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High-Rate Analysis of Symmetric L-Channel
Multiple Description Coding

Guoqiang Zhang, Jan Østergaard, Member, IEEE, Janusz Klejsa, and W. Bastiaan Kleijn, Fellow, IEEE

Abstract—This paper studies the tight rate-distortion bound
for L-channel symmetric multiple-description coding of a scalar
Gaussian source with two levels of receivers. Each of the first-level
receivers obtains κ of the L descriptions (κ < L). The second-level
receiver obtains all L descriptions. We find that if the central
distortion (corresponding to the second-level receiver) is much
smaller than the side distortion (corresponding to the first-level
receivers), the product of a function of the side distortions and
the central distortion is asymptotically independent of the redun-
dancy between the descriptions. Using this property, we analyze
the asymptotic behavior of a practical multiple-description lattice
vector quantizer (MDLVQ). Our analysis includes the treatment
of the MDLVQ system from a new geometric viewpoint, which
results in an expression for the side distortions using the normal-
ized second moment of a sphere of higher dimensionality than
the quantization space. The expression of the distortion product
derived from the lower bound is then applied as a criterion to
assess the performance loss of the considered MDLVQ system.
In principle, the efficiency of other practical MD systems can
also be evaluated using the derived distortion product.

Index Terms—Multiple description coding, high-rate quantiza-
tion, lattice quantizer.

I. INTRODUCTION

MULTIPLE description coding (MDC) is an effective
joint source-channel coding method that addresses

the loss of packets commonly observed in packet networks.
Whereas early work on MDC mainly focused on the two-
channel (two-description) case (e.g., [1]–[3]), the general
multi-channel case has received increased attention in recent
years. The general case is relevant since with increasing
packet-loss rate the optimal MDC configuration contains an
increasingly large number of channels [4]. The main aim of
this paper is to derive a simple approximation of the rate-
distortion lower bound for the multi-channel case and to apply
the lower-bound approximation in the performance assessment
of practical MD systems.

Let us elaborate on the context of the problem in more
detail. L-channel multiple-description (MD) schemes are de-
signed for communication systems with L channels connecting
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the source and the destination. Each channel is assumed to
provide an independent means of transmission. A theoretical
challenge within the MD problem is to understand the per-
formance limits concerning the trade-off between transmission
rate and reconstruction quality. We refer to the distortion when
all L descriptions are received as the central distortion and
to distortions when fewer descriptions are received as side
distortions. The distortion corresponding to a single received
description is referred to as individual side distortion. In this
work, we focus on the symmetric MD scenario, which assumes
that the per-channel rates are the same across the L channels
and that the distortion only depends upon the number of
received descriptions.

The rate-distortion lower bound for the two-channel case
has been explored extensively (e.g., [1]–[3]). Ozarow [2]
constructed a tight lower bound for the specialized case of
a scalar Gaussian source and the squared-error distortion
criterion. The tight lower bound was further investigated in
[5] for a symmetric descriptions scenario. A useful high-rate
result was provided that the product of the central distortion
and the side distortion is asymptotically determined by the
transmission rate. The advantage of this property is that it gives
an asymptotically accurate approximation of the theoretical
lower bound. Thus, it serves as a simple means of relating
the performance of practical MD schemes to the lower bound
of [2]. The asymptotic behavior of the distortion product has
been utilized widely as a tool to assess the efficiency of
practical two-channel MD systems. For example, Vaisham-
payan et al. [6] proposed an MD lattice vector quantizer
(MDLVQ) that exploits the geometry of lattices. They showed
that, in the high-rate regime, the distortion product of the
quantizer behaves similarly to the bound and that the gap to the
theoretical bound vanishes with increasing dimensionality. The
present paper extends this work to the symmetric L-channel
case.

Before we describe the context of our work, we briefly
review the progress on deriving the rate-distortion lower bound
and on designing practical MD quantizers for the L-channel
case. The characterization of the (tight) rate-distortion bound
for a general L-channel MDC still remains an open problem.
Instead, the main focus has been on special cases, e.g., the
case where only a subset of the distortion constraints is of
concern [7]–[9]. In particular in [9], Wang and Viswanath
addressed the symmetric descriptions scenario with two levels
of receivers. Each of the first-level receivers obtains κ of the
L descriptions (κ < L). For a particular κ, the number of first-
level receivers is thus

(
L
κ

)
. The second-level receiver obtains

all the L descriptions. For the considered MD scenario, the
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tight lower bound has been derived for a vector Gaussian
source with the quadratic distortion criterion.

The design of practical L-channel MDLVQ systems was
addressed in [4], [10]. The index assignment was recognized
to play an important role in the system design. Besides the
index-assignment-based methods, several other L-channel MD
systems have been proposed in [11]–[13]. Unlike the two-
channel case, no effective tool has yet been developed for
evaluating the performance loss of practical L-channel MD
schemes. Therefore, this paper aims at filling this gap by
extending the work done in [5] for the two-channel case.

Formally, the present work provides an asymptotic analysis
of the tight rate-distortion lower bound derived in [9] for
symmetric scalar Gaussian MDC with two levels of receivers.
A simple approximation, which is asymptotically tight, of the
rate-distortion bound is derived and then utilized to assess the
efficiency of a practical MDLVQ scheme [10]. The perfor-
mance of the MDLVQ scheme [10] is investigated using a
new geometric viewpoint on the index assignment. It should be
noted that the derived lower-bound approximation is general,
and that its application is not limited to the practical system
of [10].

We now describe our contributions in more detail. The work
of [9] provides two different expressions for a tight lower
bound. We analyze one expression and find that if the central
distortion is much smaller than the side distortion, the product
of a function of the side distortion and the central distortion
is asymptotically independent of the redundancy among the
descriptions. The derived product is in fact an approximation
of the tight lower-bound.

The MD scheme [10] is selected as an example application
as it represents the state-of-the-art in the design of L-channel
MDLVQ schemes. For the considered scheme, we present a
new geometric evaluation of its performance. Suppose an n-
dimensional random vector with i.i.d. components is to be
encoded, and the mean squared error is considered. The geo-
metric analysis shows that the side distortions are characterized
by G(SLn−n), the normalized second moment of a sphere in
Ln − n dimensions, as compared to the fact that the central
distortion is characterized by G(Λ), the normalized second
moment of a lattice Λ used for quantization. The performance
loss of the scheme is evaluated by comparing the lower-bound
approximation (the distortion product) and that of the scheme.

The remainder of this paper is organized as follows. Section
II is devoted to the analysis of the MD lower bound. Both the
algebraic duality of the two lower-bound expressions and the
asymptotic behavior of the distortion product are addressed
in this section. The new performance analysis for MDLVQ
systems is presented in Section III. The performance loss of
the system is discussed w.r.t. the new formulation of the lower
bound. Conclusions are provided in section IV.

The notations used in this paper are summarized here.
Lower case letters denote scalars, and boldface lower case
letters denote vector random variables. Boldface upper case
letters are used to denote matrices. Specifically, we use I and
0 to denote the identity matrices and the all-zero matrices,
respectively. We also use H to denote all-one matrices. The
superscript t refers to the matrix transpose operation and | · |

refers to the determinant operation if not explicitly stated
otherwise. The notation ∥ · ∥ represents the l2 norm. The
logarithms are to base e, unless otherwise specified.

II. ANALYSIS OF MULTIPLE DESCRIPTION LOWER BOUND

In this section, we analyze the scalar Gaussian MD lower
bound on the sum-rate [9] when only two levels of receivers
are concerned. In the past few years, many researchers have
focused on characterizing the MD rate-distortion lower bound
for Gaussian sources [7]–[9]. One reason is that Gaussian
sources were shown to give the worst performance under first
and second moments [3], [8]. This property indicates that
knowing the performance limit for Gaussian sources aids in
the understanding of the performance for other sources.

In the analysis, we only consider the symmetric descriptions
scenario (i.e., the distortion constraint is only related to the
number of descriptions and the per-channel rates are the same).
Our main goal is to derive a simple and useful approximation
of the MD lower bound which facilitates the evaluation of the
efficiency of practical MD systems. In order to achieve this
goal, we study the asymptotic behavior of the lower bound
under a high-rate regime.

For the considered scenario, Wang and Viswanath in [9] pro-
vided two different expressions for the same tight lower bound
for encoding a vector Gaussian source, namely the inner-bound
expression and the outer-bound expression. We investigate the
inner-bound expression by specifying the information source
to be scalar Gaussian. The motivation for considering the
inner-bound expression (over the outer-bound expression) is
that the asymptotic analysis is more intuitive. In principle,
one can alternatively study the outer-bound expression, which
should produce the same result. In fact, the asymptotic analysis
in our conference paper [14] was performed on the outer-
bound expression for the special case of κ = 1.

In the following, we first introduce the inner-bound expres-
sion [9]. We then present the asymptotic analysis of the lower-
bound. A simple approximation of the lower bound is derived.

A. Preliminaries

Suppose the information source to be encoded is a zero-
mean random Gaussian variable x with variance σ2

x. We
study the symmetric MD problem with the central receiver
and

(
L
κ

)
first-level receivers each of which corresponds to a

particular case that a subset of κ of the L total descriptions are
received. Mathematically, this implies that only two distortion
constraints will be considered, one for the central receiver and
the other for the second-level receivers. Denote P as a subset
of the L descriptions, i.e., P ⊆ {1, . . . , L}. Considering the
minimum mean squared error (MMSE) criterion, we denote
the distortion constraints as d̄(L,κ), ∀P ⊆ {1, . . . , L}, |P | = κ
and d̄(L,L), where 0 < d̄(L,L) < d̄(L,κ) < σ2

x. Let R denote
the per-channel rate.

The inner-bound expression was actually derived by using a
Gaussian description scheme [7]–[9]. We now briefly introduce
the scheme for completeness. Let w1,. . . , wL be zero mean
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jointly Gaussian variables independent of x, with a positive-
definite covariance matrix denoted by

Kw =


σ2 −a . . . −a

−a σ2 . . .
...

...
. . . . . . −a

−a . . . −a σ2

 , (1)

where a ≥ 0 and Kw is positive definite. The L Gaussian
descriptions are then constructed as

ul = x+ wl l = 1, . . . , L. (2)

Let ρ = a/σ2. Using the fact that Kw is positive-definite,
we deduce that 1

L−1 > ρ ≥ 0. The parameter ρ is a
normalized correlation factor between the noise variables
wl, l = 1, . . . , L. It controls the redundancy between the
generated descriptions ul, l = 1, . . . , L, which will be ex-
plained in Subsection II-B. Note that Kw is symmetric over
wl, l = 1, . . . , L (i.e., the L Gaussian variables have identical
variances σ2 and identical correlations −a in-between.). This
is due to the fact that the symmetric descriptions scenario is
being considered. To facilitate the discussion in the following,
we use KP to denote the covariance matrix of all wl, l ∈ P ,
∀P ⊆ {1, . . . , L}. Thus, KP is of size |P | × |P |. Also
K{1,...,L} is equivalent to Kw. We present the inner-bound
expression for encoding x [9] in the form of a theorem.

Theorem 2.1 (Inner-bound expression): [9, Lemma 1 and
2, Theorem 2] If there is a matrix Kw ≻ 0 of the form (1)
such that mmse[x|ul, l ∈ P ] = d̄(L,κ) ∀P ⊂ {1, . . . , L}, |P | = κ

mmse[x|u1, . . . , uL] = d̄(L,L)

σ2
x ≥ a ≥ 0

,

(3)
then the optimal sum rate is given by

LR =
1

2
log

∣∣H ⊗ σ2
x +KP

∣∣L/κ

|Kw|
, P = {1, . . . , κ}, (4)

where ⊗ denotes the Kronecker product [15].

B. Asymptotic Tight Lower Bound to the Rate-Distortion
Function

From the appearance of the inner-bound expression (3)-(4),
it is difficult to recognize the trade-off directly between the
sum rate and the distortions. In this subsection, our goal is to
provide a better understanding of the relationship of the sum-
rate and the distortions by analyzing (3)-(4). In particular, a
simple approximation of the lower bound is derived by assum-
ing high-rate transmission, which will be used to evaluate a
practical MD system in Section III.

We now study the inner-bound expression (3)-(4). Suppose a
matrix Kw satisfies the condition (3). From estimation theory
[16], it can be shown that

d̄−1
(L,κ) = σ−2

x + (1, . . . , 1)K−1
P (1, . . . , 1)t

∀P ⊂ {1, . . . , L}, |P | = κ, (5)
d̄−1
(L,L) = σ−2

x + (1, . . . , 1)K−1
w (1, . . . , 1)t. (6)

By using Lemma A.2, (5)-(6) can be further simplified as

σ2 − (κ− 1)a = κ(d̄−1
(L,κ) − σ−2

x )−1, (7)

σ2 − (L− 1)a = L(d̄−1
(L,L) − σ−2

x )−1. (8)

(7)-(8) describes the relationship between {σ2, a} and the
distortions {d̄(L,κ), d̄(L,L)}. Correspondingly, the optimal sum
rate can be rewritten as

LR=
1

2
log

|H ⊗ σ2
x +K{1,...,κ}|L/κ

|Kw|
(9)

=
1

2
log

|κσ2
x + σ2 − (κ− 1)a|L/κ

|σ2 − (L− 1)a||σ2 + a|L/κ−1
(10)

=
1

2
log

(
κN (L− κ)N(L/κ−1)

LNL/κ
∣∣∣d̄−1

(L,L) − σ−2
x

∣∣∣−1

·

∣∣∣σ2
x + (d̄−1

(L,κ) − σ−2
x )−1

∣∣∣L/κ

∣∣∣(d̄−1
(L,κ) − σ−2

x )−1 − (d̄−1
(L,L) − σ−2

x )−1
∣∣∣L/κ−1

)
(11)

=
1

2
log

(
κN (L− κ)N(L/κ−1)|σ2

x|L/κ

LNL/κ|d̄(L,L)||d̄(L,κ) − d̄(L,L)|L/κ−1

·
|σ2

x − d̄(L,L)|L/κ

|σ2
x − d̄(L,κ)||σ2

x|L/κ−1

)
. (12)

In the above derivation, (10) follows from Lemma A.3, and
(11) follows from (7)-(8). Finally (12) follows from Lemma
A.1.

Equ. (12) completely characterizes the relationship between
the optimal transmission rate R and the associated distortions
{d̄(L,κ), d̄(L,L)}. However, the right hand side of (12) takes
a complicated form in terms of the distortions. It is highly
desirable to find a good but simple approximation of (12)
so that the trade-off between the transmission rate and the
distortions can be easily understood.

Before presenting the asymptotic analysis to approximate
(12), we first study how the central and side distortions change
with ρ for a fixed transmission rate. In other words, we take
the central and side distortions as functions of ρ given a
transmission rate. Suppose that ρ ∈ [0, 1/(L − 1)). From
Theorem 2.1, we obtain the following optimality condition
on σ2:

σ2
x/ρ ≥ σ2 > 0. (13)

Theorem 2.1 implies that for a Gaussian test channel defined
by ρ ∈ [0, 1/(L − 1)) and σ2 ∈ (0, σ2

x/ρ], the optimal sum
rate takes the form

LR =
1

2
log

[κσ2
x + σ2(1− (κ− 1)ρ)]L/κ

σ2L/κ[1− (L− 1)ρ](1 + ρ)L/κ−1
. (14)

We now fix R in (14), and determine a support region of ρ
within [0, 1/(L− 1)) such that (13) holds. It should be noted
that for the considered case, σ2 is a function of ρ. We consider
two extreme cases, one with ρ = 0 and one with ρ = σ2

x/σ
2.

It is easily seen that when ρ = 0, there exists a finite σ2
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satisfying both (13) and (14). For the case that ρ = σ2
x/σ

2, an
expression of ρ is derived from (14), which takes the form

ρ =
σ2
x

σ2
=

1− e−2LR

L− 1 + e−2LR
. (15)

With (15), it follows that the support region of ρ for a fixed
rate in (14) is Bρ(R) = [0, (1 − e−2LR)/(L − 1 + e−2LR)].
Further as the rate R increases, the length of the support region
increases and approaches 1/(L − 1). Based on (7)-(8), we
consider the derivatives of σ2(1−(κ−1)ρ) and σ2(1−(L−1)ρ)
w.r.t. ρ for ρ ∈ Bρ(R):

d

dρ
[σ2(1− (L− 1)ρ)] =

ρσ2(L− κ)(σ2 − σ2
x/ρ)

σ2
x(1 + ρ)

≤ 0, (16)

d

dρ
[σ2(1− (κ− 1)ρ)] =

κρ(σ2
x/ρ− σ2) + σ2(1 + ρ)

σ2
x(1− (L− 1)ρ)(1 + ρ)

·(L− κ)ρσ2

≥ 0. (17)

By combining (7)-(8) and (16)-(17), we conclude that with
increasing ρ, the corresponding central distortion decreases
and the side distortion d̄(L,κ) increases. In other words, the
information shared between the descriptions becomes less and
less as ρ increases. Particularly, for the extreme case that
ρ = σ2

x/σ
2, one can show from (7)-(8) and (15) that the

central distortion reaches the single-description lower bound,
i.e. d̄(L,L) = σ2

xe
−2LR. Correspondingly, the side distortion

d̄(L,κ) takes the form

d̄(L,κ) = σ2
x[(L− κ)/L+ (κ/L)e−2LR]. (18)

Note that when R → ∞, the side distortion in (18) approaches
a nonzero constant instead of 0:

d̄(L,κ) → [(L− κ)/L]σ2
x as R → ∞. (19)

We now consider deriving a simple approximation to (12).
To achieve this goal, we study under what conditions both
the central distortion d̄(L,L) and the side distortion d̄(L,κ)

approach 0 with increasing transmission rate. We first fix ρ
within [0, 1/(L − 1)). From (15), it is seen that as long as
R ≥ R0(ρ) = (1/2L) log[(1+ρ)/(1− (L−1)ρ)], there exists
σ2 such that (13)-(14) hold. Considering (14), it is immediate
that as the rate increases, σ2 will decrease. Based on (7), it
can be concluded that the side distortion d̄(L,κ) approaches
0 with increasing rate when the correlation factor ρ is fixed.
It follows that the central distortion also approaches 0. The
above analysis implies that the quantity in (12) satisfies

|σ2
x − d̄(L,L)|L/κ

|σ2
x − d̄(L,κ)||σ2

x|L/κ−1
→ 1 as R → ∞. (20)

Consequently, the rate-distortion equation (12) can be approx-
imated as

d̄(L,L)d̄
L/κ−1
(L,κ) [1− d̄(L,L)/d̄(L,κ)]

L/κ−1

≈ κ(L− κ)L/κ−1

LL/κ
σ2L/κ
x e−2LR. (21)

One observes that the rate-bound R0(ρ) is unbounded from
above as ρ approaches 1/(L−1). This property indicates that
the convergence speed of (21) is nonuniform for different ρ.
As ρ increases, higher rate is needed in (21) to obtain a good
approximation. (21) serves as an asymptotic tight lower-bound
approximating the lower-bound expression (3)-(4).

Note that the ratio d̄(L,L)/d̄(L,κ) is involved in (21). We
study the asymptotic behavior of the ratio for a fixed ρ. The
purpose is to further simplify the approximation (21). From (7)
and (8), the relation between d̄(L,κ) and d̄(L,L) is characterized
as

κ[1− (L− 1)ρ]

L[1− (κ− 1)ρ]
=

d̄(L,L)(σ
2
x − d̄(L,κ))

d̄(L,κ)(σ2
x − d̄(L,L))

. (22)

By using the fact that d̄(L,κ) and d̄(L,L) tend to 0 with
increasing rate for a fixed ρ, (22) is approximated as

d̄(L,L)/d̄(L,κ) → κ[1− (L− 1)ρ]/[L(1− (κ− 1)ρ)] (23)

when R → ∞. The approximation indicates that when ρ →
1/(L−1), the ratio d̄(L,L)/d̄(L,κ) tends to 0. In this situation,
(21) can be further simplified as

d̄(L,L)d̄
L/κ−1
(L,κ) ≈ κ(L− κ)L/κ−1L−L/κσ2L/κ

x e−2LR. (24)

The approximation of the distortion product made by (24) is
less accurate than (21). Let us now consider the gap between
the two expressions for the extreme case when minimization of
the side distortion d̄(L,κ) is of primary concern. This occurs
when ρ = 0. It is immediate from (23) that when ρ = 0,
the distortion ratio satisfies d̄(L,L)/d̄(L,κ) → (κ/L) asymptot-
ically in R. In this situation, the difference between (21) and
(24) is characterized by a multiplier factor (L−κ

L )L/κ−1. Thus,
as κ increases from 1 to L− 1, the approximation (24) of the
distortion product is increasingly accurate.

Fig. 1 shows the trade-off between the central and side
distortion for the case of κ = 1 and L = 3 for different rates.
For each rate, both the exact curve and the approximated curve
from (24) are plotted. It is seen that as the rate increases, the
approximation accuracy is increasing. The gap between the
two curves for the same rate appears only when either the
reduction of the central distortion or the side distortion d̄(3,1)
is of primary concern.
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Fig. 1. Graphic depiction of the relationship of d̄(3,3) and d̄(3,1) for different
rates. σ2

x is set to be 1. The per-channel rate R is measured in bits.
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The characterization of MD lower bound for two-channel
case was well studied in the past [3], [5], [17]. In [17], a
distortion product was shown to be achievable by using the
random coding argument

d̄(2,2)d̄(2,1)
(
1− d̄(2,2)/d̄(2,1)

)
≈ σ4

x

4
e−4R. (25)

For the case that d̄(2,2) ≪ d̄(2,1), it was shown in [5] that

d̄(2,2)d̄(2,1) ≈
σ4
x

4
e−4R, (26)

by analyzing the tight lower bound derived in [2]. The
approximation in (26) plays an important role in practice. It is
a widely used tool to measure the efficiency of MD schemes
[5], [6].

Our work forms a generalization of the relations (25) and
(26) by considering the multi-channel MD lower bound with
two levels of receivers. Similarly to that of (26), due to the
simplicity of (24), the characterization of the distortion product
can serve as a useful tool for assessing symmetric L-channel
MD systems. In the next section, a practical MDC system will
be evaluated based on (24).

III. EVALUATION OF MDLVQ SYSTEMS

Recently, practical L-channel MDLVQ systems have been
proposed, see e.g., [4], [10]. However, due to the complexity
of the MD lower bound [8], [9], it is inconvenient to compare
the bound directly with the performance of the developed MD
systems. In this section, we consider a particular MDLVQ
scheme [10] as an example to illustrate that the obtained
simple approximation (24) of the lower bound can be used
in the assessment of the scheme performance. It should be
noted that the application of the lower-bound approximation
(24) is not limited to the considered MD scheme.

For the MD system in [10], we provide a new analysis of
its performance from a geometric point of view. Let n denote
the dimensionality of the quantization space. We will show
that the side distortions are characterized by G(SLn−n) (the
normalized second moment of a sphere in Ln−n dimensions)
as compared to the quantity G(Sn) for the two-channel case
derived in [6]. We focus on the asymptotic behavior of the
system and assess the performance loss by comparing the
distortion product to (24).

It should be noted that in [10], an asymptotic analysis of the
system performance is also provided. However, the expression
for the side distortions in [10] takes a complicated form, and
does not have a geometric interpretation. Surprisingly, we
find by using algebra that our new expression for the side
distortions is equivalent to that obtained in [10].

Let us first describe the basic quantization architecture
for general MDLVQ systems. We then present the index
assignment scheme, which is the essential part of the work
in [10]. Finally we present a geometric-based analysis of the
system performance.

A. System Settings

Suppose the information source {x[m]} is an i.i.d. scalar
random process with probability density function (pdf) f .

We segment the data into n-dimensional vectors x =
(x[1], x[2], . . . , x[n])t having pdf fx, where

fx = Πn
i=1f(x[i]).

We are to encode x into L descriptions, which are sepa-
rately entropy-coded and transmitted to the receiving side.
An MD quantizer generally involves two steps, namely, a
central quantization step and an index assignment step. In
the first step, the source vector x is quantized by a central
quantizer Ac ⊂ Rn and we denote the quantization operation
by λc = Q(x). Information about the central point λc is then
embedded within L descriptions by use of an index assignment
scheme. More formally, an injective function α maps points
from the central quantizer Ac to a set of points in the L side
codebooks. Specifically,

(λ0, . . . ,λL−1) = α(λc), (27)

where λi ∈ Ai, i = 0, . . . , L − 1, and Ai is the ith side
codebook. Thus, the mapping function α essentially associates
every central point to an L-tuple (i.e., a set of codewords; one
from each side codebook). Let λ|L−1

0 represent an L-tuple
(λ0, . . . ,λL−1). For simplicity, we denote each component of
α as αi, i = 0, . . . , L − 1, i.e. λi = αi(λc). The distortions
are measured using the mean squared-error criterion. Under
the mapping function α, the union of central quantizer cells
related to one side codeword is not necessarily convex, which
is different from a conventional single-description quantizer.
Informally speaking, the design objective of a good MD
quantizer is to make the union of central cells corresponding
to a side codeword as compact as possible so as to minimize
the side distortions.

The key idea of an MDLVQ design is to impose geometrical
structures onto the central quantizer and the L side codebooks.
The design of the mapping function α can then be significantly
simplified. Lattices are very structured. Moreover, the use of
lattices for quantization can also be motivated from high-
rate quantization theory. The pdf of the source under a high
transmission rate is approximately constant over any particular
quantization cell. Gersho [18] conjectured that the optimal
entropy constrained high-rate vector quantizer for a uniform
distribution over a convex bounded set has a partition whose
quantization cells are congruent with some tessellating convex
polytope. This establishes the basis for using lattices in vector
quantization systems. In the following, we will use the term
lattice codebook, when referring to a quantizer codebook
defined either by a lattice or a translated lattice.

Let Ac be a lattice Λc with a fundamental region of volume
ν = det(Λc). The L side codebooks are defined to be a clean
sublattice Λs of Λc with index K (i.e., the index K refers to
the structure that each clean sublattice cell contains K central
lattice points. see [19]), i.e. Ai = Λs, i = 0, . . . , L− 1. Thus,
all side codebooks are identical. The Voronoi cell of a lattice
point λ ∈ Λ is defined as

V (λ) =
{
x :∥ x− λ ∥2≤∥ x− λ′ ∥2,λ′ ∈ Λ

}
, (28)

where ties are broken in a predefined manner. We use sub-
scripts to distinguish Voronoi cells of different lattices, e.g.,
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Vc(λc) refers to the Voronoi cell of the central lattice point λc.
The definition of Λs implies that there are K central lattice
points within each Voronoi cell Vs(λs) of Λs. Due to the
regularity of Λc and Λs, one can first label the K central
points within the fundamental cell Vs(0). The other central
points can then be labelled simply by translating the already
labelled L-tuples in Vs(0), i.e.

α(λs + λc) = α(λc) + λs, λs ∈ Λs,λc ∈ Vs(0). (29)

The index K is a trade-off factor to control the redundancy
between the L descriptions. One difficulty of using (29) is to
carefully select the K L-tuples for the central points in Vs(0)
to avoid the reuse of L-tuples. See [6] and [10] for successful
applications of (29) for the two-channel and L-channel cases,
respectively.

At the receiver side, if all the L descriptions are received, the
inverse labeling function α−1 uniquely determines the central
point. Due to description erasures, it may happen that the
decoder receives only a subset of the L descriptions. Suppose
κ of L descriptions are received. Let L(L,κ) denote the set
consisting of all the possible configurations. Each element
l ∈ L(L,κ) specifies a particular combination of the received
descriptions, denoted by {λlj , j = 1, 2, . . . , κ}. There are
|L(L,κ)| =

(
L
κ

)
such combinations. In principle, there should

be
(
L
κ

)
decoding subsystems for a particular κ. To address the

decoding complexity, a simple decoding rule was proposed
in [4]. When 0 < κ < L, the source x is reconstructed by
averaging the received descriptions, i.e.

x̂ =
1

κ

κ∑
j=1

λlj . (30)

Note that this decoding process is inconsistent. If all L
descriptions are received, then the inverse mapping α−1 is
used instead of averaging. By allowing this decoding incon-
sistency, the design complexity of the index assignment can be
significantly reduced [4]. We use d(L,κ) to denote the (mean)
distortion when κ out of L descriptions are received.

The MD schemes based on (30) essentially take the min-
imization of the central distortion and the individual side
distortions (i.e., any one out of L descriptions being received)
as primary concern. The averaging operation (30) reduces the
reconstruction accuracy for 1 < κ < L but not for κ = 1.
Thus, the derived lower-bound approximation (24) for the case
that κ = 1 is a proper figure of merit for evaluating these MD
schemes.

Generally speaking, once the side codebooks are fixed,
the transmission rate per channel is determined [6]. On the
other hand, fixing the central quantizer specifies the central
distortion d(L,L). The side distortions d(L,κ), 0 < κ < L, are
closely related to the labeling function α. How to specify α, or
equivalently, propose a good index assignment that minimizes
the side distortions, is the main work of designing practical
MDLVQ systems.

B. Index Assignment of a MDLVQ

In this subsection, we briefly describe the index assignment
scheme of the MDLVQ in [10]. The simplicity of the method

enables us to trace the geometrical properties of the index
assignment.

We first introduce a so-called scaled sublattice Λs/L [10],
which is defined as

Λs/L = {λs/L| λs/L = λs/L,λs ∈ Λs}. (31)

It is immediate that Λs ⊂ Λs/L. Denote ΛL
s as the L-ary

Cartesian product of Λs, i.e., ΛL
s = Λs × Λs × · · · × Λs. It

can be shown that the centroid (average value) of any L-tuple
λ|L−1

0 from ΛL
s is a scaled sublattice point. An onto mapping

function β from ΛL
s to Λs/L can then defined as

β(λ|L−1
0 ) =

1

L

L−1∑
i=0

λi. (32)

Each lattice point of Λs/L is associated with many L-tuples.
The scaled sublattice Λs/L can be interpreted as a centroid
distribution of the L-tuples over the space Rn. Thus, by
exploiting (32), the β function provides a unified way to
arrange the L-tuples used for index assignment. Note that the
L-tuples have different “spread”, i.e. some are more compact
than others. A distance criterion is defined to measure the
spread of an L-tuple [10], that is f

J(λ|L−1
0 ) =

L−1∑
i=0

∥ β(λ|L−1
0 )− λi ∥2 . (33)

We refer to this criterion as a spread measurement. By
exploiting (33), the L-tuple candidates that have the same
centroid can then be ordered. Informally, L-tuples with smaller
spread are favored in the index assignment.
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Fig. 2. Three-description index assignment for the lattice A2 with index
K = 73. Points of Λc, Λs and Λs/3 are denoted by ·, • and ×, respectively.
The Voronoi cell Vs(0) is indicated by the big hexagon in the figure.

The index assignment of the K central points in Vs(0)
proceeds in two steps. First, the central points are quantized
to the nearest points of Λs/L. It was shown in [10] that if
Λs is a clean sublattice of Λc, no central-lattice points lie on
the cell boundary of Λs/L. This establishes that each central
point is associated with a scaled sublattice point Λs/L without
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ambiguity. As Λs/L is obtained by scaling Λs by a factor L, the
fundamental Voronoi cell Vs(0) contains Ln different scaled
sublattice points up to translations

{
λs − λ′

s : λs,λ
′
s ∈ Λs

}
.

Second, we label the central points within each scaled
sublattice Voronoi cell Vs/L(λs/L), λs/L ∈ Vs(0). The central
points are assigned to the L-tuples that have the centroid λs/L

and have a small spread as defined in (33). With this, when
a subset of the descriptions is lost, the averaging operation in
(30) results in a reconstruction point close to the corresponding
central point. Fig. 2 displays the index assignment for the
three-channel case for an A2 lattice. By applying (29), all
central points can be labeled systematically. This approach
guarantees that no L-tuple is reused, thus assuring that the
function α is a one-to-one mapping.

C. The Geometry of L-tuples
In this section, we revisit the index assignment and expose

the geometry of the L-tuples to facilitate the performance
analysis of the MD scheme. Note that each L-tuple is of
dimension Ln (in integer space). The requirement to avoid the
reusage of L-tuples in (29) essentially imposes an additional
constraint on the L-tuple candidates, which will be shown to
reduce the dimensionality of the valid candidates to Ln − n.
For the index assignment considered, the constraint is realized
by the restriction of the centroids of the L-tuples. Furthermore,
the sublattice Λs has its lattice points uniformly distributed
over space. This regularity implicitly imposes a structure to
the valid L-tuple (of dimension Ln − n) candidates. We
find that the new structure can be described by a lattice in
Ln − n dimensional space. Each valid L-tuple is a point of
this new lattice. The reason to study the new lattice is to better
understand the index assignment.

We now consider deriving the new lattice structure. We
study the spread measurement for a particular L-tuple. Sup-
pose the generator matrix of the sublattice Λs is γG, where
G satisfies the condition that the matrix M = GGt is an
integer matrix. The parameter γ determines the Voronoi cell
size of Λs. A lattice generated with such matrix G is called
an integral lattice [19, page 47]. The volume of a Voronoi cell
Vs(λs) is related to M by [19, page 4]

Kν =
√
γ2n|M |. (34)

Let us denote the L side lattice codebooks by

Λi =
{
zt
iγG| ∀zi ∈ Zn

}
, i = 0, 1, . . . , L− 1, (35)

where zi specifies the coordinates in the i-th codebook. From
(31), the scaled sublattice takes the form of

Λs/L =

{
1

L
ytγG| ∀y ∈ Zn

}
. (36)

Using (35) and (36), the spread measurement of an L-tuple
λ|L−1

0 in (33) can then be reformulated as

J(λ|L−1
0 ) =

L−1∑
i=0

∥ zt
iγG− 1

L
ytγG ∥2 , (37)

subject to
1

L
ytγG =

1

L

L−1∑
i=0

zt
iγG.

After some algebra, it can be shown that (37) can be further
simplified to

J(λ|L−1
0 ) = γ2(ž − y̌)tM̌(ž − y̌), (38)

where

M̌ =


2 1 1 . . . 1
1 2 1 . . . 1

1 1 2
. . .

...
...

...
. . . . . . 1

1 1 . . . 1 2

⊗M , (39)

ž = [ zt
0 zt

1 . . . zt
L−2 ]t, (40)

y̌ =
1

L
[ yt yt . . . yt ]t. (41)

The matrix before ⊗ is of size (L − 1) × (L − 1), which is
the Gram matrix of an AL−1 lattice [19]. As the Gram matrix
of a lattice is always positive definite, M̌ is thus a positive
definite matrix with dimensionality (L − 1)n. This implies
that there always exists a matrix Ǧ such that M̌ = ǦǦ

t
.

Regardless of the scalar γ2, the expression for J(λL−1
0 ) in

(38) can be associated with a new integral lattice Λtuple with
a translation s = Ǧ

t
y̌. The generator matrix of Λtuple is Ǧ

(note that an integral lattice only requires that its Gram matrix
has integer entries, not its generator matrix [19, page 47]).
We refer to the new lattice as a tuple lattice since each lattice
point is associated with an L-tuple candidate. The introduction
of the tuple lattice helps to visualize the distribution of the
valid L-tuple candidates. Intuitively, the L-tuple candidates are
distributed as lattice points within Ln−n dimensional balls. It
should be noted that the recognition of the new lattice is due
to the regularity of the index assignment in (29) and the side
lattice codebooks. The expression in (38) can be interpreted as
the squared l2 norm of a point of Λtuple−s up to a multiplying
factor. The search for good L-tuples is essentially reduced to
selecting the points of Λtuple−s with small squared l2 norms.

Since we relate L-tuples to lattice points of Λtuple, we
need to study the density of the lattice points in Ln − n
dimensional balls. This is closely related to the side distortions.
It is desirable to design a tuple lattice such that its lattice
points are as compact as possible. The characterization of the
compactness of an integral lattice was given by [6], which we
present in the following proposition.

Proposition 3.1: Let ν′ be the volume of a Voronoi cell
of an integral lattice Λ in Rn. Denote Vn as the volume
of a sphere of unit radius in Rn. The number S(m) of
lattice points in the first m shells (the mth shell refers to a
spherical shell with the square of the radius being m.) of the
lattice Λ is approximately S(m) = Vnm

n
2

ν′ (1 + o(1)), where
limm→∞ o(1) = 0.

Proposition 3.1 provides a simple approximation for the
number of points within the first m shells of a lattice. It
further indicates that the density of the lattice points is fully
characterized by the volume ν′ of a Voronoi cell. A small ν′

corresponds to a desirable high density of the lattice points.
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In our work, the lattice in question is Λtuple, of which the
volume of a Voronoi cell is given by√

|M̌ | =
√

Ln|M |L−1. (42)

It can be seen that both L and the lattice structure (captured
by M ) affects the compactness of the lattice points.

Note that the centroid of the L-tuple λ|L−1
0 (corresponding

to a scaled sublattice point) determines the translation vector
s. By observing (38) and (41), one can see that when a
component of the coordinate vector y is modified by adding
a multiple of L, the translated lattice geometry Λtuple − s
remains the same. This is because the relative arrangement
of the scaled sublattice points and Λs exhibits periodicity
over space. In total, there are Ln different translated lattice
geometries, one for each lattice point λs/L within Vs(0).

D. Asymptotic Analytic Performance

Based on the newly discovered tuple lattice, we present an
asymptotic analysis of the index-assignment scheme proposed
in [10]. In particular, we show that the side distortions are
characterized by the normalized second moment G(SLn−n)
of a sphere of dimensionality Ln− n. Finally we show that
our expression for the side distortions is equivalent to that of
[10].

We begin by considering the transmission rate. Let Rc be
the central rate required to address the central quantizer Ac.
Let H(·) denote the entropy of a discrete random variable. By
exploiting high-rate quantization theory, Rc = H(Q(x))/n
can be approximated as

Rc ≈ h(f)− (1/n) log(ν), (43)

where h(f) is the differential entropy of the source. The trans-
mission rate R per description of the MD system can be eval-
uated by considering the quantity H(αi(Q(x)))/n. Strictly
speaking, the rate R is regulated by the index-assignment.
However, again by assuming high-rate quantization, it can be
shown [6] that R has a simple expression, given as

R ≈ h(f)− (1/n) log(Kν). (44)

Note that the term Kν is simply the volume of the fundamental
region Vs(0) of the sublattice Λs. Thus, R is essentially
determined by the side lattice codebook. From (43) and (44),
it is seen that the relation between Rc and R is

R ≈ Rc − (1/n) log(K). (45)

Since the total rate in the MD system is LR = LRc −
(L/n) log(K), the rate overhead is given by (L − 1)Rc −
(L/n) log(K). It is seen that the index K indeed controls the
redundancy.

Next we study the central distortion d(L,L) and side distor-
tions d(L,κ), 0 < κ < L. The central distortion (per dimension)
is determined by the central codebook Λc, which satisfies

d(L,L) ≈ G(Λc)ν
2/n, (46)

where G(Λc) represents the normalized second moment of
the central lattice. The regularity of the labelling function α
leads to relatively simple expressions of the side distortions.
We will use d

(l)
(L,κ) to denote the distortion for a particular

configuration l from the set of configurations where κ out of
L descriptions are received, i.e. l ∈ L(L,κ). By applying (30),
d
(l)
(L,κ) can be expressed as

d
(l)
(L,κ) =

1

n

∑
λc∈Λc

∫
Vc(λc)

fx(x) ∥ x− 1

κ

κ∑
i=1

λli ∥2 dx. (47)

Thus, the (mean) side distortion d(L,κ) can be expressed in
terms of d(l)(L,κ) as

d(L,κ) =
1(
L
κ

) ∑
l∈L(L,κ)

d
(l)
(L,κ). (48)

Under the high rate assumption, one can show that the side
distortion can be approximated as [4]

d(L,κ) ≈ d(L,L)

+
1(
L
κ

) 1

Kn

∑
λc∈Vs(0)

∑
l∈L(L,κ)

[
∥ λc −

1

κ

κ∑
i=1

λli ∥2
]
.(49)

The second term in (49) can be simplified further as shown in
[10], which leads to a new expression for the side distortion,
i.e.,

d(L,κ) ≈ d(L,L) + d1 +
L− κ

Lκ(L− 1)
d2 (50)

where

d1 =
1

Kn

∑
λc∈Vs(0)

∥ λc − λ̄(λc) ∥2 , (51)

d2 =
1

Kn

∑
λc∈Vs(0)

L−1∑
i=0

∥ λi(λc)− λ̄(λc) ∥2 , (52)

where the L-tuple assigned to λc is {λi(λc)}L−1
i=0 and

λ̄(λc) =
1
L

∑L−1
j=0 λj(λc). Note that the side distortion is not

dependent on the source pdf. It is fully determined by the
lattice structure and the index assignment.

We consider approximating d1 and d2, respectively. From
(33) it follows that d2 is essentially the summation of the
spread measurements. As the L-tuples are searched and ar-
ranged w.r.t. their centroids described by Λs/L, d2 can be
further decomposed with regard to the scaled sublattice points.
Note that the points of Λc and Λs/L are uniformly distributed
over the space. We assume that each Voronoi cell Vs/L(λs/L)
contains approximately K/Ln central lattice points. The as-
sumption holds when the index value K is large. We will use
the term λ|L−1

0 (i), i = 0, 1, . . . ,K/Ln − 1 when referring
to the K/Ln L-tuples used to label the central points within
a Voronoi cell Vs/L(λs/L) and we note that β(λ|L−1

0 (i)) =
λs/L. The sum of the spread measurements of these K/Ln

L-tuples can be parameterized by studying Λtuple. When K
is sufficiently large, the K/Ln selected points of Λtuple − s
can be approximated by the K/Ln selected points of Λtuple
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when computing the sum of the spread measurements. The
analysis can be simplified by only considering the situation
that β(λ|K−1

0 (i)) = 0, i = 0, 1, . . . ,K/Ln − 1. Denote the
theta series [19] of Λtuple by ΘΛtuple

(z) =
∑∞

j=0 Bjq
j , where

q = eiz . The coefficient Bj indicates the number of points in
the j-th shell of the lattice. Thus, we can write

K/Ln−1∑
i=0

J(λ|L−1
0 (i)) ≈ γ2

E∑
j=0

jBj , (53)

where we assume that K/Ln ≈
∑E

j=0 Bj . The parameter E
indicates the maximum shell index. The main difficulty in
deriving the expression for d2 is within parameterizing the
theta series of Λtuple.

Let the lattice in Proposition 3.1 be Λtuple. Then the index
K is related to the shell index E in (53) by

K/Ln ≈ Vn(L−1)E
n(L−1)

2 /

√
|M̌ |, (54)

where Vn(L−1) represents the volume of a sphere with unit
radius in n(L − 1) dimensional space as stated in Propo-
sition 3.1. The term

∑E
j=0 jBj can also be approximated

using a simple expression [6]. Specifically, using the relation
S(m) =

∑m
j=0 Bj and Abel’s summation formula, it can be

shown that
E∑

j=0

jBj = ES(E)−
E−1∑
j=0

S(j). (55)

After some algebra, one can show that (53) can be approxi-
mated as

K/Ln−1∑
i=0

J(λ|L−1
0 (i)) ≈ γ2 |M̌ |

1
(L−1)n

V
2

(L−1)n

(L−1)n

· (L− 1)n

(L− 1)n+ 2

·L−n− 2
L−1 ·K1+ 2

(L−1)n . (56)

From (34) and (42) we obtain |M̌ | = Ln(Kν
γn )2(L−1). It is

known that V(L−1)n can be expressed in terms of G(SLn−n),
the normalized second moment of a sphere in (L − 1)n
dimensions, by

V
2

(L−1)n

(L−1)n =
1

G(SLn−n)((L− 1)n+ 2)
. (57)

From (56) and (57) and the expression of M̌ , the distortion
d2 takes the form

d2 ≈ (L− 1)L− 1
L−1 (Kν)

2
nG(SLn−n)K

2
(L−1)n (58)

From (51) and (52), it is seen that d1 and d2 are similar. Thus,
a similar analysis can be performed on d1, resulting in

d1 ≈ L−2(Kν)
2
nG(Sn). (59)

The side distortion d(L,κ) is thus fully specified. Note from
(46), (58)-(59) that as K increases, d2 dominates both
d(L,L) and d1. Thus, the side distortion d(L,κ) can be further
approximated as

d(L,κ) ≈
L− κ

κ
L− L

L−1 (Kν)
2
nG(SLn−n)K

2
(L−1)n (60)

as K → ∞.
Finally we present the result of [10] regarding the side

distortions. We would like to compare (60) with the expression
derived in [10]. Formally, the approximation ď(L,κ) of the side
distortions is in a form of [10]:

ď(L,κ) ≈
L− κ

κ
L− L

L−1 (Kν)
2
nG(Sn)ΦL−1,nK

2
(L−1)n , (61)

where

ΦL−1,n =

(
n+ 2

Ln− n+ 2

)
Γ(Ln−n

2 + 1)
2

Ln−n

Γ(n2 + 1)
2
n

. (62)

Note that the only difference between (60) and (61) is the
term G(Sn)ΦL−1,n. By using the identity that G(Sn) =

1
(n+2)πΓ (n/2 + 1)

2/n, it is immediate that the two expres-
sions (60) and (61) are identical. This result confirms that our
geometric analysis is correct.

E. Performance-Loss Evaluation

In this subsection we first study the performance-loss of
the index-assignment scheme due to dimensionality. We then
characterize the gap between the lower-bound approximation
(24) for κ = 1 and that of the index-assignment scheme. We
find that as the quantization dimensionality n → ∞, the gap
approaches zero.

We study the relationship between rates and distortions.
First, the central distortion can be expressed in terms of Rc as

d(L,L) ≈ G(Λc)e
2(h(f)−Rc). (63)

Let K = enb(L−1)R, b ∈ (0, 1). It follows from (45) that
Rc ≈ R[1 + b(L− 1)]. On substituting the expression for Rc

into (63) we arrive at

d(L,L) ≈ G(Λc)e
2h(f)−2R[1+b(L−1)]. (64)

By utilizing (44) and the expression for K, (60) can be
rewritten as

d(L,κ) ≈
L− κ

κ
L− L

L−1G(SLn−n)e
2h(f)−2R(1−b). (65)

The parameter b controls the amount of redundant information
between the L descriptions. Interestingly, the side distortions
d(L,κ), 1 ≤ κ < K are characterized by G(SLn−n), the
normalized second moment of a sphere in Ln−n dimensions.
The product of the distortions over all 1 ≤ i ≤ L takes the
form of

L∏
i=1

d(L,i) ≈ L−LG(Λc)[G(SLn−n)]
L−1e2Lh(f)−2RL. (66)

It is seen that the parameter b is not involved in the product,
which is consistent with the two-channel results in [6].

Considering the side distortion d(L,κ) in (65), when κ
increases from 1 to L − 1, the side distortion is reduced by
a factor L−κ

κ . However, the distortion reduction from L − 1
to L exhibits a singularity. This might be due to the decoding
inconsistency in the system.
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It is known that a good lattice such that limn→∞ G(Λ) =
G(S∞) exists [20], which simultaneously guarantees that the
minimum central and side distortions are achieved. This allows
us to study the distortion loss due to dimensionality. From (64),
the loss for d(L,L) can be expressed as

lim
R→∞

d(L,L)(R,n)/d(L,L)(R,∞) = 2πeG(Λc).

This confirms that the loss in central distortion is lattice depen-
dent, but channel-number independent. By considering (65),
the side distortion loss takes the form of

lim
R→∞

d(L,κ)(R,n)/d(L,κ)(R,∞) = 2πeG(SLn−n),

where 1 ≤ κ < L. Thus, on the other hand, the side distortion
loss is channel-number dependent, but lattice-independent.
This is due to the approximation we introduced for simple
characterization of the side distortions. Again, a singularity
appears from κ = L − 1 to L. Fig. 3 displays the distortion
loss vs dimensionality for different numbers of channels.
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Fig. 3. The central and side distortion loss as a function of the lattice
dimensionality n. The loss in central distortion is measured by using the best
known lattices for quantization [19].

Finally we assess the performance loss of the MDLVQ
scheme w.r.t. the lower-bound approximation. In particular,
we specify κ to be 1 in the lower-bound approximation
(24). As explained in subsection III-B, the main reason for
setting κ = 1 is that the considered MD scheme exploits
the averaging operation (30) for decoding. We consider a
memoryless Gaussian source with variance σ2

x. In this case,
h(f) = 1

2 log(2πeσ
2
x) = 1

2 log(σ
2
x/G(S∞)). From (64) and

(65), the distortion product dL−1
(L,1)d(L,L) is given by

dL−1
(L,1)d(L,L) ≈

[
(L− 1)L−1L−Lσ2L

x e−2LR G(Λc)

G(S∞)

·
(
G(SLn−n)

G(S∞)

)L−1
]

. (67)

Note that the expression of the side distortion in (65) is
derived by assuming a high index value K, implying that

d(L,1) ≫ d(L,L). We will therefore be using the lower bound
approximation (24) for comparison. One observes that the per-
formance gap between (67) and (24) is only related to G(Λc)
and G(SLn−n). This implies that when d(L,1) ≫ d(L,L), the
performance of the MDLVQ converges to the theoretical lower
bound as n → ∞.

IV. CONCLUSION

We presented a simple lower-bound approximation for L-
channel symmetric MD problem with two levels of receivers
(one with the central receiver and the other with the receivers
receiving a particular number of descriptions) for a scalar
Gaussian source. We found that if the central distortion is
much smaller than the side distortion, the optimal MD system
under high-rate assumption has the property that the product
of a function of the side distortion and the central distortion
is asymptotically independent of the redundancy between
the descriptions. This property can be utilized as a tool to
evaluate the efficiency of practical MD systems. We used it
to investigate the coding efficiency of an MDLVQ system and
observed that the quantization method yields a coder that is
asymptotically optimal with the dimensionality and rate.

APPENDIX A
MATRIX LEMMAS

In this appendix, we present some useful matrix lemmas
that will be used in the paper.

Lemma A.1 ( [21], Theorem 2.5): Let A be an m × m
nonsingular matrix and B be an n × n nonsingular matrix
and let C and D be m×n and n×m matrices, respectively.
If the matrix A+CBD is nonsingular, then

(A+BCD)−1 = A−1−A−1C(B−1+DA−1C)−1DA−1.

Lemma A.2 ( [8], Lemma 3): Let Kw be given by (1).
Then

(1, . . . , 1)K−1
w (1, . . . , 1)t = L[σ2 − (L− 1)a]−1. (68)

Lemma A.3: Let Kw be given by (1). Then

|Kw| = |σ2 − (L− 1)a||σ2 + a|L−1. (69)

Proof:

|Kw|
= |diag(σ2 + a, . . . , σ2 + a)− (1, . . . , 1)ta(1, . . . , 1)|
= |IL − (a, . . . , a)t · ((σ2 + a)−1, . . . , (σ2 + a)−1)|

·|σ2 + a|L
(a)
= |1− ((σ2 + a)−1, . . . , (σ2 + a)−1) · (a, . . . , a)t|

·|σ2 + a|L

= |σ2 + a|L−1|σ2 − (L− 1)a|.

In the above derivations, (a) follows from the determinant
identity |Im −Am×nBn×m| = |In −Bn×mAm×n|.



11

REFERENCES

[1] A. A. E. Gamal and T. M. Cover, “Achievable Rates for Multiple
Descriptions,” IEEE Trans. Inform. Th., vol. 28, no. 6, pp. 851–857, 1982.

[2] L. Ozarow, “On a Source-Coding Problem with Two Chnnels and Three
Receivers,” Bell system Technical Journal, vol. 59, no. 10, pp. 1909–1921,
1980.

[3] R. Zamir, “Gaussian Codes and Shannon Bounds for Multiple Descrip-
tions,” IEEE Trans. Inform. Theory, vol. 45, no. 7, pp. 2629–2636, 1999.

[4] J. Østergaard, J. Jensen, and R. Heusdens, “n-Channel Entropy-
Constrained Multiple-Description Lattice Vector Quantization,” IEEE
Trans. Inform. Th., vol. 52, no. 5, pp. 1956–1973, 2006.

[5] V. A. Vaishampayan and J.-C. Batllo, “Asymptotic Analysis of Multiple
Description Quantizers,” IEEE Trans. Inform. Th., vol. 44, no. 1, pp.
278–284, 1998.

[6] V. A. Vaishampayan, N. Sloane, and S. Servetto, “Multiple Description
Vector Quantization with Lattice Codebooks: Design and Analysis,” IEEE
Trans. Inform. Theory, vol. 47, no. 5, pp. 1718–1734, 2001.

[7] R. Venkataramani, G. Kramer, and V. K. Goyal, “Multiple Description
Coding with Many Channels,” IEEE Trans. Inform. Theory, vol. 49, no. 9,
pp. 2106–2114, 2003.

[8] H. Wang and P. Viswanath, “Vector Gaussian Multiple Description With
Individual and Central Receivers,” IEEE Trans. Inform. Theory, vol. 53,
no. 6, pp. 2133–2153, 2007.

[9] ——, “Vector Gaussian Multiple Description with Two Levels of Re-
ceivers,” IEEE Trans. Inform. Theory, vol. 55, no. 1, pp. 401–410, 2009.

[10] X. Huang and X. Wu, “Optimal Design of Multiple Description Lattice
Vector Quantizers,” submitted to IEEE Trans. Inform. Theory, 2006.

[11] J. Chen, C. Tian, T. Berger, and S. S. Hemami, “Mutiple Description
Quantization via Gram-Schmidt Orthogonalization,” IEEE Trans. Inform.
Theory, vol. 52, no. 12, pp. 5197–5217, 2006.

[12] X. Zhang, J. Chen, S. B. Wicker, and T. Berger, “Successive Coding
in Multiuser Information Theory,” IEEE Trans. Inform. Theory, vol. 53,
no. 6, pp. 2246–2254, 2007.

[13] J. Østergaard and R. Zamir, “Multiple Descriptions by Dithered Delta-
Sigma Quantization,” IEEE Trans. Inform. Theory, vol. 55, no. 10, pp.
4661–4675, 2009.

[14] G. Zhang, J. Klejsa, and W. B. Kleijn, “Analysis of K-Channel Multiple
Description Quantization,” in Data Compression Conference, 2009, pp.
53–62.

[15] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 1990.

[16] T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation, 1st ed. New
Jersey: Prentice Hall, 2000.

[17] V. A. Vaishampayan and J.-C. Batllo, “On Reducing Granular Distortion
in Multiple Description Quantization,” in Proc. IEEE Int. Symp. Informa-
tion Thoery, 1998.

[18] A. Gersho, “Asymptotically Optimal Block Quantization,” IEEE Trans.
Inf. Theory, vol. 25, no. 4, pp. 373–380, 1979.

[19] J. H. Conway and N. J. A. Sloane, Sphere Packing, Lattces and Groups,
3rd ed. Springer, 1998.

[20] U. Erez, S. Litsyn, and R. Zamir, “Latttices Which are Good for
(Almost) Everything,” IEEE. Trans. Inf. Theory, vol. 51, no. 10, pp. 3401–
3416, 2005.

[21] F. Zhang, Matrix Theory: Basic Results and Techniques. Springer,
1999.

PLACE
PHOTO
HERE

Guoqiang Zhang (S’06) received his B.S. degree
from University of Science and Technology of China
(USTC), Hefei, China, in 2003, his M.Phil. degree
from the University of Hong Kong, Pokfulam, Hong
Kong, in 2006, and his Ph.D. degree in electrical en-
gineering from KTH-Royal Institute of Technology,
Stockholm, Sweden, in 2010. His current research
interests include multi-terminal information theory,
source coding and sensor networks.

PLACE
PHOTO
HERE

Jan Østergaard (S’98 – M’99) received the
M.Sc. degree in electrical engineering from Aal-
borg University, Aalborg, Denmark, in 1999 and
the Ph.D. degree (cum laude) in electrical engi-
neering from Delft University of Technology, Delft,
The Netherlands, in 2007. From 1999 to 2002, he
worked as an R&D engineer at ETI A/S, Aalborg,
Denmark, and from 2002 to 2003, he worked as
an R&D engineer at ETI Inc., Virginia, United
States. Between September 2007 and June 2008, he
worked as a post-doctoral researcher in the Centre

for Complex Dynamic Systems and Control, School of Electrical Engineering
and Computer Science, The University of Newcastle, NSW, Australia. From
June 2008 to March 2011, he worked as a post-doctoral researcher at Aalborg
University, Aalborg, Denmark. He has also been a visiting researcher at Tel
Aviv University, Tel Aviv, Israel, and at Universidad Técnica Federico Santa
Marı́a, Valparaı́so, Chile. He has received a Danish Independent Research
Council′s Young Researcher′s Award and a fellowship from the Danish
Research Council for Technology and Production Sciences. Dr. Østergaard
is currently an Associate Professor at Aalborg University, Aalborg, Denmark.

PLACE
PHOTO
HERE

Janusz Klejsa (S’05) received the M.Sc. degree
in electronics and telecommunications from the
Gdansk University of Technology, Poland, in 2005.
He joined the Sound and Image Processing Lab at
the Royal Institute of Technology (KTH), Stock-
holm, Sweden, in 2006, where he is currently work-
ing towards the Ph.D. degree. His current research
interests include quantizer design, multiple descrip-
tion coding and audio coding applications.

PLACE
PHOTO
HERE

Bastiaan Kleijn is Professor of Electronic Engi-
neering at Victoria University of Wellington, New
Zealand since 2010. He is also a Professor at the
School of Electrical Engineering at KTH (the Royal
Institute of Technology) in Stockholm, Sweden,
which he joined in 1996 and where he was until re-
cently Head of the Sound and Image Processing Lab-
oratory. He holds a Ph.D. in Electrical Engineering
from Delft University of Technology (Netherlands),
a Ph.D. in Soil Science and an M.S. in Physics,
both from the University of California, Riverside,

and an M.S. in Electrical Engineering from Stanford University. He worked
on speech processing at AT&T Bell Laboratories from 1984 to 1996. He was
a founder of Global IP Solutions, which was acquired by Google in 2010. He
is on the Editorial Board of Signal Processing and has been on the Boards of
IEEE Transactions of Speech and Audio Processing, IEEE Signal Processing
Letters, IEEE Signal Processing Magazine, and the EURASIP Journal of
Applied Signal Processing. He has been a member of several IEEE technical
committees, and a Technical Chair of EUSIPCO 2010, ICASSP-99, the 1997
and 1999 IEEE Speech Coding Workshops, and a General Chair of the 1999
IEEE Signal Processing for Multimedia Workshop. He is a Fellow of the
IEEE.


