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An achievable data-rate region subject to a
stationary performance constraint for LTI plants

Eduardo I. Silva, Milan S. Derpich and Jan Østergaard

Abstract— This note studies the performance of control systems
subject to average data-rate limits. We focus on a situation where
a noisy LTI system has been designed assuming transparent
feedback and, due to implementation constraints, a source coding
scheme (with unity signal transfer function) has to be deployed
in the feedback path. For this situation, and by focusing on a
specific source coding scheme, we give a closed-form upper bound
on the minimal average data-rate that allows one to attain a
given performance level. Instrumental to our main result is the
explicit solution of a related (and previously unsolved) signal-
to-noise ratio minimization problem, subject to a closed loop
performance constraint.

Index Terms— Networked control systems, average data-rate,
signal-to-noise ratio, perfect reconstruction.

I. INTRODUCTION

NETWORKED control systems (NCSs) have recently re-
ceived much attention in the literature (see, e.g., the

papers in the special issue [1]). Within the NCS framework,
a key issue is the characterization of the interplay between
control objectives and communication constraints. This note
focuses on NCSs subject to average data-rate constraints in
the feedback path.

If stability is the only control objective, then the results
in [2] provide a complete characterization of the minimum
average data-rate that is compatible with the mean square
stabilization of noisy LTI plants. This result establishes a key
fundamental limitation when the problem of interest is mean-
square stabilization. (We refer to [3] for a thorough discussion
of this result.) On the other hand, when performance bounds
subject to average data-rate constraints are sought, fewer
results are available. It is known that, as the average data-
rate approaches the minimum for stability, the performance
becomes arbitrarily poor when disturbances are present [2],
[3]. This holds irrespective of how the coder, decoder and
controller are chosen. However, these results are based upon
performance bounds that have not been shown to be tight in
general [3].

An interesting performance-related result was presented in
[4], where it is shown that, for noiseless LTI plants, one can
essentially recover the best non-networked LQR performance
with data-rates arbitrarily close to the minimum average data-
rate for stabilization. Other results valid in the noiseless or
bounded noise cases can be found in, e.g., [5]–[7]. The case
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of unbounded support noise sources has been treated in [8]
and [9], with an emphasis on stabilization and on achieving
stationary state distributions.

Other relevant work dealing with unbounded support noise
sources include [10] and [3]. Those works establish conditions
for separation and certainty equivalence in the context of
quadratic stochastic problems for fully observed plants, when
data-rate constraints are present in the feedback path. Provided
the encoder has a recursive structure, certainty equivalence
and a quasi-separation principle hold [3]. Although this is
an important result, [3] does not give a practical charac-
terization of the optimal encoding policies. The results re-
ported in [10] present a similar drawback. That work presents
performance related results in terms of the sequential rate-
distortion function, which is difficult to compute in general.
Moreover, even for the cases where an expression for such
function is available, it is not clear whether the sequential
rate-distortion function is operationally tight [10, Section IV-
C]. Other interesting work includes [11], where non-linear
stochastic control problems over noisy channels are studied,
but only implicit functional characterizations of the optimal
control policies are presented.

In this note, we focus on a situation where a noisy LTI
system has been designed assuming transparent feedback and,
due to implementation constraints, a source coding scheme
with unit signal transfer function has to be deployed in the
feedback path. Such a situation arises, for example, when
an LTI controller has been already designed for a given LTI
plant without taking data-rate constraints into account. In such
setting, one can aim at finding, at a second design stage,
a source coding scheme so as to minimize the effects of
communication constraints, while preserving (some of) the
desired features of the non-networked controller design. We
believe that, whilst conservative and suboptimal, such a design
procedure has practical appeal.

The main contribution of this note is to provide, for the
situation described above, a closed-form upper bound on the
minimal average data-rate that allows one to attain a given
performance level (as measured by the stationary variance
of an error signal). To that end, we focus on the class
of source coding scheme based on entropy coded dithered
quantizers [12] presented in [13].1 For the considered class of
source coding schemes, average data-rate constraints can be
enforced by imposing signal-to-noise ratio (SNR) constraints
in a related control system that uses an additive noise channel.

1The work [13] does not study the interplay between average data-rates
and closed loop performance.
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This key result allows us to present our main contribution as
an immediate consequence of the solution to a constrained
SNR minimization problem. To our knowledge, our results are
the first ones to provide a closed-form characterization of the
interplay between average data-rates and performance when
unbounded support noise sources are considered. Our work
builds upon the results presented in [14], [15].

This note is organized as follows: Section II states the
problem of interest. Section III studies the interplay between
SNR constraints and performance for the considered NCS.
These results are then used in Section IV to present our main
result. Section V presents an example, and Section VI draws
conclusions.

Notation: E {·} denotes the expectation operator. If x is
a random process, and provided the limit exists, σ2

x ,
limk→∞ E

{
(x(k)− E {x(k)})T (x(k)− E {x(k)})}. XH de-

notes the conjugate transpose of the matrix X . RH2 is the set
of all strictly proper and stable real rational transfer functions,
and U∞ is the set of all stable, biproper and minimum phase
real rational transfer functions. The usual norm in L2 is written
||·||2 [16]. Unless otherwise stated, all signals and systems
have arbitrary dimensions.

II. PROBLEM DEFINITION

A. Setup

Consider the NCS of Figure 1, where P is a proper real
rational transfer function that models a given LTI system, d
is a disturbance, e is a signal whose stationary variance σ2

e

measures closed loop performance, y is a signal available for
measurement, and u is an input of P . We partition P as

P ,
[
P11 P12

P21 P22

]
,

[
e
y

]
=

[
P11 P12

P21 P22

] [
d
u

]

and, for simplicity, we assume both P12 and P21 to be non-
zero, and P22 to be SISO and strictly proper. The latter
assumption implies that both y and u are scalar signals.
However, d and e are allowed to have arbitrary dimensions.
We also assume that the initial state of P , say xo, is a second
order random variable, and that d is a second order wide sense
stationary process with spectral factor Ωd ∈ U∞.

In our setup, P has been designed so as to achieve satisfac-
tory performance when u = y. Accordingly, we assume that
the feedback system of Figure 1 is internally stable and well-
posed in the absence of communication constraints, i.e., when
u = y. However, the feedback path comprises an error-free
digital channel and thus the quantization (i.e., source encoding
[17]) of y becomes mandatory. This task is carried out by an
encoder that outputs the sequence of binary symbols sc, which
are then mapped into the input u by a decoder. Next section
describes the class of encoder and decoders considered in this
note.

B. The source coding scheme

We consider a standard feedback quantization scheme,
where the digital channel input is generated by an entropy
coded dithered quantizer (ECDQ) [12] that works associated

channel
decoder encoderu

d

y

P

e

sc

Fig. 1. NCS closed over a digital channel.

with causal LTI filters. At the encoder side, the channel input
sc (a binary word) is generated via

sc(k) = Hk(s(k), dh(k)), (1a)
s(k) = Q(v(k) + dh(k)), (1b)

v = Ay − Fq, (1c)
q = s− (v + dh), (1d)

where dh is a real-valued random dither signal assumed to be
available at both the encoder and decoder sides, Q : R→ A ,
{i∆; i ∈ Z} corresponds to a uniform quantizer with step size
∆ > 0, Hk : A × R → Ac(k) corresponds to the mapping
describing an entropy-coder (EC; also called loss-less encoder
[18, Ch.5]) whose output symbol is chosen according to the
conditional distribution of s(k), given dh(k), the set Ac(k)
is, for every k, a set of prefix free binary words [18], and
A ∈ U∞ and F ∈ RH2 are given SISO LTI filters with
deterministic initial states. On the other hand, the decoder
output u is obtained via

u = A−1(ŝ− dh), ŝ(k) = H−1
k (sc(k), dh(k)), (2)

where H−1
k : Ac(k) × R → A corresponds to the mapping

describing the entropy-decoder (ED) that is complementary to
the EC at the encoder side, and all other symbols are as before.
In (2), we implicitly used the fact that, since the feedback
channel is error-free, sc is available at the decoder side. It is
also worth noting that, since EC-ED pairs are lossless [18],

H−1
k (Hk(s(k), dh(k)), dh(k)) = s(k) (3)

for every s(k), dh(k) and every k ∈ N0. We thus also have
that ŝ = s.

Remark 1: The source coding scheme described above has
a common source of randomness at both the sending and
receiving ends: the dither. In principle, this requires the dither
to be separately communicated to both channel ends. In
practice, however, one can use synchronized pseudo-random
number generators initialized with the same seeds.

For future reference, we denote by H the set of all mapping
sequences {(Hk,H−1

k ); k ∈ N0}, with Hk and H−1
k described

as above, and satisfying (3).
We denote the expected length of the symbol sc(k), mea-

sured in nats (1 nat equals ln 2 bits), by R(i) and define the
average data-rate of the source coding scheme as

R , lim
k→∞

1
k

k−1∑

i=0

R(i).

The proposed source coding scheme has several key prop-
erties, as described below:

Theorem 1: Consider the NCS of Figure 1 where the
encoder and decoder are described by (1) and (2), respectively.
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Under the assumptions of Section II-A, and if ∆ < ∞ and
the dither dh is i.i.d., independent of (xo, d), and uniformly
distributed on (−∆/2,∆/2), then:
(a) The quantization noise q in (1d) is i.i.d., independent of

(xo, d), and uniformly distributed on (−∆/2,∆/2).
(b) The NCS is mean-square stable (MSS), i.e., the state of

the system has a covariance bounded at all times that, in
addition, converges as time grows unbounded.

(c) There exists an EC-ED pair such that the average data-rate
of the coding scheme satisfies

R <
1
2

ln (1 + γ) +
1
2

ln
(

2πe

12

)
+ ln 2, (4)

where

γ , σ2
v

∆2/12
, (5)

and σ2
v is the stationary variance of v in (1c). If, in

addition, (xo, d) is Gaussian, then R ≥ 1
2 ln (1 + γ) for

any EC-ED pair.
Proof: Parts (a) and (c) are consequences of our as-

sumptions, Theorems 1 and 2 in [12], Theorem 1 in [19],
Corollary 5.5 in [15] and the fact that practical scalar EC-ED
pairs achieve rates that are within ln 2 from the absolute lower
bound given by entropy [18, Ch.5] (see detailed discussion
in [13], [15]). Part (b) readily follows from Part (a) and our
assumptions.

By virtue of Part (a) of Theorem 1, and provided the dither
dh is properly chosen, the analysis of the NCS of Figure 1 is
greatly simplified when the proposed coding scheme is used.
Indeed, it immediately follows that

u = A−1(q + v), v = Ay − Fq, (6)

where q is an i.i.d. sequence of uniformly distributed random
variables, independent of both the external disturbance d
and the initial plant state xo. This implies that the transfer
function from y to u is unity, and that quantization effects
are introduced in an additive manner. In turn, Part (b) ensures
that the MSS of the NCS is trivially guaranteed. Finally, Part
(c) gives an upper bound on the average data-rate across the
considered source coding scheme in terms of the stationary
SNR γ (see (5)), and two additional terms. The first one
appears because ECDQs generate a quantization noise that is
uniformly distributed and not Gaussian [19], and the second
one because practical EC-ED pairs are not perfectly efficient
[18].

The discussion above shows that the proposed coding
scheme allows one to address control problems subject to
average data-rate limits by focusing on a simpler situation
where additive noise and SNR constraints are present (see, e.g.,
[20], [21]). This stands in contrast to the literature reviewed in
the introduction, and enables one to use well-known analysis
and design tools to deal with average-data-rate-limited control
systems.

Motivated by the above, we will next characterize the
minimal stationary SNR γ that is needed to attain a given
performance level, as measured by σ2

e . Then, in Section IV, we
will use those results and (4) to immediately derive an upper

bound on the minimal average data-rate required to achieve
the same performance level.

III. MINIMAL SNR SUBJECT TO A PERFORMANCE
CONSTRAINT

The main result of this section is a closed-form expression
for the minimal SNR γ that allows one to achieve a certain
performance level D. Accordingly, we define, for D ∈ R+,

γD , inf
∆∈R+

A∈U∞, F∈RH2

σ2
e≤D

γ. (7)

Whilst an appropriate choice for the EC-ED pair is nec-
essary for the average data-rate of the source coding scheme
to satisfy (4), such choice does not influence γ nor σ2

e (see
Part (a) of Theorem 1 and (6)), as long as the dither is
properly chosen (which we henceforth assume is the case).
Thus, consistent with the setup described in Section II, we
consider in (7) that the quantization step ∆ and the filters A
and F are the only decision variables.

In order to characterize γD we define

S , (1− P22)−1, Tde , P11 + P12SP21,

Y , |S|2
√

PH
12P12P21ΩdΩH

d PH
21 .

Theorem 2: Consider the setup and assumptions of Theo-
rem 1. If ||TdeΩd||22 < D < ∞, then

γD = h(λD)

, exp


 1

π

∫ π

−π

ln




√
Y 2

λD
+ |S|2 +

Y√
λD


dω


− 1,

and λD ∈ R+ is the unique positive real satisfying

D = g(λD)

, ||TdeΩd||22 +
1
2π

∫ π

−π

λDY

2
(√

Y 2 + λD |S|2 + Y

)dω.

On the contrary, if D < ||TdeΩd||22 then the problem of finding
γD is unfeasible, whereas achieving D = ||TdeΩd||22 requires
an infinite SNR γ.

Proof: Define σ2
q , E

{
q(k)2

}
= ∆2/12. Under our

assumptions, it follows that

γ = σ−2
q ||ASP21Ωd||22 + ||1− S + SF ||22 , (8)

σ2
e = ||TdeΩd||22 + σ2

q

∣∣∣∣P12SA−1(1− F )
∣∣∣∣2

2
. (9)

Using a contradiction based argument, it follows from (8)
and (9) that the constraint σ2

e ≤ D is active at the optimum
(note that this holds even if only A or F have to be chosen,
and the remaining transfer function is fixed). Thus, (9) implies
that at the optimum (i.e., when γ is minimized as in (7))

σ2
q =

D − ||TdeΩd||22
||P12SA−1(1− F )||22

, (10)
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and also that (use (8) and the fact that ||1 + X||22 = 1+ ||X||22
for any X ∈ RH2)

γ =

∣∣∣∣P12SA−1(1− F )
∣∣∣∣2

2
||ASP21Ωd||22

D − ||TdeΩd||22
+ ||S(1− F )||22 − 1 , J1(A). (11)

It is also immediate to see from (9) that, if D < ||TdeΩd||22,
then the problem of interest is unfeasible. Also, (8) and the
fact that our assumptions guarantee P12SA−1(1−F ) 6≡ 0 and
ASP21Ωd 6≡ 0, imply that no finite γ yields D = ||TdeΩd||22.
We now proceed to prove our main claim and thus consider
D > ||TdeΩd||22. We will first assume that F is given, then
that A is given and, at the final stage, we will use the results
so obtained to prove the theorem.
• Consider a given F ∈ RH2 and recall the definition of

J1(A) in (11). Disregarding the constraint A ∈ U∞, the
Cauchy-Schwartz inequality implies that J1 is minimized
by the idealized choice A = AF , where

|AF |2 = |(1− F )|
√

PH
12P12

P21ΩdΩH
d PH

21

. (12)

Thus, if F ∈ RH2 is given, then for γ to be arbitrarily
close to its infimal value while satisfying σ2

e ≤ D (actu-
ally, while satisfying σ2

e = D), it is necessary to pick σ2
q

as in (10) and A ∈ U∞ such that |J1(A)− J1(AF )| < ε1,
for a sufficiently small ε1 > 0 (standard approximation
results guarantee that this is always possible; see details
in [22]).

• Consider a given A ∈ U∞. We have from (11) that, at
the optimum,

γ = α−1
A

∣∣∣∣P12SA−1(1− F )
∣∣∣∣2

2

+ ||S(1− F )||22 − 1 , J2(F ), (13)

where

αA , D − ||TdeΩd||22
||ASP21Ωd||22

. (14)

Define γA , infF∈RH2 J2(F ) (see (13)). Lemma 1 in
[23] and Lemma 10 on p. 171 in [16] immediately imply
that

γA = exp

(
1
2π

∫ π

−π

ln

(
|S|2

(
1 +

PH
12P12

αA |A|2
))

dω

)
− 1

and that the idealized optimal F , say FA, satisfies

|1− FA|2 =
γA + 1

|S|2
(
1 + P H

12P12

αA|A|2
) . (15)

Moreover, if σ2
A denotes the optimal value of σ2

q when
A is given, then (10) and (14) yield

σ2
A =

αA ||ASP21Ωd||22
||P12SA−1(1− FA)||22

. (16)

We thus conclude that, if A ∈ U∞ is given, then for γ to
be arbitrarily close to its infimal value while satisfying

σ2
e ≤ D (actually, while satisfying σ2

e = D), it is
necessary to pick σ2

q = σ2
A (see (16)) and an F ∈ RH2

such that |J2(F )− J2(FA)| < ε2 for a sufficiently small
ε2 > 0 (it follows from Lemma 1 in [23] and Lemma 10
on p. 171 in [16] that this is always possible).

• Now, we consider σ2
q and both A and F as design

variables. At the joint optimum, the idealized optimal
filters AF and FA in (12) and (15) must be reciprocally
optimal. That is, (12) and (14)–(16) necessarily imply that
the optimal noise variance σ2

q and the idealized jointly
optimal filters, say σ2

D, AD and FD, satisfy

|AD|2 = |(1− FD)|
√

PH
12P12

P21ΩdΩH
d PH

21

, (17)

|1− FD|2 =
γD + 1

|S|2
(
1 + P H

12P12

αD|AD|2
) (18)

σ2
D =

αD ||ADSP21Ωd||22∣∣∣∣P12SA−1
D (1− FD)

∣∣∣∣2
2

= αD, (19)

where

γD = exp
(

1
2π

∫ π

−π

ln Mdω

)
− 1, (20)

M , |S|2
(

1 +
PH

12P12

αD |AD|2
)

, (21)

αD , D − ||TdeΩd||22
||ADSP21Ωd||22

. (22)

Note that the last equality in (19) follows using (17)
and (18). Also note that our assumptions, and the fact
that D > ||TdeΩd||22, guarantee that αD ∈ R+.
Solving (17) and (18) for |1− FD| (and discarding a
negative solution) we conclude that

|1− FD| = 2(γD + 1)αD√
Y 2 + 4(γD + 1)α2

D |S|2 + Y
. (23)

Define λD , 4(γD + 1)α2
D. Using (17) and (23) in (20)

and (22) yields γD = h(λD) with λD being such that
g(λD) = D. Since αD ∈ R+, the first term on the right
hand side of (20) is always finite and thus λD ∈ R+.
The uniqueness of λD and the fact that it always exists
for any D > ||TdeΩd||22 stems from the properties of h
and g. Indeed, it can be easily shown that h is strictly
decreasing, limλ→0 h(λ) = ∞, and limλ→∞ h(λ) =(∏np

i=1 |pi|2
)
−1, where pi is the ith unstable pole of P22,

whilst g is strictly increasing, limλ→0 g(λ) = ||TdeΩd||22,
and limλ→∞ g(λ) = ∞.
Since it is always possible to approximate AD and FD

with A ∈ U∞ and F ∈ RH2 to any desired level of
accuracy (see details in [22]), the proof is thus completed.
(The above suggests a procedure to find filters A, F and
noise variance σ2

q (equivalently, quantization step ∆) so
as to achieve γ ≤ γD + ε3 while achieving σ2

e ≤ D
(actually, while achieving σ2

e = D), ∀ε3 > 0: First, solve
g(λ) = D to obtain λD and thus γD and αD. Choose
A ∈ U∞, F ∈ RH2 so as to approximate with sufficient
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degree of accuracy the right hand sides of (17) and (23).
Finally, choose σ2

q = σ2
D (see (19)).)

Theorem 2 gives a closed-form expression for the minimal
SNR that allows one to achieve a given performance level
D in the NCS of Figure 1, under the constraint of having
a unity transfer function from y to u. Our result is given in
terms of the scalar parameter λD that satisfies g(λD) = D.
Since g is monotone (see proof of Theorem 2), finding λD

is a simple numerical problem that can be addressed using
standard algorithms.

Remark 2: Theorem 2 connects the minimal SNR needed
to achieve a given performance level, and the corresponding
performance level, by means of two equations linked by the
scalar parameter λD. This solution is akin to the “water filling
equations” in rate-distortion theory [24], which relate optimal
performance to the minimal data-rate needed to achieve it.

Remark 3: It follows from the proof of Theorem 2 that
the minimal SNR compatible with MSS (i.e., the infimum of
γ in (7) when the constraint on σ2

e is removed), say γ∞, is
given by γ∞ =

(∏np

i=1 |pi|2
)
−1, where pi is the ith unstable

pole of P22. This provides an indirect proof of Theorem 9 in
[13].

Remark 4: Theorem 2 can be adapted to show that the min-
imal value of σ2

e that is achievable when the SNR γ is upper
bounded by Γ > γ∞, say [σ2

e ]Γ, is given by [σ2
e ]Γ = g(λΓ),

where λΓ satisfies h(λΓ) = Γ. This observation solves the
problem formulated in [23], without using the approximations
made there, and extends [25] to more general architectures.

IV. AN UPPER BOUND ON THE MINIMAL AVERAGE
DATA-RATE SUBJECT TO A PERFORMANCE CONSTRAINT

This section presents the main result of this note: A closed-
form upper bound on the minimal average data-rate that
guarantees a given performance level in the NCS of Figure 1.

We define, for D ∈ R+,

RD , inf
∆∈R+, {(Hk,H−1

k ); k∈N0}∈H
A∈U∞, F∈RH2

σ2
e≤D

R.

In contrast to the problem in (7), the EC-ED pair does play a
role in this case (see Part (c) of Theorem 1).

Corollary 1: Consider the setup and assumptions of Theo-
rem 1. If ||TdeΩd||22 < D < ∞, then

RD <
1
2

ln (1 + γD) +
1
2

ln
(

2πe

12

)
+ ln 2, (24)

where γD is characterized in Theorem 2. If, in addition, (xo, d)
is Gaussian, then RD ≥ 1

2 ln (1 + γD). On the other hand, if
D < ||TdeΩd||22 then the problem of finding RD is unfeasible,
whereas achieving D = ||TdeΩd||22 requires an infinite average
data-rate.

Proof: Immediate from Theorems 1 and 2.
Corollary 1 provides, for the NCS and source coding

schemes considered in this note, a closed-form expression
for an upper bound on the average data-rate that is required
to attain a prescribed performance level. As discussed in
the introduction, we believe that this results corresponds to

the first closed-form characterization (although given as an
upper bound only) of the interplay between average data-rates
and closed loop performance when unbounded support noise
sources are considered.

In the Gaussian case, and within the class of considered
source coding schemes, the bound provided by Corollary 1
is tight up to 1

2 ln
(

2πe
12

)
+ ln 2 nats (1.254 bits) per sample.

However, even in that case, our bound may be conservative
when compared to the (still unknown) minimal average data-
rate needed to attain a given performance level in the NCS
of Figure 1, when causal but otherwise unconstrained source
coding schemes are employed. Moreover, even within the class
of source coding schemes based on dithered quantizers and LTI
filters, our result is conservative since it assumes unity transfer
function from y to u. We have dropped this assumption in [26].
However, no closed-form solutions seem to be computable in
that case.

We end this section by noting that there exists a source
coding scheme, within the proposed class, such that the
average data-rate across it is guaranteed to satisfy the bound
in (24):

Corollary 2: Consider the setup and assumptions of Theo-
rem 1. Then, there exists a finite quantization step ∆ > 0, an
EC-ED pair using Huffman coding [18], and filters A and F
such that σ2

e ≤ D and R < 1
2 ln (1 + γD) + 1

2 ln
(

2πe
12

)
+ ln 2.

Proof: Define K , 1
2 ln

(
2πe
12

)
+ ln 2. The proof of

Theorem 2 guarantees, ∀ε3 > 0, the existence of A ∈ U∞,
F ∈ RH2, and ∆ > 0 such that σ2

e ≤ D and γ ≤ γD + ε3.
Thus, there exist suitable A,F and ∆ such that, ∀ε4 > 0,
σ2

e ≤ D and 1
2 ln (1 + γ) < 1

2 ln (1 + γD) + ε4. For the same
choices, Part (c) of Theorem 1 guarantees that there exists
η > 0 such that R + η < 1

2 ln (1 + γ) + K and, therefore,
R < 1

2 ln (1 + γD) + K + ε4 − η. The result follows upon
choosing ε4 small enough so that η > ε4 holds.

Remark 5: Interestingly, if the EC-ED pair has memory,
i.e., if it is allowed to exploit the complete history of the
quantizer output symbols s and of the dither values dh, then
the bound given by Corollary 1 cannot be improved upon [13,
Section V.B]. Thus, given our approach, the use of an EC-
ED pair with memory does not allow one to establish better
bounds on RD (see also remarks after Theorem 2 in [27]).

Remark 6: Using the observation made in Remark 3, it
follows that the simple source coding scheme considered here
allows one to achieve MSS in the NCS of Figure 1 at average
data-rates that are guaranteed to be within 1

2 ln
(

2πe
12

)
+ ln 2

nats (1.254 bits) per sample away from the absolute minimal
rate for MSS identified in [2] (see [13] for additional discus-
sions).

Remark 7: Using the results in Remark 4, it is possible
to adapt Corollary 1 so as to characterize the best achievable
performance subject to a given average data-rate constraint in
the considered NCS.

V. AN EXAMPLE

Consider a SISO LTI plant with control input u, output y
and input disturbance d, where

y =
−0.75(z − 2)
z2 − 2z + 2

(u + d).
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Assume that d is unit variance Gaussian white noise, and
that the initial state of the plant is also Gaussian. This plant
can be stabilized with (perfect) unity output feedback. We
computed the right hand side of (24) for several values of
D > ||TdeΩd||22 = 4.09, and performed simulations using an
actual ECDQ (we ran twenty 104 samples long realizations
for each value of D). The ECDQ was simulated by adding
uniform random numbers to v prior to quantization, and
then subtracting them after decoding. However, the EC-ED
pair worked conditioned upon only a (uniformly) quantized
version of the true dither values. The results are presented in
Figure 2.2 In that figure, “Measured rate” corresponds to the
average, over all realizations, of the number of bits per sample
transmitted from encoder to decoder, and “Meas. cond. entropy
of quantizer output” is an empirical estimate of the conditional
entropy of the quantizer output s, given the quantized dither
values.

The measured rates are well below the upper bound pro-
vided by Corollary 1. This suggests that the bound is rather
loose, which is consistent with the fact that it is based upon
worst case scenarios. Indeed, the gap between the measured
rate (with conditioning) and the lower bound on RD presented
in Figure 2 is about 0.49 bit per sample, which is smaller than
the worst case gap given by 1

2 ln
(

2πe
12

)
+ ln 2 nat per sample,

i.e., 1.254 bit per sample. Since the measured conditional
entropy of the quantizer output is about 0.26 bit per sample
above the lower bound, it follows that the measured gap is
composed of about 0.23 bit per sample due to the inefficiency
of Huffman coding (considerably lower than the worst case
rate loss of 1 bit per sample), and 0.26 bits per sample due
to the fact that the quantization noise in the ECDQ is not
Gaussian, but uniform [19], and due to the fact that the EC-
ED pair works conditioned upon quantized dither values only.

As expected, the average data-rate required to achieve a per-
formance arbitrarily close to the non-networked performance
(i.e., σ2

e = ||TdeΩd||22 = 4.09) grows unbounded. However, it
is interesting to see that it suffices to use less than 6 (resp. 4)
bits per sample (on average) to achieve a performance level
that is within 1% (resp. 10%) from ||TdeΩd||22.

Finally, we note that our bounds on RD converge rapidly
when D → ∞, which is also consistent with the behavior
of the measured rates. Hence, the performance loss incurred
when forcing the average data-rate to be lower than the upper
bound provided by Corollary 1 when D →∞ is rather modest
in this case.

VI. CONCLUSIONS

This note has studied a situation where an LTI system is
designed assuming transparent feedback and, at a later design
stage, a unity signal transfer function source coding scheme
is to be utilized so as to minimize the effects of data-rate
limits on closed loop performance. For this situation, we
have explicitly characterized an upper bound on the minimal
average data-rate that is needed to achieve a given performance
level.

2In Figure 2, the number of quantized dither values is indicated in each
case. As expected, conditioning the EC-ED pair on dither values, even though
quantized, reduces the average data-rate.
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Fig. 2. Bounds on the minimal average data-rate required to attain a given
performance level.

Future work should focus on extending the results of this
note to cases where causal but otherwise unconstrained source
coding schemes are used. The study of more general control
architectures, and the joint design of controllers and source
coding schemes, is part of another paper by the authors [26].
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