FVDBM) 
[6-22] has received the most attention due to the built-in conservative property of the finite volume 
method (FVM). 
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Nevertheless, a considerable diffusion error has been, expectedly, observed when the DBE is solved, and 
especially on irregular grids [6, 23]. Such an error exclusively comes from the evaluation of the advection 
in Eulerian space. First, the CFL=1 condition will be lost when the DBE is solved in Eulerian space. 
Numerical viscosity has to be introduced by upwind schemes (or a combination of the upwind scheme 
and others) to maintain stability [24].  The second reason, which is not unique to the DBE, is that the 
complex topology on an unstructured mesh will inevitably introduce some error to the advection stencil, 
part of which eventually becomes numerical viscosity. These explain why, in a previous study, a 
theoretically second-order scheme for advection could only deliver a result that is slightly higher than first 
order [25]. As a result, the DBE approaches have an edge over LBE approaches, which is the ability to 
handle complex geometries with unstructured mesh. However, the consequence for this advantage is a 
significant increase in numerical error. Therefore, there is a need for higher-order schemes of advection 
in order to use the DBM as a better alternative to the LBM [26].  

The DBE is a hyperbolic equation with a strong advection term. Solving a hyperbolic equation, e.g. the 
Euler equation or Navier-Stokes (NS) equation, with minimum diffusion error while maintaining stability 
is a constant concern in the computational fluid dynamics (CFD) community. After decades of 
development, there are many successful techniques, among which Godunov’s method has dominated 
many CFD codes in the subgenre of FVM, due to its higher fidelity and better stability. In Godunov’s 
method, the advected scalar is considered as a wave moving at its characteristic velocity. Then, a Riemann 
problem appears at the interface between two adjacent cells, which is solved by exact or approximate 
Riemann solvers, e.g. Roe’s solver [27].  Different reconstructions of the wave structure determine the 
order of Godunov’s method. The piecewise-constant (PC) reconstruction proposed in the original work 
from Godunov [28], the piecewise-linear (PL) method developed by Van Leer [29-33] that gave birth to 
the still popular Monotone Upstream Scheme for Conservation Laws (MUSCL), and the piecewise-
parabolic (PP) reconstruction introduced by Colella and Woodward [34, 35] give the first-order, second-
order and third-order Godunov’s method, respectively. 

Despite the high success of Godunov’s method in the CFD community, its importance is not recognized 
widely within the LBM circle. Most FVDBM [6-18, 22] work treats the advected scalar in the advection 
term as a scalar value in a static point of view, in contrast to Godunov’s method. The only application of 
Godunov’s method in FVDBM so far was employed by Patil and Lakshmisha in their simulations of single-
phase problems [19-21], which involve a Riemann solver and a limiter that satisfies the Total Variation 
Diminishing (TVD) property. However, the linear advection term in the DBE (i.e. the advection has a 
constant speed that is defined by the lattice velocity) and the mutual independence among all PDFs do 
not require any type of Riemann solver when calculating the PDF flux on the face between two neighbor 
cells (this will be explained in detail later in this paper). The TVD limiters, which were originally developed 
for simulating one-dimensional (1D) shocks in CFD tools, were first introduced into LBM simulations by 
Teng et al. [36] and Lee et al. [37] to solve the streaming step of LBE for multi-phase problems that 
experience sharp gradients similar to acoustic shocks.  Therefore, TVD limiters are not necessary when 
the flows are single-phase and do not have large gradients if simulated by the DBE. More importantly, it 
was pointed out very early in the CFD community by Goodman and LeVeque that TVD limiters are no 
better than first-order accurate when extended to multiple dimensions [38]. This is probably why only an 
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overall first-order accuracy in space was reported for their flux scheme with TVD limiters in the work of 
Patil and Lakshmisha [19-21]. 

Therefore, in order to achieve better accuracy in space, a simple Godunov-type upwind approach that 
does not require any Riemann solver for the advection of FVDBM is developed in the present paper. Then, 
with different PDF wave reconstructions (PC, PL and PP) on a universal stencil, three Godunov flux 
schemes with different orders of accuracy are formulated. After that, a semi-implicit temporal scheme 
specifically designed for the presented Godunov-type flux scheme is shown. In order to make comparisons 
between the Godunov and non-Godunov schemes, a standard second-order upwind (SOU) scheme, which 
is non-Godunov, and the corresponding time-marching approach are also provided. Next, a boundary 
treatment that works seamlessly with all of the developed flux schemes is also established. With thorough 
numerical testing, some important conclusions can be reached. 

2. Formulation of the FVDBM 

The DBE with the Bhatnagar-Gross-Krook (BGK) collision model, which is obtained by discretizing the 
particle velocity space of the continuous Boltzmann equation with a finite number of velocity components 
[39], is shown as follows: 

𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜕𝜕

+ 𝒆𝒆𝛼𝛼 ∙ 𝛁𝛁𝑓𝑓𝛼𝛼 = −1
𝜏𝜏
�𝑓𝑓𝛼𝛼 − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒�                     𝛼𝛼 = 0,1,2, … ,𝑀𝑀 − 1                                  (1) 

where 𝑓𝑓 and 𝑓𝑓𝑒𝑒𝑒𝑒 are the PDF and equilibrium PDF respectively, and 𝒆𝒆 is the lattice velocity. The subscript 
𝛼𝛼 indicates the 𝛼𝛼th member out of 𝑀𝑀 total components of the discretized particle velocity space, and 𝜏𝜏 is 
the relaxation time. By choosing a proper lattice model, 𝒆𝒆𝛼𝛼 and 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒 can be defined explicitly. For example, 
for the commonly used D2Q9 lattice, they are defined as: 
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where 𝑐𝑐 is the constant lattice speed for isothermal flow and is usually chosen to be unity, and 𝑐𝑐𝑠𝑠 is the 
speed of sound. For D2Q9: 

𝑐𝑐𝑠𝑠2 = 𝑐𝑐2/3                                                                                (5) 

The relation between relaxation time and flow viscosity is defined as: 
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𝜈𝜈 = 𝜏𝜏𝑐𝑐𝑠𝑠2                                                                                 (6) 

In Eq. (3), 𝜌𝜌 and 𝒖𝒖 are the macroscopic flow variables that are recovered from the PDFs as follows: 

�𝜌𝜌𝒖𝒖� = ∑ �
𝑓𝑓𝛼𝛼
𝒆𝒆𝛼𝛼𝑓𝑓𝛼𝛼

�𝑀𝑀−1
𝛼𝛼=0                                                                        (7) 

In order to solve Eq. (1) in a FVM fashion, the configuration space needs to be discretized, from which the 
control volume (CV) shall be created. In the present paper, the triangular mesh is selected due to its 
excellent adaptability to complex boundaries and its simple geometric structure. Then the CV is chosen to 
be the triangle itself, with point 𝑃𝑃 as the centroid. The solution is chosen to be stored and updated at 𝑃𝑃. 
Hereafter, unless stated otherwise, the centroid is used to represent the CV (e.g., the CV 𝑃𝑃 has its centroid 
at 𝑃𝑃). Taking the integral of Eq. (1) over the triangular CV and moving the gradient term to the right hand 
side: 

�
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶

    = �
1
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

                                   (8) 

The first and second terms are simple integrals and can be simplified with the cell-averaged values as: 
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where 𝑑𝑑𝐶𝐶𝐶𝐶 is the area of the CV. Since 𝑃𝑃 is the centroid, here it is assumed that the value at the centroid 
is equal to the cell-averaged value, so: 

  𝑓𝑓�̅�𝛼  =   𝑓𝑓𝛼𝛼(𝑃𝑃)                                                                             (11) 

 𝑓𝑓�̅�𝛼
𝑒𝑒𝑒𝑒 = 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒(𝑃𝑃)                                                                            (12) 

Then, equations (9) and (10) can be rewritten as 
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The gradient term in integral form in Eq. (8) is the net flux of the PDF through the boundaries of the CV 
according to the Gauss divergence theorem.  Therefore: 

� 𝒆𝒆𝛼𝛼 ∙ 𝛁𝛁𝑓𝑓𝛼𝛼𝑑𝑑𝑑𝑑
𝐶𝐶𝐶𝐶

  =  �𝐹𝐹𝛼𝛼,𝑖𝑖

3

𝑖𝑖=1

                                                             (15) 

where 𝐹𝐹𝛼𝛼,𝑖𝑖 is the PDF flux on ith face of the triangular CV.  

As a result, the finite volume form of the DBE is: 

𝑇𝑇𝛼𝛼   =  𝐶𝐶𝛼𝛼 − 𝐹𝐹𝛼𝛼                                                                             (16) 

where 𝑇𝑇𝛼𝛼, 𝐶𝐶𝛼𝛼 and 𝐹𝐹𝛼𝛼 are the temporal term, collision term and flux term respectively, as follows: 

𝑇𝑇𝛼𝛼 =  
𝜕𝜕𝑓𝑓𝛼𝛼(𝑃𝑃)
𝜕𝜕𝜕𝜕

                                                                         (17) 
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3
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                                                                     (19) 

The collision term is the simplest one to calculate since it is localized, and is neither derivative nor integral. 
The temporal term is treated with a special time-marching scheme, which will be discussed in a later 
section. The flux term 𝐹𝐹𝛼𝛼 is the most difficult to calculate, and will be developed and discussed in the 
following sections. 

3. Godunov Flux Schemes 

3.1. A Universal Stencil and Flux Schemes Overview 

Since the flux calculations on all faces of the CV are identical, the subscript 𝑠𝑠 for the face index can be 
omitted in the following equation: 

 𝐹𝐹𝛼𝛼 = 𝑓𝑓𝛼𝛼� (𝒆𝒆𝛼𝛼 ∙ 𝒏𝒏)𝐿𝐿                                                                      (20) 

where 𝑓𝑓𝛼𝛼�  is the average PDF on the face, 𝒆𝒆𝛼𝛼 is the lattice velocity, 𝒏𝒏 is the face unit normal, and 𝐿𝐿 is the 
length of the face. In Eq. (20), the only unknown is 𝑓𝑓𝛼𝛼� , which can be calculated with a variety of methods. 
In this paper, those methods for 𝑓𝑓𝛼𝛼�  are called flux schemes, although they do not directly calculate the 
fluxes of PDFs. 

The flux schemes require a stencil that can provide geometric (length, distance, etc.) and solution (the 
PDFs at the centroids of nearby CVs) information. Since only the flux that has the same direction as the 
face normal is effective, and the PDFs are highly direction-dependent (each 𝑓𝑓𝛼𝛼  has its own advection 
velocity vector 𝒆𝒆𝛼𝛼), the stencil in this paper is constructed in such a way that it is orthogonal to the face 



 

P r e p r i n t  s u b m i t t e d  t o  C o m p u t e r s  &  M a t h e m a t i c s  w i t h  A p p l i c a t i o n s                    
P a g e  6 | 32 

 

https://doi.org/10.1016/j.camwa.2018.01.034 

and passes the geometric center of the face. Figure 1 shows the stencil line (the dashed line) of the face 
of interest, 𝑉𝑉1𝑉𝑉2 whose center point is 𝐶𝐶. It can be assumed that: 

𝑓𝑓𝛼𝛼� = 𝑓𝑓𝛼𝛼(𝐶𝐶)                                                                            (21) 

In order to have a high-order flux scheme in space, the stencil to be constructed should be sufficiently 
long. In addition, since the lattice velocity 𝒆𝒆𝛼𝛼 spans a 2𝜋𝜋 direction when 𝛼𝛼 changes from 0 to 𝑀𝑀− 1, the 
stencil has to be symmetric with respect to the face center, point 𝐶𝐶. Consequently, a stencil consisting of 
four points, 𝑃𝑃′, 𝑄𝑄′, 𝑅𝑅′, and 𝑆𝑆′ (two on each side of the center point), is constructed. 𝑃𝑃′, 𝑄𝑄′, 𝑅𝑅′, and 𝑆𝑆′ are 
the feet of the centroids 𝑃𝑃, 𝑄𝑄, 𝑅𝑅, and 𝑆𝑆 onto the stencil line. The CVs 𝑃𝑃 and 𝑄𝑄 are readily available since 
they are immediately attached to the face 𝑉𝑉1𝑉𝑉2. However, there are multiple choices for 𝑅𝑅 and 𝑆𝑆, because 
there are many centroids whose feet have longer distances to the face center than 𝑃𝑃 and 𝑄𝑄. Two simple 
conditions are devised to rule out others and make sure there is only one 𝑅𝑅 and 𝑆𝑆. Condition one is that 
the foot of the centroid has to be located within its own CV, and condition two is if multiple centroids 
satisfy condition one, choose the centroid whose foot is closest to the face center. For example, in Fig. 1, 
centroid 𝑇𝑇1 is not selected because 𝑇𝑇1′ is located outside of its own CV; 𝑆𝑆 is chosen over 𝑇𝑇2 since 𝑆𝑆′ is 
closer to 𝐶𝐶 than 𝑇𝑇2′. 

 
Figure 1. A universal stencil for flux calculation 

With the help of the stencil in Fig.1, the original two-dimensional (2D) problem is transformed into a local 
1D problem. By considering the direction of 𝒆𝒆𝛼𝛼, the four-point stencil in Fig. 1 is further developed to an 
𝒆𝒆𝛼𝛼-dependent three-point stencil, as shown in Fig. 2. 
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Figure 2. Lattice velocity-dependent three-point stencil across the face of interest 

In Fig. 2, point 𝐶𝐶 is the same 𝐶𝐶 in Fig. 1. The positivity of the axis is defined by the lattice velocity 𝒆𝒆𝛼𝛼, not 
the face normal 𝒏𝒏. As a result, 𝐷𝐷, 𝑈𝑈, and 𝑈𝑈𝑈𝑈 denote the downwind, upwind, and further upwind stencil 
points, with respect to the speed 𝑢𝑢𝛼𝛼: 

𝑢𝑢𝛼𝛼 = |𝒆𝒆𝛼𝛼 ∙ 𝒏𝒏|                                                                             (22) 

The mapping between the three-point and four-point stencils is defined as follows, based on the direction 
of  𝒆𝒆𝛼𝛼: 

�
𝑓𝑓𝛼𝛼(𝐷𝐷) = 𝑓𝑓𝛼𝛼(𝑄𝑄′), 𝑓𝑓𝛼𝛼(𝑈𝑈) = 𝑓𝑓𝛼𝛼(𝑃𝑃′), 𝑓𝑓𝛼𝛼(𝑈𝑈𝑈𝑈) = 𝑓𝑓𝛼𝛼(𝑅𝑅′)    𝑓𝑓𝑐𝑐𝑟𝑟  (𝒆𝒆𝛼𝛼 ∙ 𝒏𝒏) > 0

 
𝑓𝑓𝛼𝛼(𝐷𝐷) = 𝑓𝑓𝛼𝛼(𝑃𝑃′), 𝑓𝑓𝛼𝛼(𝑈𝑈) = 𝑓𝑓𝛼𝛼(𝑄𝑄′), 𝑓𝑓𝛼𝛼(𝑈𝑈𝑈𝑈) = 𝑓𝑓𝛼𝛼(𝑆𝑆′)    𝑓𝑓𝑐𝑐𝑟𝑟  (𝒆𝒆𝛼𝛼 ∙ 𝒏𝒏) ≤ 0

                      (23) 

Accordingly, the geometric relations are defined as: 

⎩
⎪
⎨

⎪
⎧ 𝐿𝐿𝐷𝐷 = |𝑥𝑥𝑐𝑐 − 𝑥𝑥𝐷𝐷| = �𝒙𝒙𝑐𝑐 − 𝒙𝒙𝑄𝑄′�, 𝐿𝐿𝑈𝑈 = |𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑈𝑈| = |𝒙𝒙𝑐𝑐 − 𝒙𝒙𝑃𝑃′|,

      𝐿𝐿𝑈𝑈𝑈𝑈 = |𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑈𝑈𝑈𝑈| = |𝒙𝒙𝑐𝑐 − 𝒙𝒙𝑅𝑅′|                                    𝑓𝑓𝑐𝑐𝑟𝑟 (𝒆𝒆𝛼𝛼 ∙ 𝒏𝒏) > 0
 

𝐿𝐿𝐷𝐷 = |𝑥𝑥𝑐𝑐 − 𝑥𝑥𝐷𝐷| = |𝒙𝒙𝑐𝑐 − 𝒙𝒙𝑃𝑃′|, 𝐿𝐿𝑈𝑈 = |𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑈𝑈| = �𝒙𝒙𝑐𝑐 − 𝒙𝒙𝑄𝑄′�,
     𝐿𝐿𝑈𝑈𝑈𝑈 = |𝑥𝑥𝑐𝑐 − 𝑥𝑥𝑈𝑈𝑈𝑈| = |𝒙𝒙𝑐𝑐 − 𝒙𝒙𝑆𝑆′|                                    𝑓𝑓𝑐𝑐𝑟𝑟 (𝒆𝒆𝛼𝛼 ∙ 𝒏𝒏) ≤ 0

                       (24) 

where 𝐿𝐿𝐷𝐷, 𝐿𝐿𝑈𝑈, and 𝐿𝐿𝑈𝑈𝑈𝑈 are the distances from the face center 𝐶𝐶 to the downwind point 𝐷𝐷, upwind point 
𝑈𝑈, and further upwind point 𝑈𝑈𝑈𝑈, respectively. Figure 2 has one less stencil point than Fig. 1 because flux 
schemes generally do not use the further downwind point. 

With the transformation from Fig. 1 to Fig. 2, the flux scheme can be put in a general formula that 
calculates 𝑓𝑓𝛼𝛼(𝐶𝐶) as a function of 𝑓𝑓𝛼𝛼(𝐷𝐷), 𝑓𝑓𝛼𝛼(𝑈𝑈), and 𝑓𝑓𝛼𝛼(𝑈𝑈𝑈𝑈), and other grouped variables ℋ, namely: 

𝑓𝑓𝛼𝛼(𝐶𝐶) = Ψ[𝑓𝑓𝛼𝛼(𝐷𝐷),𝑓𝑓𝛼𝛼(𝑈𝑈),𝑓𝑓𝛼𝛼(𝑈𝑈𝑈𝑈),ℋ]                                                      (25) 

The theoretical order of accuracy of any flux scheme is directly related to the number of active stencil 
points in this formula. Equation (25) is theoretically third-order in space. If only a subset of Ω ∈
{𝑓𝑓𝛼𝛼(𝐷𝐷),𝑓𝑓𝛼𝛼(𝑈𝑈),𝑓𝑓𝛼𝛼(𝑈𝑈𝑈𝑈)}  is utilized, the theoretical order of the scheme will become lower. Generally 
speaking, Eq. (25) is theoretically second-order if |Ω| = 2 and first-order if |Ω| = 1. The actual order of 
accuracy of any flux scheme will be lower than its theoretical order. It is important to emphasize that no 
matter what flux scheme is applied, it has to be used on all PDFs (𝛼𝛼 ranges from 0 to 𝑀𝑀 − 1). For example, 
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if the D2Q9 lattice is selected, Eq. (25) has to be executed nine times for each face. Therefore, the 
computing overhead of the overall model is largely dominated by Eq. (25). 

The nature of Godunov flux schemes and their fundamental differences from the non-Godunov 
counterparts are depicted in Fig. 3. For non-Godunov schemes (Fig. 3(a)), at any time step, 𝜕𝜕𝑛𝑛, the profile 
of the PDF (the solid curved line) can be assumed along the stencil. Then, the PDF at the face center can 
be geometrically interpolated or extrapolated using the profile at 𝜕𝜕𝑛𝑛. For Godunov schemes (Fig. 3(b)), the 
same profile is constructed at  𝜕𝜕𝑛𝑛. However, such a profile is treated as a wave moving at speed 𝑢𝑢𝛼𝛼. At  
𝜕𝜕𝑛𝑛+1, the wave has traveled a distance (the dashed curve line). So, between 𝜕𝜕𝑛𝑛 and 𝜕𝜕𝑛𝑛+1, 𝑓𝑓𝛼𝛼(𝐶𝐶) is not a 
constant value but changing from 𝑓𝑓𝛼𝛼

𝑛𝑛(𝐶𝐶) to 𝑓𝑓𝛼𝛼
𝑛𝑛+1(𝐶𝐶). In essence, the non-Godunov schemes statically 

use the PDF profile at a given moment; while the Godunov schemes take the course of movement of the 
PDF profile for a period of time into account. Due to this more advanced treatment, the Godunov schemes 
have become a dominant method for solving hyperbolic problems. 

 

Figure 3. Difference between Godunov and non-Godunov flux schemes 

The next task is to substantiate Eq. (25) into explicit forms, which will be discussed in Sec. 3.2. Before 
doing that, the PDFs at stencil points, 𝑓𝑓𝛼𝛼(𝑃𝑃′), 𝑓𝑓𝛼𝛼(𝑄𝑄′), 𝑓𝑓𝛼𝛼(𝑅𝑅′), and 𝑓𝑓𝛼𝛼(𝑆𝑆′) need to be evaluated. Otherwise, 
Eq. (23) cannot be closed. In Fig. 1, the stencil points 𝑃𝑃′, 𝑄𝑄′, 𝑅𝑅′, and 𝑆𝑆′ are generally not the solution points 
(the centroids). Therefore, the PDFs at the stencil points are unknown, and they need to be guessed. It 
can be seen that any other points on the stencil line have longer distances to the centroids than their feet, 
the stencil points. Therefore, it can be safely assumed that: 

𝑓𝑓𝛼𝛼(𝑃𝑃′) =  𝑓𝑓𝛼𝛼(𝑃𝑃), 𝑓𝑓𝛼𝛼(𝑄𝑄′) =  𝑓𝑓𝛼𝛼(𝑄𝑄),         𝑓𝑓𝛼𝛼(𝑅𝑅′) =  𝑓𝑓𝛼𝛼(𝑅𝑅), 𝑓𝑓𝛼𝛼(𝑆𝑆′) =  𝑓𝑓𝛼𝛼(𝑆𝑆)                      (26) 

Eq. (26) is only a first-order approximation in space by assuming the PDFs within each CV are constant. 
Higher-order approximations will improve the solution accuracy. But they are not covered in this paper 
since they are not flux schemes. 

3.2 Godunov flux schemes in explicit forms 

x xC 

𝑢𝑢𝛼𝛼  

x xC 

fαn+1 (C) 

tn tn+1 

fαn 
(C) 

(a) Non-Godunov scheme    (b) Godunov scheme 

fαn 
(C) 

tn 



 

P r e p r i n t  s u b m i t t e d  t o  C o m p u t e r s  &  M a t h e m a t i c s  w i t h  A p p l i c a t i o n s                    
P a g e  9 | 32 

 

https://doi.org/10.1016/j.camwa.2018.01.034 

The typical Godunov scheme in a CFD application requires a Riemann solver, since the hyperbolic equation 
to be solved (Euler or NS) has a nonlinear advection term, and the advection is coupled with acoustics. 
Therefore, the matrix for the advection will have two or more real eigenvalues, each of which determines 
a wave speed. Such a phenomenon with two wave speeds is illustrated in Fig. 4, in which the advected 
scalar λ has an initial profile at 𝜕𝜕𝑛𝑛  across the face center, as in Fig. 4(a). Such a profile will move 
simultaneously to the left and right with different speeds 𝑢𝑢1 and 𝑢𝑢2. At time 𝜕𝜕𝑛𝑛+1, the value of λ at the 
face center is determined by overlapping two waves, as shown in Fig. 4(b). In order to solve the overlapped 
waves, a Riemann solver is the best choice. However, a Riemann solver is not needed for the gradient 
term in the DBE, 𝒆𝒆𝛼𝛼 ∙ 𝛁𝛁𝑓𝑓𝛼𝛼, for two reasons. First, the advection is linear, since 𝒆𝒆𝛼𝛼 is constant once the 
lattice model is determined. Second, all PDFs are mutually independent. Essentially, each PDF 𝑓𝑓𝛼𝛼 
exclusively has its own advection speed 𝒆𝒆𝛼𝛼. Due to these two unique properties, when projected on the 
stencil, the matrix of each advected scalar, 𝑓𝑓𝛼𝛼, has one and only one real eigenvalue, |𝒆𝒆𝛼𝛼 ∙ 𝒏𝒏|. As a result, 
a Riemann solver, such as Roe’s solver used in work of Patil and Lakshmisha [19-21] is a more complex 
technique than what is required. 

 

Figure 4. Wave propagation with two speeds 

Instead, a simple integral over time can suffice [41]. Assuming that the PDF at face center is the average 
value over the course of the wave movement from 𝜕𝜕𝑛𝑛 to 𝜕𝜕𝑛𝑛+1, then: 

𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) =

1
∆𝜕𝜕
� 𝑓𝑓𝛼𝛼(𝑥𝑥𝑐𝑐 , 𝜕𝜕)
𝜕𝜕𝑛𝑛+1

𝜕𝜕𝑛𝑛
𝑑𝑑𝜕𝜕                                                             (27) 

where the notation [n,n+1] in the superscript indicates it is a time averaged value from  𝜕𝜕𝑛𝑛 to 𝜕𝜕𝑛𝑛+1. Since 
𝑓𝑓𝛼𝛼(𝑥𝑥𝑐𝑐, 𝜕𝜕) is a simple wave with only a positive wave speed, 𝑢𝑢𝛼𝛼 (Eq. (22)), and since  𝑓𝑓𝛼𝛼(𝑥𝑥𝑐𝑐 , 𝜕𝜕) does not 
change its shape during its propagation, Eq. (27) is equivalent to: 

𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) =

1
∆𝜕𝜕
� 𝑓𝑓𝛼𝛼(𝑥𝑥𝑐𝑐, 𝜕𝜕)
𝜕𝜕𝑛𝑛+1

𝜕𝜕𝑛𝑛
𝑑𝑑𝜕𝜕 =

1
∆𝜕𝜕
� 𝑓𝑓𝛼𝛼(𝑥𝑥𝑐𝑐 − 𝑢𝑢𝛼𝛼(𝜕𝜕 − 𝜕𝜕𝑛𝑛), 𝜕𝜕𝑛𝑛)
𝜕𝜕𝑛𝑛+1

𝜕𝜕𝑛𝑛
𝑑𝑑𝜕𝜕                           (28) 

With the variable transformation 𝑥𝑥 = 𝑥𝑥𝑐𝑐 − 𝑢𝑢𝛼𝛼(𝜕𝜕 − 𝜕𝜕𝑛𝑛), then 𝑑𝑑𝜕𝜕 = −𝑑𝑑𝑥𝑥/𝑢𝑢𝛼𝛼. Therefore, Eq. (28) becomes: 
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𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) =

1
𝑢𝑢𝛼𝛼∆𝜕𝜕

� 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕𝑛𝑛)
𝑥𝑥2

𝑥𝑥1
𝑑𝑑𝑥𝑥                                                              (29) 

where: 

 𝑥𝑥1 = 𝑥𝑥|𝜕𝜕=𝜕𝜕𝑛𝑛+1 = 𝑥𝑥𝑐𝑐 − 𝑢𝑢𝛼𝛼∆𝜕𝜕                                                                      (30) 

 𝑥𝑥2 = 𝑥𝑥|𝜕𝜕=𝜕𝜕𝑛𝑛 = 𝑥𝑥𝑐𝑐                                                                               (31) 

And ∆𝜕𝜕 = (𝑥𝑥2 − 𝑥𝑥1)/𝑢𝑢𝛼𝛼 . In addition, 𝑓𝑓𝛼𝛼(𝑥𝑥, 𝜕𝜕𝑛𝑛)  becomes 𝑓𝑓𝛼𝛼𝑛𝑛(𝑥𝑥)  with a simpler notation. Finally, the 
Godunov flux scheme becomes: 

𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) =

1
𝑥𝑥2 − 𝑥𝑥1

� 𝑓𝑓𝛼𝛼𝑛𝑛(𝑥𝑥)
𝑥𝑥2

𝑥𝑥1
𝑑𝑑𝑥𝑥                                                            (32) 

Equation (32) is the general form of the Godunov-type flux schemes. The original temporal integral is 
transformed into a spatial integral whose physical meaning is illustrated in Fig. 5. It can be seen that the 
Godunov-type flux is the average height of the shaded area from 𝑥𝑥1 to 𝑥𝑥2 under the PDF profile curve at 
time step 𝜕𝜕𝑛𝑛. 

 

Figure 5. Figurative representation of the general form of the Godunov flux schemes 

The scheme developed here is upwind in nature since the shaded region is always located to the left of 
the face center. Therefore, it is named the Godunov-type upwind flux scheme. Due to this upwind feature, 
the CFL condition can also be developed. Since the left bound of the shaded region 𝑥𝑥1 cannot exceed the 
upwind stencil point 𝑥𝑥𝑈𝑈 , therefore: 

     
𝑢𝑢𝛼𝛼∆𝜕𝜕
𝐿𝐿𝑈𝑈

 ≤ 1                                                                                    (33) 

Equation (33) is the local CFL condition. However 𝑢𝑢𝛼𝛼 and 𝐿𝐿𝑈𝑈 differ from location to location. In order to 
maintain a global stability of Eq. (32), Eq. (33) should be modified as: 
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(𝑢𝑢𝛼𝛼)𝑚𝑚𝑚𝑚𝑥𝑥∆𝜕𝜕

(𝐿𝐿𝑈𝑈)𝑚𝑚𝑖𝑖𝑛𝑛
 ≤ 1                                                                              (34) 

It is necessary to know the definition of the PDF profile (the curved line in Fig. 5) to calculate the integral, 
Eq. (32). The actual profile cannot be obtained, but can be reconstructed with a piecewise-constant (PC), 
piecewise-linear (PL), or piecewise-parabolic (PP) assumption. Therefore, different Godunov-type upwind 
flux schemes with different orders of accuracy can be developed. Due to the upwind nature of the 
developed scheme, the PC, PL, and PP reconstruction only need to hold in the region to the left of the face 
center (𝑥𝑥 ≤ 𝑥𝑥𝑐𝑐). 

For the PC reconstruction, as shown in Fig. 6(a), Eq. (32) reduces to: 

𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) =

1
𝑥𝑥2 − 𝑥𝑥1

𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)(𝑥𝑥2 − 𝑥𝑥1) = 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)                                                      (35) 

which is exactly the standard first-order upwind scheme (FOU) that is also non-Godunov (because it only 
uses the PDF profile at 𝜕𝜕𝑛𝑛), and is theoretically first-order in space. 

For PL (Fig. 6(b)), a linear profile passing through 𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶) and 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈) is reconstructed. The general formula 
for the linear profile is 𝑓𝑓𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑐𝑐1𝑥𝑥 + 𝑐𝑐2. Therefore, Eq. (32) becomes: 

𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) =

1
2
𝑐𝑐1(𝑥𝑥1 + 𝑥𝑥2) + 𝑐𝑐2                                                            (36) 

where: 

𝑐𝑐1 =
𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶) − 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)

𝑥𝑥𝐶𝐶 − 𝑥𝑥𝑈𝑈
                                                                       (37) 

𝑐𝑐2 = 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈) −
𝑥𝑥𝑈𝑈

𝑥𝑥𝐶𝐶 − 𝑥𝑥𝑈𝑈
  [𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶)− 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)]                                                    (38) 

Combining Eqs. (36), (37) and (38), and using Eqs. (30) and (31) to replace 𝑥𝑥1  and 𝑥𝑥2, then: 

𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) = 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈) + �1 −

𝑢𝑢𝛼𝛼∆𝜕𝜕
2𝐿𝐿𝑈𝑈

� [𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶)− 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)]                                               (39) 

where 𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶) is linearly interpolated between 𝑓𝑓𝛼𝛼𝑛𝑛(𝐷𝐷) and 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈), as shown in Fig. 6(b), as: 

𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶) =  
𝐿𝐿𝑈𝑈

𝐿𝐿𝐷𝐷 + 𝐿𝐿𝑈𝑈
𝑓𝑓𝛼𝛼𝑛𝑛(𝐷𝐷) +

𝐿𝐿𝐷𝐷
𝐿𝐿𝐷𝐷 + 𝐿𝐿𝑈𝑈

𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)                                                     (40) 

Eq. (39) is the final explicit form of the PL Godunov-type upwind flux scheme, which is theoretically 
second-order in space. Equation (39) is numerically the same as the Lax-Wendroff scheme discussed in 
one of our previous studies [25], due to Eq. (40). 
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For the PP reconstruction (Fig. 6(c)), its general form is 𝑓𝑓𝛼𝛼𝑛𝑛(𝑥𝑥) = 𝑐𝑐1𝑥𝑥2 + 𝑐𝑐2𝑥𝑥 + 𝑐𝑐3, which replaces the 
integrant in Eq. (32). Then, Eq. (32) becomes: 

𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) =

1
3
𝑐𝑐1𝑢𝑢𝛼𝛼2∆𝜕𝜕2 − �𝑐𝑐1𝑥𝑥𝐶𝐶 +

1
2
𝑐𝑐2� 𝑢𝑢𝛼𝛼∆𝜕𝜕 + 𝑐𝑐1𝑥𝑥𝐶𝐶2 + 𝑐𝑐2𝑥𝑥𝐶𝐶 + 𝑐𝑐3                                 (41) 

where 𝑐𝑐1, 𝑐𝑐2 and 𝑐𝑐3 are obtained by the following linear operation: 

�
𝑐𝑐1
𝑐𝑐2
𝑐𝑐3
� = �

𝑥𝑥𝐶𝐶2 𝑥𝑥𝐶𝐶 1
𝑥𝑥𝑈𝑈2 𝑥𝑥𝑈𝑈 1
𝑥𝑥𝑈𝑈𝑈𝑈2 𝑥𝑥𝑈𝑈𝑈𝑈 1

�

−1

∙     �
𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶)
𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)
𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈𝑈𝑈)

�                                                          (42) 

and where  𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶) is also obtained by Eq. (40). 

If choosing the face center as the origin of the 𝑥𝑥 axis and the positivity of the axis is pointing to the right, 
namely 𝑥𝑥𝐶𝐶=0 and 𝑥𝑥𝑈𝑈𝑈𝑈<𝑥𝑥𝑈𝑈<0, then Eqs. (41) and (42) become: 

𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) =

1
3
𝑐𝑐1𝑢𝑢𝛼𝛼2∆𝜕𝜕2 −

1
2
𝑐𝑐2𝑢𝑢𝛼𝛼∆𝜕𝜕 + 𝑐𝑐3                                                              (43) 

�
𝑐𝑐1
𝑐𝑐2
𝑐𝑐3
� = �

0 0 1
𝐿𝐿𝑈𝑈2 −𝐿𝐿𝑈𝑈 1
𝐿𝐿𝑈𝑈𝑈𝑈2 −𝐿𝐿𝑈𝑈𝑈𝑈 1

�

−1

∙     �
𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶)
𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)
𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈𝑈𝑈)

� 

=

⎝

⎜⎜
⎛

1
𝐿𝐿𝑈𝑈𝐿𝐿𝑈𝑈𝑈𝑈

1
𝐿𝐿𝑈𝑈2 − 𝐿𝐿𝑈𝑈𝐿𝐿𝑈𝑈𝑈𝑈

1
𝐿𝐿𝑈𝑈𝑈𝑈2 − 𝐿𝐿𝑈𝑈𝐿𝐿𝑈𝑈𝑈𝑈

𝐿𝐿𝑈𝑈+𝐿𝐿𝑈𝑈𝑈𝑈
𝐿𝐿𝑈𝑈𝐿𝐿𝑈𝑈𝑈𝑈

𝐿𝐿𝑈𝑈𝑈𝑈
𝐿𝐿𝑈𝑈2 − 𝐿𝐿𝑈𝑈𝐿𝐿𝑈𝑈𝑈𝑈

𝐿𝐿𝑈𝑈
𝐿𝐿𝑈𝑈𝑈𝑈2 − 𝐿𝐿𝑈𝑈𝐿𝐿𝑈𝑈𝑈𝑈

1 0 0 ⎠

⎟⎟
⎞

  ∙     �
𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶)
𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)
𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈𝑈𝑈)

�                 (44) 

Equations (43) and (44) are the final explicit form of the third-order Godunov-type upwind flux scheme. 

 

x x2=
xC 

xU x1=xC-uαΔt xUU xD 

fα 
(U) 

𝑠𝑠 

(a) 
fα         (C) 

[𝑠𝑠, 𝑠𝑠 + 1] 
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Figure 6. Godunov flux schemes with different wave reconstructions. (a) Piecewise Constant; (b) 
Piecewise Linear; (c) Piecewise Parabolic 

Usually the spatial accuracy can only be changed by changing the spatial resolution. It is interesting to 
note that the PL (Eq. (39)) and PP (Eq. (43)) schemes are also functions of ∆𝜕𝜕. Therefore, increasing the 
temporal resolution, not only the spatial resolution, can also improve the accuracy in space. Such a unique 
feature is exclusively due to the wave-like treatment of the PDF profile across the face interface and the 
linear advection in the DBE. By increasing temporal resolution (i.e. decreasing ∆𝜕𝜕) in Fig. 5 the distance 
between x1 and x2 becomes shorter. As a result, the PL and PP reconstructions of the profile will be closer 
to their true values. Consequently, the spatial accuracy can be improved. 

However, such an accuracy improvement is limited by a minimum allowable ∆𝜕𝜕  which cannot be 
decreased infinitely towards zero. Otherwise, the PL and PP schemes will become unstable. For the PL 
scheme (Eq. (39)), when ∆𝜕𝜕 approaches zero, the term that contains ∆𝜕𝜕 will also approach zero, so that 
Eq. (39) is equivalent to: 

𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) ≈ 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈) + [𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶) − 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈)] = 𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶)                                           (45) 

Since 𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶) is obtained through central differencing, Eq. (40), the PL scheme will become unconditionally 
unstable. The same thing happens to the PP scheme. When ∆𝜕𝜕 vanishes, the PP scheme (Eqs. (43) and 
(44)) reads: 

x x2=
xC 

fα 
(C) 

xU x1=xC-uαΔt 

𝑠𝑠 

xD xUU 

fα 
(U) 

𝑠𝑠 

fα 
(D) 

𝑠𝑠 

(b) 

fα         
(C) 

[𝑠𝑠, 𝑠𝑠 + 1] 

x x2=
xC 

fα 
(C) 

xU x1=xC-uαΔt 

𝑠𝑠 

xD xUU 

fα 
(U) 

𝑠𝑠 fα 
(UU) 

𝑠𝑠 

fα 
(D) 

𝑠𝑠 

(c) 

fα         (C) 
[𝑠𝑠,𝑠𝑠 + 1] 
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𝑓𝑓𝛼𝛼
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶) ≈ 𝑐𝑐3 = 𝑓𝑓𝛼𝛼𝑛𝑛(𝐶𝐶)                                                              (46) 

which is the same central differencing. Therefore, the accuracy improvement of the PL and PP schemes 
by decreasing ∆𝜕𝜕 will be capped by an invisible stability condition. The actual value of minimum ∆𝜕𝜕 may 
differ from one specific problem to another. 

For comparison, with the same stencil (Figs. 1 and 2), a standard second-order upwind scheme (SOU) that 
is essentially non-Godunov can also be formulated. By using the PDF profile at 𝜕𝜕𝑛𝑛, the SOU reads: 

𝑓𝑓𝛼𝛼
𝑛𝑛(𝐶𝐶) = �

𝐿𝐿𝐷𝐷
𝐿𝐿𝐷𝐷 + 𝐿𝐿𝑈𝑈

+
𝐿𝐿𝑈𝑈

𝐿𝐿𝐷𝐷 + 𝐿𝐿𝑈𝑈
∙
𝐿𝐿𝐷𝐷 + 𝐿𝐿𝑈𝑈𝑈𝑈
𝐿𝐿𝑈𝑈𝑈𝑈 − 𝐿𝐿𝑈𝑈

�𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈) − �
𝐿𝐿𝑈𝑈

𝐿𝐿𝑈𝑈𝑈𝑈 − 𝐿𝐿𝑈𝑈
�𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈𝑈𝑈)                       (47) 

By comparing the FOU and SOU with the PL and PP schemes, it can be seen that the non-Godunov schemes 
are not a function of ∆𝜕𝜕. Therefore, changing the temporal resolution does not affect the spatial accuracy 
of the non-Godunov flux schemes. 

4. The Time Marching Scheme 

Since the Godunov-type flux schemes calculate the PDFs at the face center with a temporal integral from  
𝜕𝜕𝑛𝑛 to 𝜕𝜕𝑛𝑛+1 (Eq. (27)), the total flux for each CV obtained by Eqs. (20) and (19) is also a value based on a 
temporal integral from 𝜕𝜕𝑛𝑛 to 𝜕𝜕𝑛𝑛+1. Therefore, Eq. (19) becomes: 

𝐹𝐹𝛼𝛼
[𝑛𝑛,𝑛𝑛+1] =

1
𝑑𝑑𝐶𝐶𝐶𝐶

�𝐹𝐹𝛼𝛼,𝑖𝑖
[𝑛𝑛,𝑛𝑛+1]

3

𝑖𝑖=1

=  
1
𝑑𝑑𝐶𝐶𝐶𝐶

�𝑓𝑓𝛼𝛼,𝑖𝑖
[𝑛𝑛,𝑛𝑛+1](𝐶𝐶)(𝒆𝒆𝛼𝛼 ∙ 𝒏𝒏𝑖𝑖)𝐿𝐿𝑖𝑖

3

𝑖𝑖=1

                                   (48) 

Therefore, when plugging 𝐹𝐹𝛼𝛼
[𝑛𝑛,𝑛𝑛+1] back into the governing equation Eq. (16), a special time marching 

scheme is required, in which the other two terms should also be integrated over time from 𝜕𝜕𝑛𝑛 to 𝜕𝜕𝑛𝑛+1. 
Then, Eq. (16) becomes: 

𝑇𝑇𝛼𝛼
[𝑛𝑛,𝑛𝑛+1]   =  𝐶𝐶𝛼𝛼

[𝑛𝑛,𝑛𝑛+1] − 𝐹𝐹𝛼𝛼
[𝑛𝑛,𝑛𝑛+1]                                                           (49) 

where: 

𝑇𝑇𝛼𝛼
[𝑛𝑛,𝑛𝑛+1] =

1
∆𝜕𝜕
�

𝜕𝜕𝑓𝑓𝛼𝛼(𝑃𝑃)
𝜕𝜕𝜕𝜕

 
𝜕𝜕𝑛𝑛+1

𝜕𝜕𝑛𝑛
𝑑𝑑𝜕𝜕 ≈

1
∆𝜕𝜕

[𝑓𝑓𝛼𝛼𝑛𝑛+1(𝑃𝑃)− 𝑓𝑓𝛼𝛼𝑛𝑛(𝑃𝑃)]                                     (50) 

𝐶𝐶𝛼𝛼
[𝑛𝑛,𝑛𝑛+1] =

1
∆𝜕𝜕
�

1
𝜏𝜏 �
𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒(𝑃𝑃)− 𝑓𝑓𝛼𝛼(𝑃𝑃)�

𝜕𝜕𝑛𝑛+1

𝜕𝜕𝑛𝑛
𝑑𝑑𝜕𝜕                                                (51) 

Assuming 𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒(𝑃𝑃) − 𝑓𝑓𝛼𝛼(𝑃𝑃) linearly changes from 𝜕𝜕𝑛𝑛 to 𝜕𝜕𝑛𝑛+1, then Eq. (51) becomes: 

𝐶𝐶𝛼𝛼
[𝑛𝑛,𝑛𝑛+1] =

1
𝜏𝜏∆𝜕𝜕

�𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒,𝑛𝑛+1(𝑃𝑃) − 𝑓𝑓𝛼𝛼𝑛𝑛+1(𝑃𝑃)�+ �𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒,𝑛𝑛(𝑃𝑃)− 𝑓𝑓𝛼𝛼𝑛𝑛(𝑃𝑃)�
2

∆𝜕𝜕                          (52) 

Next, Eqs. (50) and (52) can be combined with Eq. (49), which is reduced to become: 
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𝑓𝑓𝛼𝛼𝑛𝑛+1(𝑃𝑃)  =  
2𝜏𝜏 − ∆𝜕𝜕
2𝜏𝜏 + ∆𝜕𝜕

𝑓𝑓𝛼𝛼𝑛𝑛(𝑃𝑃) +
∆𝜕𝜕

2𝜏𝜏 + ∆𝜕𝜕 �
𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒,𝑛𝑛+1(𝑃𝑃) + 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒,𝑛𝑛(𝑃𝑃)� −
2𝜏𝜏∆𝜕𝜕

2𝜏𝜏 + ∆𝜕𝜕
𝐹𝐹𝛼𝛼

[𝑛𝑛,𝑛𝑛+1]               (53) 

where 𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒,𝑛𝑛+1(𝑃𝑃) is linearly extrapolated according to the scheme suggested by Mei and Shyy [40]: 

𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒,𝑛𝑛+1(𝑃𝑃) = 2𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒,𝑛𝑛(𝑃𝑃)− 𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒,𝑛𝑛−1(𝑃𝑃)                                                 (54) 

Equation (53) is semi-implicit. Therefore, it is more stable than explicit schemes such as the Forward Euler 
and Runge-Kutta methods. 

It should be noted that for the non-Godunov approach, since the flux is evaluated at 𝜕𝜕𝑛𝑛, and not from 𝜕𝜕𝑛𝑛 
to 𝜕𝜕𝑛𝑛+1 , the time marching of the governing equation (Eq. (16)) that utilizes a non-Godunov flux is 
different from that for the Godunov flux schemes (Eq. (49)). In order to increase stability, Lee and Lin [50] 
introduced a semi-implicit scheme that contains an implicit collision, but an explicit advection, to solve 
the DBE, which could be adopted here. As a result, Eq. (16) for the non-Godunov flux schemes becomes: 

𝑇𝑇𝛼𝛼𝑛𝑛   =  𝐶𝐶𝛼𝛼𝑛𝑛+1 − 𝐹𝐹𝛼𝛼𝑛𝑛                                                                        (55) 

where 𝐹𝐹𝛼𝛼𝑛𝑛 is the total flux over the entire CV calculated by a non-Godunov flux scheme, such as the SOU 
in Eq. (47). In addition, with the Forward Euler method:  

𝑇𝑇𝛼𝛼𝑛𝑛 =
1
∆𝜕𝜕

[𝑓𝑓𝛼𝛼𝑛𝑛+1(𝑃𝑃)− 𝑓𝑓𝛼𝛼𝑛𝑛(𝑃𝑃)]                                                               (56) 

and the implicit collision term: 

𝐶𝐶𝛼𝛼𝑛𝑛+1 =
1
𝜏𝜏 �
𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒,𝑛𝑛+1(𝑃𝑃) − 𝑓𝑓𝛼𝛼𝑛𝑛+1(𝑃𝑃)�                                                          (57) 

where 𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒,𝑛𝑛+1(𝑃𝑃) is extrapolated in the same way as Eq. (54), the time marching for the non-Godunov 

flux schemes becomes: 

𝑓𝑓𝛼𝛼𝑛𝑛+1(𝑃𝑃)  =  
𝜏𝜏

𝜏𝜏 + ∆𝜕𝜕
𝑓𝑓𝛼𝛼𝑛𝑛(𝑃𝑃) +

∆𝜕𝜕
𝜏𝜏 + ∆𝜕𝜕

𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒,𝑛𝑛+1(𝑃𝑃) −

𝜏𝜏∆𝜕𝜕
𝜏𝜏 + ∆𝜕𝜕

𝐹𝐹𝛼𝛼𝑛𝑛                                  (58) 

5. Boundary treatment 

The boundary treatment is equally as important as the solution schemes. Without a proper boundary 
treatment, the flux schemes developed in Sec. 3 cannot be used to solve actual problems. In order to 
preserve the merits of solving the DBE on an unstructured mesh and the proposed flux scheme, a desirable 
boundary treatment should satisfy the following requirements: 

• It should allow the universal stencil (Fig. 1) and all presented flux schemes to be realized in a 
unified way on or near the boundaries. 

• It should be second-order accurate. 
• It should ignore the difference in local mesh topology. 
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• It should incorporate different lattice models in a unified way. 
 

The boundary treatment developed by Chen and Schaefer [25] can satisfy the above requirements; 
however, this only works on a two-point stencil and needs to be adapted for the much longer four-point 
stencil in the present paper. The Chen-Schaefer boundary treatment consists of two steps. First, the 
stencil is completed by creating a ghost stencil point for the missing one. Second, the boundary nodal 
PDFs that are obtained by the given physical boundary conditions (velocity and density) are used to 
evaluate the PDFs at ghost stencil points. The same two-step approach is applied for the current boundary 
treatment, but with extra developments.  
 
5.1 Construction of ghost stencil points 

Some of the stencil points will be missing when the owner face of the stencil is on the boundaries (Fig. 
7(a)). Due to the prolonged length of the stencil, even when the owner face is located in the interior but 
close enough to the boundaries, part of the stencil points may still be missing (Fig. 7(b)). 

In Fig. 7(a), on face N1N2, its ghost stencil points 𝑄𝑄′ and 𝑆𝑆′ are constructed such that: 

|𝑄𝑄′𝐶𝐶| = |𝑃𝑃′𝐶𝐶|                                                                          (59) 

and: 

|𝑄𝑄′𝑆𝑆′| = |𝑄𝑄′𝐶𝐶|                                                                         (60) 

Therefore, the PDFs at 𝑄𝑄′ and 𝑆𝑆′ can be geometrically extrapolated as: 

𝑓𝑓𝛼𝛼(𝑄𝑄′) = 2𝑓𝑓𝛼𝛼(𝐶𝐶) − 𝑓𝑓𝛼𝛼(𝑃𝑃′ )                                                              (61) 

𝑓𝑓𝛼𝛼(𝑆𝑆′) = 2𝑓𝑓𝛼𝛼(𝑄𝑄′)− 𝑓𝑓𝛼𝛼(𝐶𝐶)                                                              (62) 

where 𝑓𝑓𝛼𝛼(𝐶𝐶) can be interpolated with the PDFs at boundary nodes 𝑁𝑁1 and 𝑁𝑁2. Since point 𝐶𝐶 is the face 
center: 

𝑓𝑓𝛼𝛼(𝐶𝐶) =
1
2

[𝑓𝑓𝛼𝛼(𝑁𝑁1) + 𝑓𝑓𝛼𝛼(𝑁𝑁2 )]                                                           (63) 

The problem can be closed if 𝑓𝑓𝛼𝛼(𝑁𝑁1) and 𝑓𝑓𝛼𝛼(𝑁𝑁2) are available, which will be introduced in Sec. 5.2. It is 
worth noting that the PDF construction at the ghost stencil point 𝑆𝑆′ is only needed when the PP or SOU 
flux scheme is applied (in which the further upwind stencil point 𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈𝑈𝑈) is required). Otherwise, if the 
PL is chosen for the flux calculation, depending on the local lattice velocity, one of 𝑓𝑓𝛼𝛼(𝑃𝑃′ ) and 𝑓𝑓𝛼𝛼(𝑄𝑄′) is 
𝑓𝑓𝛼𝛼𝑛𝑛(𝑈𝑈) and the other one is 𝑓𝑓𝛼𝛼𝑛𝑛(𝐷𝐷) in Eqs. (39) and (40). Then, the PDF construction at the ghost stencil 
point 𝑆𝑆′ can be saved. 

In Fig. 7(b), on the interior face N2N3, only one stencil point, 𝑆𝑆′, is missing. If the PP or SOU is selected, the 
PDF construction at the ghost stencil point 𝑆𝑆′ becomes necessary. The stencil line is extended to the 



 

P r e p r i n t  s u b m i t t e d  t o  C o m p u t e r s  &  M a t h e m a t i c s  w i t h  A p p l i c a t i o n s                    
P a g e  17 | 32 

 

https://doi.org/10.1016/j.camwa.2018.01.034 

exterior region and is intercepted by the boundary at point 𝐼𝐼. Similarly, 𝑆𝑆′ is constructed in such a way 
that: 

|𝑆𝑆′𝐼𝐼| = |𝑄𝑄′𝐼𝐼|                                                                        (64) 

Therefore: 

𝑓𝑓𝛼𝛼(𝑆𝑆′) = 2𝑓𝑓𝛼𝛼(𝐼𝐼) − 𝑓𝑓𝛼𝛼(𝑄𝑄′)                                                             (65) 

where: 

𝑓𝑓𝛼𝛼(𝐼𝐼) =
|𝑁𝑁2𝐼𝐼|

|𝑁𝑁1𝑁𝑁2|𝑓𝑓𝛼𝛼
(𝑁𝑁1) +

|𝑁𝑁1𝐼𝐼|
|𝑁𝑁1𝑁𝑁2|𝑓𝑓𝛼𝛼

(𝑁𝑁2 )                                                (66) 

Once the stencil is complete, the flux through the owner face is calculated with the same flux schemes as 
in Sec. 3. Now, the question is how to evaluate the PDFs at boundary nodes 𝑁𝑁1 and 𝑁𝑁2. 
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Figure 7. Construction of ghost stencil points. (a) scenario one: the owner face (face N1N2) is on the 
boundary; (b) scenario two: the owner face (face N2N3) is not on the boundary 

5.2 Evaluation of the boundary nodal PDF 

For any boundary node, 𝑁𝑁, as shown in Fig. 8, it is connected to an arbitrary number of triangular cells. 
For example, 𝑃𝑃1, 𝑃𝑃2, 𝑃𝑃3, and 𝑃𝑃4 are the centroids of all of the triangular cells connected to 𝑁𝑁, and 𝑑𝑑1, 𝑑𝑑2, 
𝑑𝑑3, and 𝑑𝑑4 the distances between the corresponding centroids and 𝑁𝑁. 

 

Figure 8. Extrapolation scheme for boundary node 

For any variable 𝜃𝜃, its value at boundary node 𝑁𝑁 can be extrapolated with a function Υ such that: 

𝜃𝜃(𝑁𝑁) = Υ{𝜃𝜃(𝑃𝑃)}  =
∑

𝜃𝜃�𝑃𝑃𝑗𝑗�
𝑑𝑑𝑗𝑗

𝑋𝑋
𝑗𝑗=1

∑ 1
𝑑𝑑𝑗𝑗

𝑋𝑋
𝑗𝑗=1

                                                          (67) 
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where 𝑋𝑋 is the total number of connected triangular cells. This extrapolation scheme is fully compatible 
with different boundary geometries and local mesh topology. Instead of manipulating the total PDF at the 
boundary nodes, here it is chosen to decompose the total PDF into an equilibrium part and non-
equilibrium part [42]: 

𝑓𝑓𝛼𝛼(𝑁𝑁) = 𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒(𝑁𝑁) + 𝑓𝑓𝛼𝛼

𝑛𝑛𝑒𝑒𝑒𝑒(𝑁𝑁)                                                           (68) 

The equilibrium part is obtained by using Eqs. (2) - (4), in which 𝜌𝜌  and 𝒖𝒖  are the physical boundary 
conditions. In the cases where only one of 𝜌𝜌  and 𝒖𝒖 is known on the boundary, the other variable is 
extrapolated using Eq. (68), in which 𝜃𝜃 is replaced by that unknown variable (please refer to [25] for more 
detail). Therefore, all of the components of the equilibrium PDFs can be computed once no matter what 
type of lattice model is applied. 𝑓𝑓𝛼𝛼

𝑛𝑛𝑒𝑒𝑒𝑒(𝑁𝑁) is computed using Eq. (68), in which 𝜃𝜃 is replaced by 𝑓𝑓𝛼𝛼
𝑛𝑛𝑒𝑒𝑒𝑒.  

6. Numerical results and discussions 

There are two types of meshes used in this paper, which are shown in Fig. 9. The first type of mesh consists 
of all isosceles right triangles (IRT) with fixed topology and identical size and shape. This type of mesh is 
not able to capture a curved boundary. The mesh consists of many squared blocks that have four triangles 
in each of them. For the one shown in Fig. 9 (a), there are nine blocks in each direction, so, it is a 9×9 IRT 
mesh. The other type of mesh (Fig. 9 (b)) is more general, with random topology and arbitrarily shaped 
and sized triangles, and therefore can achieve exact body-fitting for complex boundary geometries.  

                                               

(a) IRT mesh                                                    (b) General mesh 

Figure 9. Two different types of mesh 

The first difference between these two types of meshes is the size and shape of each triangular cell, which 
can be obviously seen in Fig. 9. The second difference is the local connectivity, or topology, at each node. 
For the IRT mesh, eight triangular cells share each interior node, and four are connected to each boundary 
node except for the corner nodes (two triangular cells). For the general mesh, the number of triangular 
cells connected to each node, no matter where it is located, is arbitrary. Therefore, the IRT mesh is only a 
special case of the general mesh. 

Although the IRT mesh is not as able to capture a curved boundary as the general mesh, it is still necessary 
in the current study. A mandatory numerical test for any numerical method is to study the errors at 
different mesh resolution, which is used to characterize the order of accuracy of that numerical method. 
During the error study, the mesh size is refined by a fixed factor (usually two) several times, and the errors 
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of the numerical solutions are measured after each refinement. With the general mesh, it is very difficult, 
if not impossible, to increase the mesh size with a fixed factor. Even though that is achievable, there is no 
guarantee that the mesh topology after each refinement will be kept the same. Therefore, both types of 
triangular meshes are used in the current work, where the IRT mesh is used for the spatial error study 
while the general mesh is used for other numerical cases.  

However, both meshes are completely unstructured. On the back end, they have exactly the same data 
structures and finite volume solution techniques. Therefore, the proposed FVDBM scheme and boundary 
treatment can solve a problem on any triangular mesh in the same way, including the two types of meshes 
used in this paper, and other triangular meshes not covered here. 

6.1 Taylor-Green vortex flow 

In order to quantitatively study the developed flux schemes without the influence of boundary conditions, 
Taylor-Green vortex (TGV) flow with only periodic boundaries is chosen for the first study case. The 
analytical solution of the velocity at any location (x,y) and any moment t is defined as follows: 

𝑢𝑢𝑚𝑚 = −𝑢𝑢0 cos(𝑘𝑘1𝑥𝑥) sin(𝑘𝑘2𝑦𝑦) 𝑒𝑒�−𝜐𝜐�𝑘𝑘12+𝑘𝑘22�𝜕𝜕�                                                    (69) 

𝑣𝑣𝑚𝑚 = −𝑢𝑢0
𝑘𝑘1
𝑘𝑘2

sin(𝑘𝑘1𝑥𝑥) cos(𝑘𝑘2𝑦𝑦) 𝑒𝑒�−𝜐𝜐�𝑘𝑘12+𝑘𝑘22�𝜕𝜕�                                                 (70) 

where 𝑢𝑢0 is the initial velocity, 𝜐𝜐 is the viscosity, and 𝑘𝑘1 and 𝑘𝑘2 are two parameters defined as: 

𝑘𝑘1 =
2𝜋𝜋
𝐷𝐷𝑥𝑥

                                                                                  (71) 

𝑘𝑘2 =
2𝜋𝜋
𝐷𝐷𝑦𝑦

                                                                                  (72) 

where 𝐷𝐷𝑥𝑥 and 𝐷𝐷𝑦𝑦 are the length and the height of the rectangular computational domain. 

In order to study the spatial errors of the flux schemes only due to the spatial resolution, the errors 
contributed by other sources have to be minimized and kept constant, since it is impossible to separate 
one type of error from another. It is well known that there are two major and unique errors when solving 
the DBE (and the LBE as well) with BGK collision: the compressibility error that scales with 𝑀𝑀𝑀𝑀2 and the 
BGK truncation error that is proportional to 𝜏𝜏2. In addition, the spatial errors of the developed Godunov-
type flux schemes also depend on temporal resolution. Therefore, in the following numerical study, a 
small u0 is chosen so that Ma=0.01 for the D2Q9 lattice. The relaxation time is kept small as 𝜏𝜏 = 0.006, 
and it is kept that ∆𝜕𝜕 = 0.2𝜏𝜏. Three IRT meshes are prepared: 18×18, 36×36, and 72×72, which double the 
mesh resolution in the x and y directions each time. The parameter ∆𝑥𝑥 is used here to quantify the mesh 
resolution, similar to the Cartesian mesh in finite difference methods, and is defined as: 

 ∆𝑥𝑥 = �2𝑑𝑑𝐶𝐶𝐶𝐶                                                                              (73) 
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where 𝑑𝑑𝐶𝐶𝐶𝐶 is the area of the triangular CV. Since the IRT mesh is applied, 𝑑𝑑𝐶𝐶𝐶𝐶 is the same for all triangular 
CVs. TGV flow is a transient problem. The flow has an initial vorticity that decays with time. Therefore, the 
numerical solution at a certain moment has to be selected. In the current study, the numerical solution is 
chosen as the moment when the simulated vorticity becomes half of the initial state. The corresponding 
analytical solution is calculated with Eqs. (69-72) by using the time t of the numerical solution. All 
developed Godunov-type and non-Godunov flux schemes are tested. Their relative solutions errors in L2 
norm of the x velocities are calculated as follows: 

𝐸𝐸𝑟𝑟𝑟𝑟𝑢𝑢 =
‖𝑢𝑢𝑚𝑚 − 𝑢𝑢𝑛𝑛‖2
‖𝑢𝑢𝑚𝑚‖2

                                                                             (74) 

where 𝑢𝑢𝑚𝑚 and 𝑢𝑢𝑛𝑛 are the analytic and numerical solutions, respectively. The error for each flux scheme at 
each mesh resolution is plotted in Fig. 10. 

 

Figure 10. The velocity errors of Taylor-Green vortex flow at different mesh resolutions for different 
Godunov-type and non-Godunov flux schemes 

First, the comparison between SOU and PL (both second-order in theory) shows that the PL scheme is 
more accurate than the SOU at all tested mesh resolutions, which demonstrates the advantage of 
Godunov flux schemes over their non-Godunov counterparts. For the DBE, a hyperbolic equation with a 
strong advection term, treating the propagation of the PDFs as a moving wave in the Godunov-type flux 
schemes, is more suitable to capture the correct underlying physics than the non-Godunov flux schemes. 
Second, it can be seen that the PC scheme generates a much higher error than the PL and PP schemes at 
all tested mesh resolutions. This is one important reason why the PC or FOU scheme is never 
recommended for simulating advection, let alone the DBE with a strong advection. Second, the PL and PP 
schemes are very similar in terms of numerical error. However, although PP is theoretically a higher-order 
scheme than the PL, it does not display a smaller error at all tested mesh resolutions. By observing the 
error difference between the PP and PL schemes at different mesh resolutions in Fig. 11, it can be seen 
that their difference in error is monotonically decreasing while increasing the mesh resolution. This 
indicates that by increasing the mesh resolution, the error of the PP scheme is decreasing faster than the 
PL scheme, and, more importantly, that decrease is accelerating. The only reason why the PP scheme 
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generates a larger error than PL in the current test is because the mesh is not fine enough. Therefore, 
there must exist a pivotal mesh resolution, below which the PL scheme is more accurate and above which 
the PP scheme is more accurate. The reason why the PP scheme is not more accurate monotonically than 
the PL scheme is due to interplay of the positive and negative effects of using a longer stencil. As 
mentioned earlier, a three-point stencil used in the PP scheme provides more information than a two-
point stencil in the PL scheme. However, another consequence caused by the extra stencil point is the 
dramatic change of the shape of the constructed PDF profile, which can be seen in Fig. 6. For the Godunov-
type flux schemes, the PDFs at the face center are based on the spatial integral under the profile curve. 
Therefore, the shape of the PDF profile is critical. A slight change of the profile shape will result in a 
nontrivial change of the integral under the curve, and consequently the PDF value at the face center. As a 
result, when the mesh is coarse, the geometric length of the stencil for the PP scheme is very long, and 
the shape of the PDF profile constructed with such a stencil is less accurate than that from a shorter stencil 
of the PL scheme. Consequently, the numerical error of the PP scheme with a coarse mesh is larger than 
for the PL scheme. When the mesh is refined, the stencil will become geometrically shorter. Therefore, 
the improvement of the profile shape with the three-point stencil of the PP scheme will be more than that 
with the two-point stencil of the PL scheme, followed by lower numerical error. 

 

Figure 11. The difference in velocity errors between the PP and PL schemes of Taylor-Green vortex flow 
at different mesh resolutions 

As discussed in Sec 3.2, the spatial error of the Godunov-type flux schemes can also be decreased by 
increasing the temporal resolution. However, increasing the temporal resolution can also decrease the 
error for simulating a transient problem with any time marching scheme. Since the TGV flow is transient 
in nature, when increasing the temporal resolution, it is impossible to separate the gained accuracy of the 
flux scheme from that of the time marching scheme. As a result, the study of the accuracy of the flux 
schemes at different temporal resolutions is saved for later cases that have a steady-state solution. 

6.2 Couette flow 

This flow has a moving wall on the top and a stationary wall at the bottom of the domain. The left and 
right boundaries are periodic. The analytical solution for the x velocity is a linear profile between zero and 
the moving velocity of the top wall. The moving wall is given a horizontal moving velocity such that the 
Mach number is Ma = 0.01 with a D2Q9 lattice to minimize the compressibility error. The relaxation time 
is also 𝜏𝜏 = 0.006 to restrain the BGK truncation error, where ∆𝜕𝜕 = 0.4𝜏𝜏. The same set of IRT meshes used 
in the TGV flow is also adopted here. The relative x velocity error in the L2 norm (Eq.(74)) at different mesh 
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resolutions for different flux schemes are plotted in Fig. 12. It can be seen that at the lowest mesh 
resolutions where 1/dx=12.7279, PC is the most accurate and PP is the least accurate. However, at the 
highest mesh resolution where 1/dx=50.9117, PP is the most accurate while PC is the least accurate. The 
decrease in error while increasing mesh resolution becomes gradually faster from PC to PL to PP since the 
theoretical order of accuracy increases from PC to PL to PP.  However, it is worth noting that at the lowest 
mesh resolution the PL and PP schemes generate more error than the PC scheme. On the contrary, in the 
TGV flow, at any mesh resolution, the PL and PP schemes have smaller errors than the PC scheme. The 
difference in this observation may lie in the physical difference between the TGV flow and Couette flow. 
The former is highly non-linear and its solution is strongly depending on viscosity, while the latter one is 
linear and its solution is viscosity-independent. One major type of error that is reduced by using a higher-
order flux scheme is the numerical viscosity. When modeling Couette flow at low mesh resolutions, the 
viscosity-independent solution cannot benefit from the reduced numerical viscosity by using higher-order 
flux schemes. As a result, the total reduced amount of all other types of errors cannot offset the negative 
effects of the longer stencil when using higher-order methods. Therefore, at the lower mesh resolutions, 
using a higher-order flux scheme will adversely increase the numerical error. Due to the same negative 
effects of using a longer stencil for a viscosity-independent problem, the SOU that has a very long stencil 
due to the utilization of the further upwind stencil point UU (Eq. (47)) displays a counterintuitively larger 
error than the FOU at all tested mesh resolutions. Based on these observations, and continuing to 
compare the SOU with the PL and PP in Fig. 12, it is easy to conclude, again, that the Godunov flux schemes 
are more accurate than the non-Godunov ones, here for the viscosity-independent flows. 
 
When comparing PL and PP in particular, one can see that the error of PP becomes less than that of PL at 
the mesh resolution 1/dx=25.4558, which means that pivotal mesh resolution is between 12.7279 and 
25.4558. However, for the TGV flow, such a pivotal mesh resolution is beyond 1/dx=50.9117 (See in Fig. 
11). This indicates that for different flow problems the pivotal mesh resolution bears different values. 

  
Figure 12. The velocity errors of Couette flow at different mesh resolutions for different Godunov-type and non-

Godunov flux schemes 

Since Couette flow has a steady-state solution, it can be used to study the spatial error at different 
temporal resolutions. Here four values are chosen, ∆𝜕𝜕/𝜏𝜏 = 0.8, 0.4, 0.2, 0.1 for the same 36*36 IRT mesh. 
The relative x velocity error in the L2 norm at different temporal resolutions for different flux schemes are 
plotted in Fig. 13. It can be seen that the error of the PC(FOU) and SOU schemes are constant at different 
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temporal resolution simply because their formulations are not a function of ∆𝜕𝜕. On the contrary, the errors 
of the PL and PP schemes monotonically decrease with the increasing of temporal resolution. This is the 
second advantage of Godunov flux schemes over the non-Godunov ones. 

 

Figure 13. The velocity errors of Couette flow at different temporal resolutions for different Godunov-type and 
non-Godunov flux schemes 

6.3 Pressure-driven Poiseuille flow 

This flow has its analytical velocity and pressure defined as: 

𝑢𝑢𝑚𝑚 =
1

2𝜇𝜇
�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
� �𝑦𝑦�𝑦𝑦 − 𝐷𝐷𝑦𝑦��                                                                          (75) 

𝑑𝑑𝑚𝑚 = 𝑑𝑑𝑖𝑖𝑛𝑛 + �
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
� 𝑥𝑥                                                                                 (76) 

where 𝜇𝜇 is the dynamic viscosity, 𝐷𝐷𝑦𝑦 is the height of the flow channel, and 𝑑𝑑𝑖𝑖𝑛𝑛 is the inlet pressure. After 
defining different pressures at the inlet and outlet, 𝑑𝑑𝑑𝑑/𝑑𝑑𝑥𝑥 can be expressed as: 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
� =

𝑑𝑑𝑜𝑜𝑢𝑢𝜕𝜕 − 𝑑𝑑𝑖𝑖𝑛𝑛
𝐷𝐷𝑥𝑥

                                                                               (77) 

The maximum velocity appears at 𝐷𝐷𝑦𝑦/2, so: 

𝑢𝑢𝑚𝑚,𝑚𝑚𝑚𝑚𝑥𝑥 = −
1

8𝜇𝜇
�
𝑑𝑑𝑜𝑜𝑢𝑢𝜕𝜕 − 𝑑𝑑𝑖𝑖𝑛𝑛

𝐷𝐷𝑥𝑥
 �𝐷𝐷𝑦𝑦2                                                                   (78) 

By carefully choosing the values for 𝑑𝑑𝑖𝑖𝑛𝑛 and 𝑑𝑑𝑜𝑜𝑢𝑢𝜕𝜕, the Mach number is kept Ma=0.01 again in the current 
study by using 𝑢𝑢𝑚𝑚,𝑚𝑚𝑚𝑚𝑥𝑥  as the characteristic velocity. For the study of flux schemes at different mesh 
resolutions, 𝜏𝜏 = 0.006 and ∆𝜕𝜕 = 0.4𝜏𝜏. The same set of IRT meshes is used for the study. The errors in 
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velocity and density of different Godunov-type flux schemes at different mesh resolutions are shown in 
Fig. 14 and Fig. 15, in which the pressure and density are related by: 

𝑑𝑑 = 𝑐𝑐𝑠𝑠2𝜌𝜌                                                                                   (79) 

 

Figure 14. The velocity errors of Poiseuille flow at different mesh resolutions for different Godunov-type 
flux schemes 

In Fig. 14, it can be observed that the PL and PP schemes generate much less error than the PC scheme at 
all mesh resolutions. This is because, like the TGV flow, the solution of Poiseuille flow is also viscosity-
dependent. High-order schemes such as PL and PP can generate much less numerical viscosity than the 
PC scheme. By comparing PL and PP, a similar observation to the Couette flow can be made, which is that 
the pivotal mesh resolution for the PP scheme to generate more accurate results than the PL scheme is 
within the tested range. 

Similarly, Fig. 15 shows the density errors. The PL scheme produces smaller errors than the PC scheme at 
all mesh resolutions. However, the PP scheme is even less accurate than the PC scheme, which is the 
opposite of the velocity error in Fig. 14. In kinetic theory, velocity is a higher-order moment than density. 
Therefore, the velocity solution can benefit from the usage of higher-order spatial discretization schemes, 
which may not improve the solution accuracy in density. 
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Figure 15. The density errors of Poiseuille flow at different mesh resolutions for different Godunov-type flux 
schemes 

 

Figure 16. The velocity errors of Poiseuille flow at different temporal resolutions for different Godunov-type flux 
schemes 

The effect of the temporal resolutions on the spatial errors is also studied for Poiseuille flow. The same 
36*36 IRT mesh is applied. Figures 16 and 17 show the velocity errors and density errors, respectively. 
Like Couette flow, two common conclusions can be drawn. First, the PC(FOU) scheme is ∆𝜕𝜕-independent. 
Second, the PL and PP schemes can monotonically decrease the error, both in velocity and density, while 
increasing the temporal resolution. However, it is worth noting that the PL scheme does not have data 
points at ∆𝜕𝜕/𝜏𝜏 = 0.1 in both Fig. 16 and 17. This is because at such a small ∆𝜕𝜕, the PL scheme becomes 
unstable. Fortunately, the PP scheme is able to obtain a stable and accurate result at such small temporal 
resolution.  
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Figure 17. The density errors of Poiseuille flow at different temporal resolutions for different Godunov-type flux 
schemes 

6.4 Flow past a circular cylinder at Re=20 

The last simulation case is the flow over a circular cylinder in order to test the developed Godunov- type 
flux schemes on the general unstructured mesh (Fig. 9(b)).  The geometric configuration of the 
computational domain and the generated mesh are shown in Fig. 18, in which D is the diameter of the 
cylinder. 

 

Figure 18. The geometry and unstructured triangular mesh of the flow over a circular cylinder 

The physical boundary conditions for each boundary are defined as follows. The left boundary, which is 
the inlet of the flow, is defined with a uniform x-velocity and zero y-velocity. The outlet on the right is 
considered a fully-developed boundary. The surface on the circular cylinder is an immersed boundary with 
the nonslip condition, in which both the x- and y-velocities are zero. The top and bottom surfaces are 
periodic. A D2Q9 lattice is applied for the simulation. The Reynolds number of the flow is kept at Re=20 
by choosing Ma=0.11574. First, all three flux schemes are tested at ∆𝜕𝜕/𝜏𝜏 = 0.2. Then, an attempt to 
improve the accuracy by decreasing  ∆𝜕𝜕 is made. After several trials, the smallest  ∆𝜕𝜕 to maintain a stable 
solution for the PP scheme is obtained, in which ∆𝜕𝜕/𝜏𝜏 = 0.1648. However, at such a temporal resolution, 
the PL scheme becomes unstable. The streamlines around the circular cylinder at steady state for the PC, 
PL, and PP schemes at ∆𝜕𝜕/𝜏𝜏 = 0.2 and the PP scheme at  ∆𝜕𝜕/𝜏𝜏 = 0.1648 are shown in Fig. 19. Their vortex 
length ratio (L/a), separation angle (𝜃𝜃𝑠𝑠) and drag coefficient (𝐶𝐶𝐷𝐷) along with some published data are listed 
in Tab. 1. 

0.8 0.4 0.2 0.1

t/

0

1

2

3

4

5

6

Er
r

10 -6

PC

PL

PP



 

P r e p r i n t  s u b m i t t e d  t o  C o m p u t e r s  &  M a t h e m a t i c s  w i t h  A p p l i c a t i o n s                    
P a g e  28 | 32 

 

https://doi.org/10.1016/j.camwa.2018.01.034 

 

(a)  
 

(b)  

 

(c)  

(d)  

Figure 19. Vortex structures behind the circular cylinder with different Godunov-type flux schemes and temporal 
resolutions at Re=20. (a) PC at ∆𝜕𝜕/𝜏𝜏 = 0.2; (b) PL at ∆𝜕𝜕/𝜏𝜏 = 0.2; (c) PP at ∆𝜕𝜕/𝜏𝜏 = 0.2; (d) PP at ∆𝜕𝜕/𝜏𝜏 =

0.165 

First, it can be seen that the PC scheme is so diffusive that no vortices developed behind the cylinder. 
Further, by comparing the detailed values in Tab. 1, it can be observed that at the same spatial and 
temporal resolution, the PP scheme is slightly more accurate than the PL scheme. For the PP scheme, by 
decreasing ∆𝜕𝜕, the accuracy can be further improved, which is consistent with the Couette flow and 
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Poiseuille flow studies. Continuing to decrease ∆𝜕𝜕 will make the PP scheme unstable as well. However, 
although the numerical solutions are reasonably close to the benchmark data for validation of these 
schemes, there is still room for further improvement in future work. As discussed in Sec. 3.1, the 
replacement of first-order interpolation, Eq. (26), with a higher-order scheme can further improve the 
accuracy, but since the interpolation scheme is a separate topic from the flux schemes, the effects on the 
accuracy from testing different interpolations are not included here. 

 𝐿𝐿/𝑀𝑀 𝜃𝜃𝑠𝑠 𝐶𝐶𝐷𝐷 
Coutanceau and Bouard [43] 1.860 44.80 - 

Dennis and Chang [44] 1.880 43.70 2.045 
Nieuwstadt and Keller [45] 1.786 43.37 2.053 

Fornberg [46] 1.820 - 2.000 
Calhoun [47] 1.820 - 2.190 
Ye et al. [48] 1.840 - 2.030 

He and Doolen [49] 1.842 42.96 2.152 
Mei and Shyy [40] 1.804 - - 
Lee and Lin [50] 1.834 - 2.106 
Ubertini et al. [7] - - 2.090 

Zarghami et al. [9] 1.820 42.50 2.205 
Patil and Lakshmisha [19] 1.884 42.81 1.949 

Present 

PC at ∆𝜕𝜕/𝜏𝜏 = 0.2 0 0 4.1723 
PL at ∆𝜕𝜕/𝜏𝜏 = 0.2 1.5897 43.9683 2.7481 
PP at ∆𝜕𝜕/𝜏𝜏 = 0.2 1.5953 44.3451 2.625 

PP at ∆𝜕𝜕/𝜏𝜏 = 0.165 1.6353 44.9915 2.6104 

Table 1. Comparison of geometrical and dynamical parameters with different Godunov-type flux schemes and 
temporal resolutions for flow past a circular cylinder at Re=20 

7. Conclusions 

In the current work, a systematic approach to developing Godunov-type flux schemes that do not need 
Riemann solvers for the FVDBM on a triangular unstructured mesh is proposed. With the PC, PL, and PP 
wave reconstructions, three Godunov-type flux schemes with increasing theoretical orders of accuracy 
are formulated. Additionally, the SOU flux scheme, which is non-Godunov, is provided for comparison. 
After testing these flux schemes on different problems with different boundary conditions, different 
solution features, and different mesh topologies, four common conclusions can be made. First, due to the 
wave-like treatment of the PDF advection, the Godunov-type PL flux scheme presents better spatial 
accuracy than its non-Godunov counterpart, the SOU (the PP is also better than the SOU, but they have 
different orders of accuracy). Second, the PL and PP scheme are much more accurate than the PC scheme 
in terms of velocity solutions; third, the PP scheme is only more accurate than the PL scheme when the 
mesh resolution is above a certain value; fourth, for the PL and PP scheme, increasing the temporal 
resolution can increase the spatial accuracy, while the spatial accuracies of FOU and SOU are not affected 
by the temporal resolution. However, such an increase of temporal resolution is limited by a stability 
condition. As a result, it is recommended to use the PL scheme at low or moderate spatial resolution while 
choosing the PP scheme for the problems that require a high level of accuracy and extreme fine mesh. 

8. Acknowledgements 



 

P r e p r i n t  s u b m i t t e d  t o  C o m p u t e r s  &  M a t h e m a t i c s  w i t h  A p p l i c a t i o n s                    
P a g e  30 | 32 

 

https://doi.org/10.1016/j.camwa.2018.01.034 

This work was supported by the National Science Foundation under grant No. CBET-1233106. 

References 

[1] S. Succi, G. Amati, R. Benzi. Challenges in lattice Boltzmann computing. Journal of statistical physics. 81, 5(1995). 

[2] T. Abe. Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation. Journal of 
computational physics. 131, 241(1997). 

[3] N. Cao, S. Chen, S. Jin, D. Martinez. Physical symmetry and lattice symmetry in the lattice Boltzmann method. Physical review E. 55, R21(1997). 

[4] X. He, L. Luo. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Physical review E. 56, 
6811(1997). 

[5] X. He, L. Luo. A priori derivation of the lattice Boltzmann equation. Physical review E. 55, R6333(1997). 

[6] S. Ubertini, G. Bella, S. Succi. Lattice Boltzmann method on unstructured grids: Further developments. Physical review E. 68, 016701(2003). 

[7] S. Ubertini, S. Succi, G. Bella. Lattice Boltzmann schemes without cordinates. Philosophical transactions of the royal society of London-
Mathematical, Physical, and Engineering Sciences 362, 1763(2004). 

[8] N. Rossi, S. Ubertini, G. Bella and S. Succi. Unstructured lattice Boltzmann method in three dimensions. International journal for numerical 
methods in fluids. 49, 619(2005). 

[9] A. Zarghami, M. Maghrebi, J. Ghasemi and S. Ubertini. Lattice Boltzmann finite volume formulation with improved stability. Communications 
in Computational Physics. 12, 42(2012). 

[10] A. Zarghami, S. Ubertini and S. Succi. Finite-volume lattice Boltzmann modeling of thermal transport in nanofluids. Computers & Fluids. 77, 
56(2013). 

[11] A. Zarghami, C. Biscarini, S. Succi and.S. Ubertini Hydrodynamics in porous media: A finite volume lattice Boltzmann study. Journal of 
Scientific Computing. 59, 80(2014). 

[12] G. Peng, H. Xi, C. Duncan. Lattice Boltzmann method on irregular meshes. Physical review E. 58, R4124(1998). 

[13] H. Xi, G. Peng, S. Chou. Finite-volume lattice Boltzmann method. Physical review E. 59, 6202(1999). 

[14] G. Peng, H. Xi, C. Duncan. Finite volume scheme for the lattice Boltzmann method on unstructured meshes. Physical review E. 59, 4675(1999). 

[15] H. Xi, G. Peng, S. Chou. Finite-volume lattice Boltzmann schemes in two and three dimensions. Physical review E. 60, 3380(1999). 

[16] G. Peng, H. Xi, and S. Chou. On Boundary Conditions in The Finite Volume Lattice Boltzmann Method On Unstructured Meshes. International 
journal of modern physics C. 10, 1003(1999). 

[17] J. Ghasemi, S. E. Razavi. On the finite-volume lattice Boltzmann modeling of thermo-hydrodynamics. Computers and mathematics with 
applications. 60, 1135(2010). 

[18] M. Stiebler, J. Tölke, M. Krafczyk. An upwind discretization scheme for the finite volume lattice Boltzmann method. Computers & Fluids. 
35, 814(2006). 

[19] D. V. Patil, K. N. Lakshmisha. Finite volume TVD formulation of lattice Boltzmann simulation on unstructured mesh. Journal of computational 
physics. 228, 5262(2009). 

[20] D. V. Patil, K. N. Lakshmisha. Two-dimensional flow past circular cylinders using finite volume lattice Boltzmann formulations. International 
journal for numerical methods in fluids. 69, 1149(2012). 

[21] D. V. Patil. Chapman-Enskog analysis for finite-volume formulation of lattice Boltzmann equation. Physica A. 392, 2701(2013). 

[22] S. K. Choi and C. L. Lin. A simple finite-volume formulation of the lattice Boltzmann method for laminar and turbulent flows. Numerical 
Heat Transfer, Part B. 58, 242(2010). 



 

P r e p r i n t  s u b m i t t e d  t o  C o m p u t e r s  &  M a t h e m a t i c s  w i t h  A p p l i c a t i o n s                    
P a g e  31 | 32 

 

https://doi.org/10.1016/j.camwa.2018.01.034 

[23] D Yu, R. Mei, L. Luo and W. Shyy. Viscous flow computations with the method of lattice Boltzmann equation. Progress in Aerospace Sciences. 
39, 329(2003). 

[24] R. Zhang, H. Fan and H. Chen. A Lattice Boltzmann approach for solving scalar transport equations. Philosophical Transactions of The Royal 
Society A. 369, 2264(2011). 

[25] L. Chen and L. Schaefer. A unified and preserved Dirichlet boundary treatment for the cell-centered finite volume discrete Boltzmann 
method. Physics of Fluids. 27, 027104(2015). 
 
[26] X. Shan, X. Yuan and H. Chen. Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation. Journal of Fluid 
Mechanics. 550, 413(2006). 

[27] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference scheme. Journal of Computational Physics. 43, 357(1981). 

[28] S. K. Godunov. A finite-difference method for the numerical computation and discontinuous solutions of the equations of fluid dynamics. 
Mathematics of the USSR-Sbornik. 47, 271(1959). 

[29] B. van Leer. Towards the ultimate conservative difference scheme. I. The quest of monotonicity. Lecture Notes in Physics. 18, 163(1973). 

[30] B. van Leer. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. 
Journal of Computational Physics. 14, 361(1974). 

[31] B. van Leer. Towards the ultimate conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible 
flow. Journal of Computational Physics. 23, 263(1977). 

[32] B. van Leer. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. Journal of Computational 
Physics. 23, 276(1977). 

[33] B. van Leer. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of 
Computational Physics. 32, 101(1979). 

[34] P. Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAM Journal on Scientific and Statistical Computing. 6, 104(1985). 

[35] P. Colella and P. R. Woodward. The Piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics. 
54, 174(1984).  

[36] S. Teng, Y. Chen and H. Ohashi. Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing with 
artificial compression scheme. International Journal of Heat and Fluid Flow. 21, 112(2000). 

[37] T. Lee, C. Lin and L. Chen. A lattice Boltzmann algorithm for calculation of the laminar jet diffusion flame. Journal of Computational 
Physics. 215, 133(2005). 

[38] J. B. Goodman and R. J. LeVeque. On the accuracy of stable schemes for 2D scalar conservation laws. Mathematics of Computation. 45, 
171 (1985). 

[39] P. L. Bhatnagar, E. P. Gross,t and  M. Krook. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral 
One-Component System.  Physical review. 94, 511(1954). 

  

[40] R. Mei and W. Shyy. On the Finite Difference-Based Lattice Boltzmann Method in Curvilinear Coordinates. Journal of Computational Physics. 
143, 426(1998). 

[41] Randall J. Leveque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press. 2002, pp. 66. 

[42] Z. Guo, C. Zheng, B. Shi. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann 
method. Chinese Physics. 11, 366(2002). 

[43] M. Coutanceau and R. Bouard. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in 
uniform translation: part 1: steady flow, part 2: unsteady flow. Journal of Fluid Mechanics, 79 (1977), 231. 



 

P r e p r i n t  s u b m i t t e d  t o  C o m p u t e r s  &  M a t h e m a t i c s  w i t h  A p p l i c a t i o n s                    
P a g e  32 | 32 

 

https://doi.org/10.1016/j.camwa.2018.01.034 

[44] S. C. R. Dennis and G. Z. Chang. Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. Journal of Fluid 
Mechanics. 42 (1970), 471. 

[45] F. Nieuwstadt and H. B. Keller. Viscous flow past circular cylinders. Computers & Fluids. 1 (1973), 59. 

[46] B. Fornberg. A numerical study of steady viscous flow past a circular cylinder. Journal of Fluid Mechanics. 98 (1980), 819. 

[47] D. Calhoun. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of 
Computational Physics. 176 (2002), 231. 

[48] T. Ye, R. Mittal, H. S. Udaykumar and W. Shyy. An accurate Cartesian grid method for viscous incompressible flows with complex immersed 
boundaries. Journal of Computational Physics. 156 (1999), 209. 

[49] X. He, G. Doolen. Lattice Boltzmann Method on Curvilinear Coordinates System: Flow around a Circular Cylinder. Journal of Computational 
Physics. 134, 306(1997). 

[50] T. Lee, C. Lin. An Eulerian description of the streaming process in the lattice Boltzmann equation. Journal of computational physics. 185, 
445(2003). 

 

 


	Godunov-Type Upwind Flux Schemes of the Two-Dimensional Finite Volume Discrete Boltzmann Method
	Scholarly Commons Citation

	https://doi.org/10.1016/j.camwa.2018.01.034

