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Introduction: 

 Wastewater Based Epidemiology (WBE) is an expanding field with increasingly 

important public health applications.1 WBE historically relied on environmental scientist 

achievements for relevancy but has experienced increased use in sewage monitoring for 

pathogens – including SARS-CoV-2 during the recent Coronavirus disease 2019 (COVID-19) 

pandemic.1 COVID-19’s high transmissibility resulted in rapid global spread to over 20 million 

confirmed cases and roughly 733,000 deaths within the first six months after China’s lockdown 

on January 23, 2020.2 Healthcare systems around the world were overburdened and, at times, 

incapable of sustaining their prevention, diagnosis, or treatment asks of their populations.3 The 

pandemic’s unique challenges posed problematic for the slow and cumbersome supply chain 

that is necessary for successful diagnostic testing.1 In parallel, countries around the world 

turned to WBE to supplement traditional efforts via community level screening.1, 3-8 

 Applications of WBE, however, do not end with correlations between observed 

wastewater viral protein concentrations and community case rates. Various predictive models 

have been published to support public health estimations related to COVID-19.9-12 Each method 

leverages easily captured WBE data to make meaningful public health predictive factors such as 

SARS-CoV-2 cases, hospitalizations, or deaths.9-12 The existing models range in complexity, 

supporting a variety of community needs. Some methods leveraged linear models with relevant 

corrective factors while others employed SEIR (susceptible, exposed, infected, recovered) 

simulations to map changes in critical health population proportions. Each model has their own 

potential pros and cons. The complex SEIR models leverage differential equations that can help 

understand disease spread over time based on known disease factors. However, this method 



could prove mathematically challenging and limit its generalized dissemination and use 

potential. Alternatively, linear models are limited by their data. If populations experience non-

normal distributions of outcomes, the model cannot be applied to them.  

 In the United States, predictive model research related to COVID-19 varies in their 

practice and application. Phan et al surveyed wastewater plants serving roughly 2.3 million 

individuals in Massachusetts, pulling samples from October 02,2020 to January 25, 2021.10 

McMahan et al worked with Clemson University to build predictive models for a population of 

~25,000 students broken into three smaller geographical areas.9  

 The challenges with COVID-19 predictive models are rooted in the evolving variation in 

the disease itself. SARS-CoV-2 is capable of rapid mutation that results in variant strains capable 

of their own unique disease states.13 These rapid developments hinder the generalizability of 

previously published literature due to newly identified incubation periods, infection durations, 

recovery times, or mortality rates. For example, Phan’s monitoring through January of 2021 

may have resulted in their capture of data related to COVID-19’s Omicron variant, which was 

designated in November of 2021, while McMahan’s sampling would not. Since the pandemic 

began, the Center for Disease Control and Prevention (CDC) has designated dozens of different 

COVID-19 lineages of interest.13 Omicron alone has 17 different lineages identified.13 Variant 

contributions to the overall community disease state may vary drastically depending on the 

geographical location of interest.13 

 There are still many gaps related to WBE based predictive models and COVID-19 disease 

screening. For starters, geography and timing are crucial to understanding COVID-19 spread and 

impact. Continued research on varied populations is needed to grow the generalizability of 



available predictive models. During their APE, the student determined statistically significant 

correlations between wastewater concentrations of SARS-CoV-2 RNA and community case rates 

(Spearman Correlation Coefficient 0.77, p-value of 3.97E-11). Leveraging these predictive 

models across new communities will support the growing evidence related to their effective 

utilization for COVID-19 screening. Each involved community have robust sociodemographic 

data.14 These data further potential generalizability conclusions for COVID-19 WBE based 

predictive models.  

Additionally, available literature concentrates on limited data collection timepoints that 

minimizes their tracing of multiple COVID-19 variants and sub-variants.9-13 The communities 

involved in this research have collected samples from December 2020 through August 2021. 

This date range greatly broadens the capture of various COVID-19 variants according to the 

CDC’s viral proportion calculations.13 Lastly, recommended protocols, including incubation 

times, infectivity windows, and recovery times have evolved rapidly throughout the 

pandemic.15 The new models developed in this research can understand whether previously 

published measures are still appropriate or whether recent developments have changed their 

applicability in predicting community cases.  

This research aims to determine the applicability of various models in respect to their 

application to four Maine based communities. 

 

Methods 

 Tables 1, 2, and 3 provide an overview of the communities involved in the test 

populations. 



Table 1 - Community Population and Housing Characteristics14 

City Population Households Persons per Households 

Brunswick 21,836 8295 2.28 

East End (Portland) 68,313 30796 2.10 

Westbrook/Gorham 38,998 14444 2.47 

Yarmouth 8,997 3247 2.59 

  

 East End (Portland) and Westbrook/Gorham were the two most heavily populated 

communities with Yarmouth being roughly 7.6x and 4.3x smaller than each respectively.  

Table 2 - Community Racial Demographics14 

City White Black Hispanic Asian AI/AN* 

Brunswick 91.90% 1.90% 3.70% 2.10% 0.90% 

East End (Portland) 83.60% 8.60% 2.70% 3.90% 0.30% 

Westbrook/Gorham 91.59% 2.85% 1.34% 1.50% 0.35% 

Yarmouth 93.50% 0.70% 0.90% 2.80% 0.90% 

*American Indian or Alaska Native 

Table 3 - Community Age Distributions (Years)14 

City < 5 5 to 17 18 to 64 65+ 

Brunswick 5.70% 17.10% 56.00% 21.20% 

East End (Portland) 4.80% 15.40% 64.40% 15.40% 

Westbrook/Gorham 5.83% 20.09% 58.15% 15.93% 

Yarmouth 3.60% 23.40% 53.40% 19.60% 

 

Each community is predominantly White, a range of 83.60%-93.50%, with varying 

degrees of smaller Black, Hispanic, Asian, and AI/AN populations. Similarly, most individuals in 

all communities are between the ages of 18 and 64 years old, typically working age populations.  

Qualified community stakeholders collected 24-hour composite samples of influent 

water at each respective wastewater treatment plant.16 The samples were measured for SARS-

CoV-2 RNA concentration and wastewater flow rate.16 The CDC recommended N1 and N2 

genetic markers to be used during SARS-CoV-2 RNA quantification, as directed by the SARS-

CoV-2 Reverse Transcription Polymerase Chain Reaction (RT-PCR) test (INDEXX Laboratories, 



Inc. Westbrook, ME).16 This test quantifies viral marker concentrations that enable 

understanding.  External standard curves were utilized to calibrate the genetic marker 

concentrations in triplicate.16 Viral recovery was measured via a surrogate virus, bovine 

respiratory syncytial virus (BRSV), spiked into wastewater samples prior to processing the 

samples.16 This recovery value was factored into subsequent viral load calculations as 

appropriate. Each site collected and shared their data with the researcher for compilation and 

further analysis. Table 4 outlines the number of samples collected in each community.  

Table 4: Dataset Summary 

Independent Variables Dependent Variables City Sample Size 

Wastewater Flow Rate Liters per day 
Viral RNA Copies per Liter (CPL) 

Weekly Reported COVID-19 Clinical 
Cases 

Predicted COVID-19 
Cases per Week 

Brunswick 10 

East End (Portland) 50 

Westbrook/Gorham 50 

Yarmouth 34 

 
The final data set was impacted by various missing datapoints from each community. Missing 

information included flowrates, community reported case counts, and BRSV recovery. When 

possible, missing data was remedied through stakeholder communication however the 

outcome did not always mitigate the lack of source data. BRSV recovery data was not available 

for analysis prior to December 15, 2020. Additionally, case count data was not available for East 

End (Portland) on 7/20/2021 and 8/10/2021 and for Westbrook/Gorham on 8/10/2021. A full 

compilation of missing data is available in Table 8 in the appendix. Lastly, when SARS-CoV-2 

concentrations were below the limit of detection, 0.76 copies/mL, half of this concentration 

was used for calculations and analysis per the CDC’s recommendations.16 A list of non-detect 

samples can be found in Table 9 of the appendix.  

 The researcher uploaded the data sets into RStudio leveraging R version 2022.7.0+548 

for data cleaning, visualization, and analysis.17 The data was cleaned leveraging necessary 



RStudio packages and further information can be observed in the associated R-markdown file 

or Table 10.18-25 

 Community case rates were converted from numerical outputs per city during the 

preceding sampling week to rates per 10,000 individuals. Populations were extracted from 

available census data and rates were calculated per below20: 

Equation 1: Case Counts to Incidence per 10,000 

𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐶𝑎𝑠𝑒 𝐶𝑜𝑢𝑛𝑡𝑠

10,000
= (

𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 𝐶𝑎𝑠𝑒 𝐶𝑜𝑢𝑛𝑡𝑠

𝐶𝑖𝑡𝑦 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
) ∗ 10,000 

 External literature was reviewed to identify available best fit predictive models for 

analysis. A summary of referenced articles is included below: 

Table 5 – Referenced Predictive Models 

Article 
Year of 

Publication 
Study Location Population Studied Statistical Method 

McMahan et al9 2021 
South Carolina, 

USA 
~25,000 College 

Students 

Simple Prediction Model 
& 

SEIR Prediction Model 

Phan et al10 2022 
Massachusetts, 

USA 

2.3 Million Cross 
Community 
Residents 

SEIR Prediction Model 

Zhu et al11 2022 Japan 
1 Million Urban 

Community 
Residents 

Correlation Testing + 
Linear Prediction Models 

Zhou et al12 2020 Michigan, USA 
~630,000 Detroit 

Residents 
Linear Regression with 

ARIMA Modeling 

 

The variables of interest, SARS-CoV-2 RNA Copies per liter and reported or predicted COVID-19 

community case rates, are numerical (continuous or integer). Other variables relevant for 

statistical analysis include wastewater flow rate in liters per day (numerical – continuous), 



grams per day of fecal production per person (numerical – continuous), maximum rate of viral 

shedding per gram of feces per day (numerical – continuous), and location (categorical).9 

 A three-tiered approach was taken in this research. Firstly, the student leveraged the 

simplified predictive model put forth by McMahan et al9 to determine its fit for the test 

communities. Differences between the predicted and observed cases were calculated and 

tested for statistical significance leveraging a Wilcoxon Sign Rank test. 

The simplified prediction model can be observed below: 

Equation Two: Simple Predictive Model 

𝐽𝑡 =
(𝑄 ∗ 𝑉)

(𝐴 ∗ 𝐵)
 

 

Table 6: Simplified Model Breakdown 

Variable Meaning Unit of Measure 

Jt Predicted number of positive COVID-19 cases Cases per week 

Q Average wastewater flow rate Liters per day 

V Wastewater sampled SARS-CoV-2 RNA copies Copies per liter 

A Rate of feces production per person Grams per day 

B Maximum rate of viral shed RNA copies per gram of feces per day 

 

 The variables Q and V were isolated from the observed data reported by community 

stakeholders, whereas variables A and B were constants identified in the research performed by 

McMahan et al.9 The predicted cases were subtracted from the reported cases to identify the 

variability between the model and the reported results. The sum differences were tested via 

the Wilcoxon Sign Rank test per the following hypotheses and a 95% confidence interval: 

• Ho → There is no statistically significant difference between the reported and predicted 

community COVID-19 case rates per week. 



• Ha → There is a statistically significant difference between the reported and predicted 

community COVID-19 case rates per week.  

The data was further analyzed via the same methods following the staggering of observed 

community cases by one week in comparison to their wastewater SARS-CoV-2 RNA 

concentrations and flow rate data to see if the model’s fit was affected.  

Secondly, the researchers pursued the acceptability of linear regression models for the 

sample communities.11, 12 During analysis, the relevant variables were transformed 

logarithmically to normalize their distributions and support the use of a linear regression 

model. The researchers compared adjusted R2 to determine model fit for community case rate 

predictions. A 95% confidence interval was associated with the following hypotheses: 

• Ho → A linear model is not statistically significantly effective in predicting 

Log10(community case rates) using Log10(predicted case counts). 

• Ha → A linear model is not statistically significantly effective in predicting 

Log10(community case rates) using Log10(predicted case counts). 

The data was analyzed via the same methods following the staggering of observed community 

cases by one week in comparison to their wastewater SARS-CoV-2 RNA concentrations and flow 

rate data to see if the model’s fit was affected.  

Lastly, the simple prediction models were supplemented with a functioning SEIR model to 

showcase potential COVID-19 spread through each respective community. The SEIR model 

leveraged the following equations: 

Equation Three: Change in Susceptible Population(s) 

∆𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 =  𝛽 ∗ 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 ∗ (
𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑

𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
)  



Equation Four: Susceptible Population(s) 

𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 = 𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 − ∆𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 

Equation Five: Exposed Population(s) 

𝐸𝑥𝑝𝑜𝑠𝑒𝑑 =  𝐸𝑥𝑝𝑜𝑠𝑒𝑑 +  ∆𝑆𝑢𝑠𝑐𝑒𝑝𝑡𝑖𝑏𝑙𝑒 − (𝛼 ∗ 𝐸𝑥𝑝𝑜𝑠𝑒𝑑)  

Equation Six: Infected Population(s) 

𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 = 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑 + ( 𝛼 ∗  𝐸𝑥𝑝𝑜𝑠𝑒𝑑) − (𝛾 ∗ 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑)  

Equation Seven: Recovered Population(s) 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 = 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 +  (𝛾 ∗ 𝐼𝑛𝑓𝑒𝑐𝑡𝑒𝑑)  

Various constant assumptions were made including the number of contacts with a COVID-19-

positive individual sufficient for infection, beta, the median incubation time of a COVID-19 

infection, alpha, and the recovery rate of an infected individual, gamma. Each value was based 

on the available existing literature from McMahan et al.9 

Results  

 As seen in table 6, Brunswick, East End (Portland) and Westbrook/Gorham all failed to 

reject the null hypothesis in both 1-week staggered and non-staggered analysis, with p-values 

well above the 95% confidence interval threshold of 0.05. These three communities, therefore, 

must accept that there were no statistically significant differences between the predicted cases 

generated by the simple predictive model and those observed by community clinical diagnostic 

testing. However, this conclusion was not reflected by Yarmouth. With p-values below the 0.05 

alpha, there is significant statistical support to reject the null hypothesis and accept the 

alternative – there are statistically significant differences between the predicted and clinical 



case rates in Yarmouth, with predicted cases being higher than observed cases. A compilation 

of relevant test statistics can be found in Table 6.  

Table 6: The Simple Predictive Model & Wilcoxon Sign Rank Test 

Community 
Non-Staggered Staggered by 1-Week 

Test Value P-value Test Value P-value 

Brunswick 39 0.2754 36 0.1289 

East End (Portland) 618 0.8545 627 0.89902 

Westbrook/Gorham 474 0.1156 494 0.2429 

Yarmouth 455 0.006141* 406 0.02412* 

 

 These data can be observed visually via Figure 1, Brunswick, Figure 2, East End 

(Portland), Figure 3, Westbrook/Gorham, and Figure 4, Yarmouth. Each figure demonstrates 

differences between predicted case counts and clinically reported cases during a given sampling 

week. 

 

 

 

 

 

 

 

 

Figure 1: Brunswick Simple Predictive Model 



 

 In non-staggered assessments, peaks and valleys in the predicted cases typically 

precedes similar trends in clinically reported cases. However, the predicted cases became more 

closely aligned with the clinically reported cases once the 1-week staggered data alignment was 

considered.  

 

 

Figure 2: East End (Portland) Simple Predictive Model 



 

 In the non-staggered samples, peaks and valleys in predicted cases preceded similar 

trends in clinically reported cases. However, like Brunswick, East End (Portland)’s staggered 

model experienced more closely aligned data between predicted and clinically reported cases.  

 

 

 

 

 

Figure 3: Westbrook/Gorham Simple Predictive Model 



 

 In the non-staggered samples, peaks and valleys in predicted cases preceded similar 

trends in clinically reported cases. Once the 1-week staggered alignment was considered 

Westbrook/Gorham’s predicted and clinically reported case counts were slightly more aligned. 

 

 

 

Figure 4: Yarmouth Simple Predictive Model 



 

 Yarmouth, in both alignment models, experienced a statistically significant difference 

between predicted case counts and observed clinically reported cases. This phenomenon can 

be visually observed in the spike in predicted cases in November of 2020 and January of 2021 

compared to only slight peaks in clinical cases. These spikes were directly connected with public 

health warnings sent out by members of the Yarmouth Community Coronavirus Task Force.35 

During this time, cases rose from 7 to 21 in a span of three weeks and wastewater samples 

yielded accelerating increases in key indicators of COVID-19’s presence in the community.35   



 The simple predictive models were paired with customized SEIR simulations that 

enabled a plug in of initial infected population quantities to better understand the spread of 

diseases at varied times. Figure 5 demonstrates an example of this model for East End 

(Portland) assuming an infected population of their mean case rate during data collection, 80 

COVID-19 cases.  

Figure 5: East End (Portland) SEIR Modeling 

 

 In this model, population proportions are tracked over time to understand changes in 

susceptible (green), exposed (blue), infected (red), and recovered (purple) subgroups. The 

simulation demonstrates a peak of cases after ~10 weeks with a decrease in spread as recovery 

from disease states nears the population total. The model does not consider vaccination rates 

among each community population or the rolling potential of reinfection following the waning 

of individual immunity over time.36 



  Lastly, the effectivity of linear prediction models was assessed and can be observed in 

Table 7. All communities showed statistically significant associations between the predicted and 

the observed case counts except for the unstaggered Brunswick model. When adjusted with a 

1-week lag time, Brunswick’s predicted cases could account for 86% of the variability observed 

in the clinically reported cases throughout the study period. East End (Portland) showed 

medium strength correlations between predictive and clinically reported cases, R2 values of 

0.50 and 0.48 for unstaggered and 1-week staggered analyses respectively. Westbrook/Gorham 

demonstrated R2 values of 0.38 and 0.44 for unstaggered and staggered analyses respectively. 

Lastly, Yarmouth yielded R2 values of 0.47 and 0.27 for unstaggered and staggered analyses 

respectively.  

Table 7: Linear Regression Model – Log10(Cases) by Log10(Predicted Cases)  

Community 
Non-Staggered Staggered by 1-Week 

Y-Intercept Slope Adjusted R2 P-value Y-Intercept Slope Adjusted R2 P-value 

Brunswick 0.68 0.15 -0.08 0.591* 0.51 0.67 0.86 1.78E-04 

East End (Portland) 0.78 0.54 0.50 6.48E-09 0.76 0.54 0.48 2.62E-08 

Westbrook/ Gorham 0.53 0.55 0.38 1.37E-06 0.44 0.6 0.44 1.22E-07 

Yarmouth 0.65 0.35 0.47 4.10E-06 0.65 0.29 0.27 1.17E-03 

The use-fit of this model can be further understood via the observed data distributions 

of Log10(Clinical Cases) in Figure 6 and the distribution of Log10(Clinical Cases) by 

Log10(Predicted Cases) in Figure 7. 

 

 

 

 

Figure 6: Data Distributions of the Linear Models 



 

 Following normalization using Log10 functions, the clinically reported cases observed 

reasonably normal distributions – supporting the use of linear regression modeling. The 

findings in Table 7, regarding the relationship between predicted cases and clinically reported 

cases, can be visualized in Figure 7. 

 

 

 

Figure 7: Linear Regression Modeling 



 

 The responsibility for variability in Log10(Clinically Reported Cases) is higher for East End 

(Portland) and Yarmouth when compared to Westbrook/Gorham and Brunswick. The shaded 

areas of each graph represent the 95% confidence interval related to where Log10(Clinical 

Cases) may fall based on Log10(Predicted Cases). Despite 95% confidence, there are still many 

data points that fall outside of the windows of estimation for each community. However, there 

is statistically significant relevance to the applicability of linear modeling for predicting COVID-

19 case rates across the four assessed Maine communities.  



Discussion  

WBE’s effectiveness requires an extensive cross-functional network of community 

members, public officials, researchers, public health experts, laboratory personnel and more to 

achieve beneficial outcomes. WBE supports and optimizes the development of predictive early-

warning surveillance that enables communities to respond to their evolving needs based on 

disease burden.3-8, 12, 26-27, 28-34, 41-43 Rather than solely relying on traditional clinical testing, 

communities can practice ongoing cost-effective data collection which offers real time insights 

into the their populations’ health. Additionally, the methods are non-invasive and collect 

general non-identified community level data – alleviating issues related to sampling bias, 

limited testing capacity, or untimely reporting of clinical cases.3, 31, 33 

Its application offers community-level disease detection that includes the ability to 

capture viral shedding in pre-symptomatic or asymptomatic individuals as well as those who 

could potentially fail to test positively in clinical diagnostic testing.1,3,5,7,27,30-31 This functionality 

could be important for rectifying false negative clinical testing related to COVID-19. The 

sensitivity, or likelihood of detecting a true positive case, of COVID-19’s clinical diagnostic 

testing varied drastically between its various applications.37  Confirmed laboratory-repeated 

testing demonstrated an 85.7% sensitivity, inpatient testing yielded a 95.5% sensitivity and 

outpatients demonstrated an 89.9% sensitivity.37 This means that, on average, one out of ten 

clinically tested positive cases were missed using diagnostic testing.38 Therefore, the United 

States, with 103,000,000 confirmed clinical cases, could have theoretically misdiagnosed over 

10 million cases in patients who actively sought medical attention.39 It is important to note, this 

large miss of possible cases includes only those who sought medical attention and tested 



negative – not those who never pursued a test. In parallel, COVID-19 added complexity to 

clinical diagnosis through its ability to proliferate in a host that exhibited asymptomatic 

outcomes.40 A random-effects model leveraged a meta-analysis of 95 studies and found a range 

of asymptomatic cases between 0.25% in tested populations and 40.50% in case populations.40 

If these asymptomatic individuals test negative, the total U.S. based cases to date is more 

closely represented by 113-145 million rather than 103 million. This is why predictive 

supplementary WBE models are important in remedying clinical testing limitations while 

ensuring increased screening potential and efficiency.    

In this study, both the simplified predictive model and a linear regression model proved 

statistically relevant for predicting community COVID-19 case rates in varied capacity. These 

findings add to a growing basis of associations between wastewater levels of SARS-CoV-2 

genetic materials and reported community cases or incidence.3-12, 16, 26-34 The simple predictive 

model put forth by McMahan et al9 yielded no difference to clinically reported cases with 

statistical significance for all communities other than Yarmouth in both non-staggered and 

staggered assessments.  

The simple predictive model demonstrated peaks in observed COVID-19 infections after 

observed rises in predicted case counts in the unstaggered analysis. The 1-week staggered 

analysis more accurately aligned predicted and observed clinical cases but this likely inhibits the 

effectivity of a potential 1-week warning regarding possible upcoming clinical case counts. In 

additional favor for this model, it requires limited technical understanding of predictive 

modeling or complex equations and only needs continuous WBE as recommended by the 

CDC.13, 16  



Yarmouth, the only community that failed to find statistically significant similarities 

between predicted and observed community cases, experienced COVID-19 outbreaks that 

resulted in their community taskforce’s public alert.35 This lack of statistical significance can be 

accredited to many things but certain demographic and socioeconomic considerations have 

been linked to lowered health-seeking behaviors. Uninsured individuals are less likely to seek 

necessary care and often experience worse health outcomes than their insured counterparts.43-

44 Additionally, these at-risk populations may choose to avoid care seeking until the point 

where clinical testing might not be relevant or accurate.44-45 In parallel, poverty rates have been 

associated with negative care seeking behaviors.44 Despite governmental support to increase 

access to COVID-19 testing and care, poverty may play a negative role in influencing the 

willingness to seek care when experiencing COVID-19 symptoms.46 Yarmouth experiences high 

poverty rates and high rates of uninsured individuals, 10.40% and 6.80% respectively.14 Further 

research would be necessary to understand model applicability and alignment with observed 

infection rates and demographic considerations.  

The linear predictive model demonstrated statistical significance in the variability 

responsibility Log10(COVID-19 Cases) by Log10(Predicted Cases). However, this model also 

requires normality in data distributions that may not always be present in real life observations. 

Another constraint is the lack of accuracy in the 95% confidence interval’s capture of 

Log10(COVID-19 Cases) as visualized by Figure 7. Additionally, most models demonstrated 

medium strength predictive capabilities at best, with the R2 values nearing 0.50.  

The SEIR model is an interesting addition to predictive models in that it can provide 

simulated projections of sub-population changes over time based on observations captured via 



WBE. However, the model is also extremely complicated to write and requires a detailed 

understanding of differential equations to accomplish. The model developed in this research is 

extremely basic and therefore has limited applicability for real life use. A more robust model 

could be created in the future that factors in numerous additional COVID-19 considerations to 

more accurately describe individual disease states and their respective changes over time. An 

ideal future state could include a tool that allows community stakeholders to plug in their 

observed SARS-CoV-2 wastewater RNA, COVID-19 vaccination rates, population size and 

density, average daily temperature and more.9, 36  

Conclusion 

 The effectiveness of the simple predictive and linear models bolsters existing evidence 

that WBE can play a vital supplementary role in COVID-19 disease surveillance and prediction.3-

8, 12, 26-27, 28-34, 41-43 As WBE continues to serve a more important role in the future of public 

health surveillance, understanding its potential applications is critical for ensuring the most 

effective implementation and cost effectiveness of its utilization. The statistical significance of 

both models demonstrates its capability to serve as an early-warning surveillance rather than a 

reactive clinical testing response. 3-8, 12, 26-27, 28-34, 41-43 Additionally in its favor, it is a non-invasive 

method of surveillance and collects data from a generalized non-identified community 

population which limits potential sampling biases.3, 31, 33 It can alleviate limited testing 

capabilities or potentially delayed reporting of clinical diagnostic case counts to public health 

entities while empowering them to plan ahead for potentially upcoming clinically positive 

COVID-19 cases.3, 31, 33 Lastly, with respect to COVID-19, WBE grants the ability to capture 



potential infection data for individuals who are pre-symptomatic, asymptomatic, or subject to 

false negative testing results.1, 3, 5, 7, 27, 30-31, 37-40  

 While clinical or at-home diagnostic testing may remain the standard for identifying 

positive community cases, implementing WBE programs can supplement this information and 

provide efficient cost-effective community screening and case prediction in the future. Despite 

waning COVID-19 rates compared to peak pandemic numbers, variants are still posed to lead to 

regression in infection prevention and public health.43 The CDC continues to encourage the 

monitoring of variants to ensure that the mutations which give rise to new infection 

opportunities are understood and properly responded to.47 WBE is becoming an important 

public health surveillance tool and leveraging it in the future with supplemental predictive 

models could provide numerous benefits to community level understanding and response 

related to population health and SARS-CoV-2. 
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Appendix 
 

Table 8 – Missing Data Points 

Date BRSV 
Percent 

Recovery 
Cumulative 

Cases 
Community 

Infection Rates 
Copies Per 

Day 

1/26/2020 EE, WB EE, WB EE, WB EE, WB EE, WB 

7/28/2020 EE, WB EE, WB N/A N/A N/A 

8/4/2020 EE, WB EE, WB N/A N/A N/A 

8/18/2020 EE, WB EE, WB N/A N/A N/A 

8/25/2020 EE, WB EE, WB N/A N/A N/A 

9/1/2020 EE, WB EE, WB N/A N/A N/A 

9/8/2020 EE, WB EE, WB N/A N/A N/A 

9/15/2020 EE, WB EE, WB N/A N/A N/A 

9/22/2020 EE, WB, YR EE, WB, YR YR YR N/A 

9/29/2020 EE, WB, YR EE, WB, YR N/A YR N/A 

10/6/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

10/13/2020 EE, WB, YR EE, WB, YR N/A N/A YR 

10/20/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

10/27/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

11/3/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

11/10/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

11/17/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

11/24/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

11/30/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

12/8/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

12/15/2020 EE, WB, YR EE, WB, YR N/A N/A N/A 

4/20/2021 N/A N/A N/A N/A BR 

5/11/2021 N/A N/A N/A N/A BR 

6/29/2021 N/A N/A EE, WB, BR EE, WB, BR N/A 

7/13/2021 N/A N/A EE, WB EE, WB N/A 

7/20/2021 EE EE EE EE, WB EE, WB 

8/10/2021 EE, WB EE, WB N/A N/A N/A 

EE – East End (Portland) 
YR – Yarmouth 
WB/GR – Westbrook/Gorham 
BR – Brunswick  
N/A – Not Applicable 

https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html.


 Despite attempts for remediation through site contact, the above table illustrates specific 

sampling dates from which key variable data was missing. Data missing for BRSV or percent recovery 

would result in no capability to calculate theoretical SARS-CoV-2 RNA recovery levels. Missing 

community infection rates would negate statistical utilization of that site during the date range – as the 

dependent variable is unknown. Lastly, missing copies per day were due to missing wastewater flow rate 

data that was necessary to perform these calculations. This also would result in the lost of a test variable 

and subsequent omittance from our analysis.  

 

Table 9 – Undetected PCR Recovery Samples 

Date City(s) Date  City(s) 

9/15/2020 EE 2/22/2021 EE 

9/22/2020 YR 6/8/2021 BR, YR 

9/29/2020 EE, WB/GR 6/15/2021 BR 

10/6/2020 EE, YR 6/22/2021 WB/GR 

10/20/2020 EE, YR 7/13/2021 WB/GR 

10/27/2020 YR 7/20/2021 EE 

EE – East End (Portland) 
YR – Yarmouth 
WB/GR – Westbrook/Gorham 
BR – Brunswick  
 

The above data reflects dates from which data points were not present for SARS-CoV-2 RNA PCR 

recovery. These values were shared as <762 copies/liter or simply 0. As previously mentioned, the data 

was corrected during cleaning to reflect the CDC’s recommendations to leverage half of 762 as a stand 

in for undetected samples.21  

 

 

 

 

 

 



Table 10 – Columns Omitted From Data Analysis 

Title Function 

Initial.vol.of.sample..ml..x  Test specific control measure to ensure consistency 

concentrate.vol..ul.  Test specific control measure to ensure consistency 

DNA.extraction.vol..ul.  Test specific control measure to ensure consistency 

elution.vol..ul.  Test specific control measure to ensure consistency 

vol.in.qPCR.rxn..ul.  Test specific control measure to ensure consistency 

ct.value  rt-PCR value from the submitted wastewater sample 

brsv.theoretical 
Test specific control value to calculate actual recovery based on 

experimental design  

town Duplicate data reflected under Name  

initial.vol.of.sample..ml..y Volume of sample received by wastewater treatment plant  

Cq.value 
Fluorescent value related to the number of cycles required to achieve 

threshold levels 

lower.value Lower limit of detection in copies/L  

upper.value  Upper limit of quantification in copies/L 

 

The above columns were removed from the R-Studio database to allow for ease of data 

manipulation and concentration on the variables of interest. 

 


