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Real-Time Perceptual Moving-Horizon
Multiple-Description Audio Coding

Jan Østergaard∗, Member, IEEE, Daniel E. Quevedo,Member, IEEE, and Jesper Jensen

Abstract—A novel scheme for perceptual coding of audio for
robust and real-time communication is designed and analyzed.
As an alternative to PCM, DPCM, and more general noise-
shaping converters, we propose to use psychoacoustically op-
timized noise-shaping quantizers based on the moving-horizon
principle. In moving-horizon quantization, a few samples look-
ahead is allowed at the encoder, which makes it possible to better
shape the quantization noise and thereby reduce the resulting
distortion over what is possible with conventional noise-shaping
techniques. It is first shown that significant gains over linear
PCM can be obtained without introducing a delay and without
requiring post-processing at the decoder, i.e., the encoded samples
can be stored as e.g., 16-bit linear PCM on CD-ROMs, and
played out on standards-compliant CD players. We then show
that multiple-description coding can be combined with moving-
horizon quantization in order to combat possible erasures on the
wireless link without introducing additional delays.

Index Terms—Low delay source coding, multiple-description
coding, moving horizon quantization, perceptual audio coding

I. I NTRODUCTION

The aim of this work is to encode and communicate audio
from a remote encoder (e.g., cell phone, ipod, CD player,
radio, tv, concert) over a wireless link to a low power listening
device e.g., a pair of hearing aids or head phones. Contrary to
other applications, it is here essential that the latency iskept
low. Low latency is important, primarily in order to avoid
distortions due to a direct path acoustic signal reaching the
eardrums earlier than the hearing aid output [1], but also
to facilitate lip synchronicity in a real-time communication
situation. We will assume that the tolerable latency is a few
samples or at most up to a few milliseconds.

Due to battery and space considerations, the computational
complexity at the decoder should be kept low. Thus, besides
the cost of operating the antenna(s) and the demodulators, we
only allow simple scaling and table look-up operations in this
work.

Since the persons wearing the listening devices are often not
spatially stationary, the transmission channel is susceptible to
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fading. In order to guarantee a certain degree of robustness
towards channel impairments without introducing additional
delay, we rely on multiple-description (MD) coding [2]. We
consider the general case ofn channels. For example, a
hearing aid may have more than one receiving antennas,
and, furthermore, since hearing aids are typically worn pair-
wise, the hearing aids may communicate with each other.
Thus, several channels are available even in the single person
situation.
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(b) Decoder

Fig. 1. The encoder consists of two parts; the moving-horizon multiple-
descriptionMH/MD Encoderand thePsychoacoustic model.

MD coding was recently used for robust perceptual audio
coding [3]–[5]. In [3], [4], the case of two descriptions was
considered, whereas in [5] it was shown, that even with
highly unreliable networks, it is possible to achieve audio
streaming of acceptable quality by using more than two
descriptions. In [4], [5], perceptual models were employed
at the encoder in order to derive masked thresholds. These
were used as perceptual weighting filters at the decoder and
therefore needed to be encoded and transmitted to the decoder
as side information, in addition to the encoded audio data. It
turns out that the bit rate required for encoding the perceptual
weighting filter is up to 8 kbps for mono audio signals with a
sampling frequency of 44.1 kHz [4], [5]. Since the perceptual
weighting filters are required in all the descriptions, the bit
rate of the side information can be significant. Moreover, itis
an open question how to optimally distribute the bit budget
between the perceptual model and the actual audio data.
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To achieve perceptually efficient encoding without introduc-
ing large delays, we employ moving-horizon (MH) quanti-
zation techniques at the encoder [6]. MH quantization relies
upon online optimization of a finite-horizon cost function
and was recently cast in the framework of low delay audio
coding [6]. In [6], given a fixed rather than a time-varying
perceptual weighting filter, it was shown that, by increasing the
optimization horizon, better performance could be achieved at
the expense of increased complexity at the encoder. The delay
of the design in [6], was dictated by that of the optimization
horizon, i.e. was on the order of a few samples.

In the work presented here, we first extend [6] to the case
of a time-varyingperceptual weighting filter. A key feature of
our design is that, as in [6], the perceptual weighting filter
need not be transmitted as side information to the decoder.
Thus, we avoid the issue of having to distribute the bits
between the audio data and the perceptual weighting filters.
We then provide a rate-distortion analysis of MH quantization.
Subsequently, we show how one can combine MD coding and
MH quantization in order to achieve robustness towards packet
losses. The overall delay of the proposed design, depends
upon the choice of perceptual model. For example, if the
psychoacoustic model of MPEG1 layer 1 [7] is chosen, then
the delay is about6 ms. at44.1 kHz. sampling frequency. We
also show that significant gains over conventional linear PCM
can be achieved with zero delay, by deriving the perceptual
weighting filters from an approximation of the threshold in
quiet of the human hearing system. Interestingly, if one leaves
out entropy coding, the MH encoded samples may be stored as
e.g., 16-bit linear PCM on CD-ROMs, and no post-processing
is then required at the decoder. Thus, the encoded samples can
be directly played out on any typical CD-player. The encoder
and decoder of our proposal are presented in Fig. 1(a) and
Fig. 1(b), respectively.

This paper is structured as follows: In Section II, we
describe the setup, present known results on MH quantization
for the case of fixed and time-invariant filters, and finally
extend these results to include time-varying filters. Sections III
and IV contain the main contributions, i.e., a rate-distortion
analysis of single-description MH quantization and the pro-
posed perceptual MH MD audio coding scheme, respectively.
In Section V we show how to design the system in practice
and provide extensive rate-distortion simulations. Conclusions
appear in Section VI.

II. T HE PERCEPTUAL MOVING HORIZON CODER

In this section, we present background material on MH
quantization. In particular, we revise the framework of [6],
[8] and extend it to the case of time-varying filters.

A. Perceptual Moving Horizon Quantization

In MH quantization, the current scalar samplexk ∈ R is
combined withN − 1 future samples and quantized using a
vector quantizerQN

k (·) [6]. Thus, the input to the quantizer
is theN -dimensional vector~xk = (xk, xk+1, · · · , xk+N−1)

T

and the output of the quantizer, i.e. the quantized version
of ~xk is the vector~yk = (yk, yk+1, · · · , yk+N−1)

T . More

precisely, given the current input vector~xk, the quantizer
QN

k (·) minimizes a cost function,JN
k (·), which includes

perceptual weighting. For example, the cost function may be
taken to be1

JN
k (~xk) ,

k+N−1
∑

i=k

ǫ2i = ‖~ǫk‖
2, (1)

where ǫi ∈ R is the perceptually weighted error at theith
time-lag, that is

ǫi , ~hi ∗ (~x− ~y) ,

K
∑

n=0

hi,n(xi−n − yi−n), (2)

where
~hi = (hi,0, hi,1, . . . , hi,K)T

denotes the set of filter coefficients of the perceptual weighting
filter Hi(z) to be used at timei (and∗ is the linear convolution
operator). Thus,

ǫi(z) = Hi(z)(~x(z)− ~y(z))

and

Hi(z) = 1 +

K
∑

n=1

hi,nz
−n (3)

is a causal linear time varying filter of finite orderK with a
direct feedthrough and thus~hi,0 = 1, ∀i.

It follows that, given an input vector~xk, the (locally)
optimal output vector~y ∗

k = QN
k (~xk) (locally, for the current

time k) is given by

~y ∗
k = arg min

~yk∈Yk,~yk=QN
k
(~xk)

JN
k (~xk) (4)

whereYk denotes the alphabet (or codebook) of~yk.
The output of the MH encoder is then simply taken to beyk,

i.e. the first sample of the quantized vector~y ∗
k . Thus, an MH

encoder consists of the non-linear mapQN
k (~xk) = ~y ∗

k which
is followed by a function that picks out the scalar element
yk. At any timek, the MH encoder therefore takes as input
the current samplexk (as well asN − 1 future samples) and
outputs a single sampleyk.

B. State-Space Interpretation

Since we are working with time varying filters it is conve-
nient to formulate the problem in the state space domain.

An equivalent minimal state-space form for the filterHk(z)
is, see, e.g., [9]

Hk(z) = 1 + Ck(zI −A)−1B (5)

1The cost functionJN
k
(·) depends upon the current input vector~xk, the

choice of reconstruction alphabetYk containing the candidate output vectors
~yk, and the perceptual weights~hi. Moreover, in the next section, we will
extend the cost function so that it also depends upon a state vector. To keep
the notation brief, we will simply writeJN

k
(~xk) throughout the document.
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whereA ∈ R
K×K , B ∈ R

K×1, andCk ∈ R
1×K are given by

A =















0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
...

0 · · · 0 1 0















, B =















1
0
0
...
0















, CT
k =











hk,1

hk,2

...
hk,K











(6)
and are related to the sequence of filters{~hk} through [9]

hk,n = CkA
n−1B, n = 1, . . . ,K, k = 0, . . . . (7)

With this, we can express the weighted errorǫk ∈ R as given
by (2) in state-space form, that is

~zk+1 = A~zk +B(xk − yk) (8)

ǫk = Ck~zk + (xk − yk) (9)

where~zk ∈ R
K is the current system state vector given by

~zk = [xk−1− yk−1, xk−2− yk−2, . . . , xk−K − yk−K ]T . (10)

C. Cost Function with Terminal State Weighting

As mentioned in Section II-A, we will make use of a
cost function, which includes perception, cf. (1). In the MH
quantization literature, it has been suggested to include state-
weighting on the final state~zk+N within the cost function [8],
[10].2 In this work, the cost function will be based on the
following expression:

JN
k (~xk) , ‖~ǫk‖

2 + ‖~zk+N‖2P , (11)

where~ǫk = [ǫk, ǫk+1, . . . , ǫk+N−1]
T and where the latter term

provides a final-state weigthing via a positive semidefinite
matrix P ∈ R

N×N , i.e., we have‖~zk+N‖2P = ~z T
k+NP~zk+N .

We will now express (11) from a state-space point of view.
To do so, we iterate (9) (as was done in [6]) in order to obtain

ǫk+1 = Ck+1A~zk + Ck+1B(xk − yk) + (xk+1 − yk+1)

ǫk+2 = Ck+2A
2~zk + Ck+2AB(xk − yk)

+ Ck+2B(xk+1 − yk+1) + (xk+2 − yk+2)

...

From the above, we deduce that the perceptually weighted
error can be written as

‖~ǫk‖
2 = ‖Ψk(~xk − ~yk) + Γk~zk‖

2, (12)

whereΨk ∈ R
N×N is the matrix with unit determinant given

by

Ψk=



















hk,0 0 · · · · · · 0

hk+1,1 hk+1,0 0
...

hk+2,2 hk+2,1 hk+2,0 0
...

...
. . . 0

hk+N−1,N−1 · · · · · · hk+N−1,1 hk+N−1,0



















(13)

2The motivation behind using final state weighting is partly to stabilize the
feedback loop by approximating the effect of the infinite-horizon behavior [8],
[10]. For example, in certain cases, it may be useful (from a stabilization point
of view) to choosePk so that it satisfies the Lyapunov equationATPkA+
CT

k
Ck = Pk, cf. [8], [11].

andΓk ∈ R
N×K satisfies

Γk =
[

CT
k , (Ck+1A)

T , . . . , (Ck+N−1A
N−1)T

]T
. (14)

Following a similar recursive principle, the final state~zk+N

can be written as

~zk+N = AN~zk +M(~xk − ~yk), (15)

where
M , [AN−1B,AN−2B, . . . , AB,B]. (16)

With this, the cost functionJN
k (~xk) can be written as

JN
k (~xk) = ‖AN~zk +M(~xk − ~yk)‖

2
P

+ ‖Ψk(~xk − ~yk) + Γk~zk‖
2. (17)

D. Nearest Neighbor Euclidean Vector Quantization

In this section, we use ideas of [6], [8] and show that the
MH quantizer can be implemented as a nearest neighbor vector
quantizer by utilizing appropriate mappings in the state-space
domain.

Let us defineΦk ∈ R
N×N as the positive semidefinite

matrix square root inΦT
k Φk , ΨT

kΨk +MTPM and rewrite
the cost function (17) as

JN
k (~xk) = ‖~yk‖

2
ΦT

k
Φk

− 2〈~yk,Φ
T
kΦk~xk + (ΨT

k Γk +MTPAN )~zk〉+ Ξk(~xk, ~zk)
(18)

= ‖~yk‖
2
ΦT

k
Φk
−2〈Φk~yk,Φk~xk +Φ−T

k (ΨT
k Γk +MTPAN )~zk〉

+ Ξk(~xk, ~zk), (19)

where the functionΞk(~xk, ~zk) at timek is independent of~yk
and given by

Ξk(~xk, ~zk) = ‖~xk‖
2
ΦT

k
Φk

+ 2〈~xk, (Ψ
T
k Γk +MTPAN )~zk〉

+ ‖~zk‖
2
ΓT
k
Γk+(AN )TPAN . (20)

Inspired by (19), we now let~ξk , Φk~yk and introduce the
metric f ~w

k : RN → R defined as

f ~w
k (~ξk) , ‖~ξk‖

2 − 2~ξTk ~wk, (21)

where

~wk , Φk~xk +Φ−T
k (ΨT

k Γk +MTPAN )~zk. (22)

With this notation,JN
k (~xk) = f ~w

k (~ξk) + Ξk(~xk, ~zk), which
implies that the optimal~y ∗

k is given by

~y ∗
k = arg min

~yk∈Yk

JN
k (~xk) = Φ−1

k arg min
~ξk∈ΦkYk

f ~w
k (~ξk). (23)

From (21), it may be observed thatf ~w
k (~ξk) has isocontours

(level sets) that are shifted spheres inR
N and centered at~wk.

Thus, for any~ξ′k, ~ξ
′′
k ∈ Sc, whereSc , {~ξk ∈ R

N : f ~w
k (~ξk) =

c}, for somec ∈ R, it follows that ‖~ξ′k − ~wk‖ = ‖~ξ′′k − ~wk‖.
Clearly, the optimal~ξk should therefore be chosen as close as
possible to~wk and we establish the following relationship:

~y ∗
k = Φ−1

k arg min
~ξk∈ΦkYk

f ~w
k (~ξk) = Φ−1

k QΦkYk
(~wk), (24)

whereQΦkYk
(·) ∈ ΦkYk is a conventional nearest-neighbor

(Euclidean) vector quantizer with code vectors in the trans-
formed alphabet given byΦkYk.
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E. Noise Shaping Architecture

In this section, we show that the closed-form expression for
the optimizer given in (24) allows us to describe the system
by a noise-shaping architecture, which can be implemented
efficiently.

As is evident from (17), the optimizing vector~y ∗
k should

be chosen such that the filtered error vectorsΨk(~xk − ~yk)
andM(~xk − ~yk) are close to the mirror images ofAN~zk and
Γk~zk, respectively. Thus, the past decisions contained in~zk
affect current and future decisions. We will now follow the
approach of [6], [8] and show that the MH quantizer has an
equivalent noise-shaping architecture.

Let Gk(z) be defined as

Gk(z) , (zI −A)−1B, (25)

where the square matrixzI contains the one-step advance
(forward) operatorz on its diagonal and letFk(z) ∈ R

N×N

be defined as

Fk(z) , ΦT
kΦk + (ΨT

k Γk +MTPAN )G(z)[1 0 · · · 0], (26)

where the unit row vector[1 0 · · · 0] is of dimension1×N
as will become clear below. Then, writing~zk+1 in terms of
the forward operator, i.e.,~zkzI = ~zk+1, inserting into (8) and
solving for~zk yields

~zk = (zI −A)−1B(xk − yk) (27)

= Gk(z)[1 0 · · · 0](~xk − ~yk). (28)

Moreover, we may express~wk given by (22) through

~wk = (Φk +Φ−T
k (ΨT

k Γk +MTPAN )G(z)[1 0 · · · 0])~xk

− Φ−T
k (ΨT

k Γk +MTPAN )G(z)[1 0 · · · 0]~yk

= Φ−T
k

(

Fk(z)~xk − (Fk(z)− ΦT
kΦk)~yk

)

(29)

Recalling thatyk = [1 0 · · · 0]~yk, ~yk = Φ−1~ξk and using (29),
leads to the noise-shaping nearest-neighbor quantizationarchi-
tecture shown in Fig. 2.

The analysis provided in the previous sections showed that
the MH quantizer can be implemented as a nearest neighbor
(Euclidean) vector quantizer. It is important to see that the
mappingΦ−1

k is applied upon the quantized vector~ξk to obtain
~yk whereafter the first elementyk of ~yk is transmitted to the
decoder. In general, it may not be possible to apply an abitrary
transformΦ−1

k on a quantized vector~ξk and yet be within a
desired quantization space, e.g., withinYk.

If the nearest neighbor quantizerQΦkYk
(·) is obtained as the

transformationΦkYk of the codebookYk of the MH quantizer
QN

k (·), then clearlyΦ−1
k

~ξk ∈ Yk. In this case, ifYk defines
a lattice codebook, thenΦkYk will be a shapedlattice w.r.t.
Yk, whereΦk is called the shaping operator [12]. Thus,ΦkYk

will also be a lattice.
If the final state weighting matrixP is taken to be the all-

zero matrix, then the cost function simplifies to the one given
in (1). In this case,Φk = Ψk and it follows from (13) that
Φk will then be lower unitriangular. But since the inverse
of finite-dimensional and lower unitriangular is also lower
unitriangular, it follows that the first row ofΨ−1

k will be the
unit vector [1 0 · · · 0]. This implies thatyk = ξk, i.e., the

first element of the quantized vector~ξk will be equal to the
first element of~yk.

In the general case whereP is not the all-zero matrix and
the codebook for the nearest neighbor quantizerQΦkYk

is
arbitrarily designed (e.g., the codebook could be a fixed lattice)
the resulting ouput variableyk = [1 0 · · · 0]Φ−1

k
~ξk generally

lies in a time-varying domain, sinceΦk is time-varying. In
this case, care must be taken, sinceΦk is not known at the
decoder and hence the resulting codebook is not known at the
decoder. One possible approach is to makeΦ−1

k all integers (in
which case the transposeΦ−T

k is also all integers). If now the
codebookYk is chosen to consist of all integer coordinates,
as is the case if e.g., appropriately scaled scalar quantizers
are used, thenyk ∈ Z as desired. This approach where the
quantization operation is applied before the transformation has
been studied in e.g., the Wavelet literature where it is known as
lifting [13] and in the source coding literature where it is com-
monly referred to asinteger-to-integertransformations [14] or
reversible integermappings [15].

III. R ATE-DISTORTION ANALYSIS OF PERCEPTUAL

MOVING HORIZON QUANTIZATION

In this section we perform a rate-distortion analysis of the
perceptual MH quantizer. We use bold faced symbols for
stochastic variables, e.g.,~ξk denotes thekth vector of the
vector process~ξ and ~ξk denotes a realization. For sequences
e.g., {~ξi,~ξi+1, . . . ,

~ξk} we use the notation{~ξj}
k
j=i. Also

recall the slight abuse of notation thatξk denotes the first
sample of thekth vector~ξk so thatξk+1 is the first sample
of the vector ~ξk+1. We will make use of the following
information theoretic quantities,E[·], H(·), h(·), I(·; ·), and
D(·; ·), which denote statistical expectation, discrete entropy,
continuous entropy, mutual information, and Divergence (or
Kullback Leibler distance), respectively, see [16] for details.

A. Without Final State Weighting

We first consider the case of MH quantization without final
state weighting (i.e., whereP = 0I). In this case, it follows
from the previous section thatΨk = Φk is lower triangular
and henceyk = ξk. To make the proposed system amenable
to a rigorous analysis, we will be using entropy coded and
substractively dithered lattice quantizers, which are hereafter
abbreviated ECDQs and denoted by the symbolQΛ, where
Λ ∈ R

N refers to the underlyingN -dimensional lattice. An
ECDQ uses a dither signal~νk ∈ R

N which is i.i.d. and
uniformly distributed over a Voronoi cell of the latticeΛ [17].
Given an input~wk the output of the ECDQ is given by

~ξk = QΛ(~wk + ~νk). (30)

Thus, ~ξk belongs to a discrete alphabet (i.e.,Λ). The first
sample of~ξk, i.e., ξk, is further entropy coded in order to
be represented by a sequence of bitsb̄k = E(ξk, νk), where
E(·, ·) denotes the entropy coder.3 The reconstruction~ξ′k at
the encoderis obtained by subtracting the dither signal, i.e.

3We emphasize that the entropy coding is conditioned upon thedither signal
νk [17].
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−

~xk yk~yk
Fk(z) Φ−T

k Φ−1
kQΦkYk

[1 0 · · · 0]
~wk

~ξk

Fk(z)− ΦT
k Φk

Fig. 2. MH quantization implemented using a noise-shaping architecture.

~ξ′k = ~ξk−~νk, and~yk is then given by~yk = Ψ−1
k

~ξ′k. Notice that
due to dithering,~ξ′k and~yk belong to continuous alphabets. It
was shown in [17], that the quantization error~qk, where

~qk = ~ξ′k − ~wk = ~ξk − ~wk − ~νk, (31)

is i.i.d., independent of~wk, and distributed as−~νk. The
reconstructionξ′k at the decoder follows by first obtaining
ξk = D(b̄k, νk), whereD(·, ·) denotes entropy decoding, and
then subtracting the ditherνk, that is

ξ′k = D(b̄k, νk)− νk (32)

= ξk − νk (33)

= wk + qk, (34)

where it is assumed that the first sampleνk of the dither vector
~νk is known at the decoder.4 To accomodate dithering, we
redraw the schematics of Fig. 2 into the form shown in Fig. 3.

Let R̄ denote the average conditional entropy of the ECDQ,
when the quantized variables{ξk} are independent (sample-
by-sample) entropy coded, i.e.,

R̄ , lim
k→∞

1

k

k−1
∑

i=0

H(ξi|νi). (35)

It is known that this conditional entropy provides a lower
bound on the per sample average (operational) coding rateR̄∗

of the ECDQ. Moreover, the conditional entropyH(ξk|νk) is
equal to the mutual information over the additive noise channel
ξ′k = wk+qk [17]. Thus, the operational coding rate is lower
bounded by

R̄∗ ≥ R̄ = lim
k→∞

1

k

k−1
∑

i=0

I(wk; ξ
′
k). (36)

We are interested in designing the quantizer codebook
Λ so as to minimize the time-averaged expected perceptual
distortion D̄ (per dimension), for a fixed horizon length
N , subject to a target entropy constraintR̄ ≤ RT on the
average conditional entropȳR when independently encoding
the sequence of “first coordinates” of the quantized outputs,
i.e., {ξj}

∞
j=0.5 Specifically, by use of (1), we can expressD̄

4This kind of commonrandomness can be obtained by e.g., guaranteeing
that the encoder and decoder are synchronized w.r.t., to their random gener-
ators, or e.g., by transmitting (or agreeing upon) a common seed.

5We are interested in the situation where the elements of the sequence
of output samples{ξj}

∞

j=0
are encoded separately for two reasons. First, it

leads to a simple low delay design. Second, it guarantees that the encoder
and decoder remain “synchronized” also in the case of packetdropouts.

as

D̄ = lim
k→∞

1

kN

k−1
∑

i=0

E‖~ǫi‖
2 (37)

Lemma 1:The average perceptual distortion̄D of Fig. 3 is
given by

D̄ = lim
k→∞

1

kN

k−1
∑

i=0

E‖~νi‖
2. (38)

Proof: Whether or not we use dithering, the output~ξk of
the quantizer can always be written as~ξk = ~wk+~qk, where~qk
at this point can be arbitrarily distributed. The cost metric (1)
can be rewritten as

‖~ǫk‖
2 = f ~w

k (~ξk) + Ξk(~xk, ~zk) (39)

= ‖~ξk‖
2 − 2~ξ T

k ~wk + Ξk(~xk, ~zk) (40)

= ‖~wk + ~qk‖
2 − 2(~wk + ~qk)

T ~wk + Ξk(~xk, ~zk) (41)

= ‖~qk‖
2, (42)

where the last equality follows sinceP = 0I so that ~wk =
Ψk~xk+Γk~zk andΞk(~xk, ~zk) = ‖~xk‖

2
ΨT

k
Ψk

+2〈~xk,Ψ
T
k Γk~zk〉+

‖~zk‖
2
ΓT
k
Γk

. When the quantizer is an ECDQ, we note that the

reconstruction is~ξ′k = ~ξk − ~νk = ~wk + ~qk and the perceptual
distortion satisfies‖~ǫk‖2 = f ~w

k (~ξ′k)+Ξk(~xk, ~zk). Inserting this
into (39) and using that‖~qk‖2 = ‖~νk‖

2 yields (38).
Corollary 1: If the lattice Λ in Fig. 3 is fixed, i.e.,~ν is

i.i.d., and‖~νk‖
2 = σ2, ∀k, then

D̄ =
1

N
σ2. (43)

Proof: Follows immediately from Lemma 1 by using the
fact that~ν is zero-mean and identically distributed for allk if
Λ is fixed.

Theorem 1:Let x be stationary, having finite differential
entropy rate, but otherwise arbitrarily distributed. Thenthe
coding rate for the scheme in Fig. 3 is bounded between:

R̄ ≤ R̄∗ < R̄+ 1.2547, (44)

whereR̄ = limk→∞
1
k

∑k−1
i=0 h(ξ′i)− h(νi).

Proof: We first prove the lower bound. As explained in
Section II-E, forP = 0I, the first element of~yk is identical
to the first element of~ξk. The marginal distributionpξk

of ξk
is therefore identical to the marginal distributionpyk

of yk.
We may therefore proceed by consideringξk instead ofyk.
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Fig. 3. MH quantization (with subtractive dithering) implemented using a noise-shaping architecture.

The operational coding rate is lower bounded by the average
scalar mutual information betweenwk andξ′k. Specifically,

R̄ ≥ lim
k→∞

1

k

k−1
∑

i=0

I(wi; ξ
′
i) (45)

= lim
k→∞

1

k

k−1
∑

i=0

(

h(ξ′i)− h(ξ′i|wi)
)

(46)

= lim
k→∞

1

k

k−1
∑

i=0

(

h(ξ′i)− h(qi)
)

(47)

= lim
k→∞

1

k

k−1
∑

i=0

(

h(ξ′i)− h(νi)
)

. (48)

We will now prove the upper bound by using [18, Lemma
2] in order to show thatI(wi; ξ

′
i) can be upper bounded by

replacing the variableswi and qi by Gaussian variableswg
i

andqg
i , having the same second-order statistics. With this, we

have that

I(wi; ξ
′
i) = I(wi;wi + qi) (49)

≤ I(wg
i ;w

g
i + q

g
i ) +D(qk||q

g
k). (50)

It follows that the Divergence termD(qk||q
g
k), only depends

upon the marginal distribution of the first sample of the
quantization noise vector. Since we are using lattice vector
quantizers, where the quantization noise (due to dithering)
is uniformly distributed over a Voronoi cell, the resulting
marginal distribution depends only upon the shape of the
Voronoi cells. In general, the more spherically shaped Voronoi
cells, the more “Gaussian”-like quantization noise [12]. The
worst lattice vector quantizer is obtained by using a sequence
of scalar uniform quantizers individually along each dimension
of the source vectors. In this case,D(qk||q

g
k) < 0.2547 [12].

The proof is completed by using the well known fact, that there
exists entropy coders with an average rate, which is strictly less
than the output entropy plus1 bit/dimension [19].

Remark 1:Theorem 1 provides a sandwich on the oper-
ational coding rate. The upper bound is due to using non-
asymptotic quantizers and non-asymptotic entropy coders.As
is well known, the 1 bit/sample “loss” of the entropy coder
tends to zero at high coding rates or at high vector dimen-
sions [19]. The remaining gap, i.e., the 0.2547 bits/sample, is
the loss due to not using optimal vector quantizers. Thus, in
the limit whereN → ∞ and if optimal vector quantization is
used, it can be shown that also this gap vanishes. Thus, at high

rates and large vector quantizer dimension, the lower bound
is achievable. In the simulations section, we show that even
without dithering, simple scalar quantization gets very close
to the lower bound.

Remark 2: If the quantizer codebook is designed in the
original domain, i.e., ifYk is designed and thenΨkYk is used,
then the performance is inferior as to when the codebook is
designed in the transform domain. However, in this case, using
larger horizon lengths can be expected to give additional gains
over that of the space-filling gain of the vector quantizers.Such
situations were examined in [8], [11].

We have so far considered the case where the encoder
separately encodes the sequence of quantized variables. It
would be interesting to compare this to the gain by allowing
the encoder and decoder to exploit all the memory within the
system, when encoding the first sample of the vector outputs.
In this case, we have the following lower bound on the average
entropyR̄ of the process{ξ′j}

∞
j=0:

Lemma 2:Let x have finite differential entropy rate but
otherwise arbitrarily distributed. Moreover, fix the lattice in the
ECDQ such thatν is i.i.d., and independent ofx. If all memory
within the system is exploited, then the average entropy is
lower bound by

R̄ ≥ h̄({ξ′j}
∞
j=0)− h(ν), (51)

whereh̄(·) denotes the differential entropy rate [16].
Proof: Since we have a source coding system within a

feedback loop, there is memory in the system and it follows
from [20] (see also Theorem 1 in [21]), that the average
entropy is lower bounded by Massey’s notion of directed
mutual information [22]. Thus,

R̄ ≥ I({wj}
∞
j=0 → {yj}

∞
j=0) (52)

, lim
k→∞

1

k

k−1
∑

i=0

I(yi; {wj}
i
j=0|{yj}

i−1
j=0). (53)

We now use that~ξ′k = ~wk + ~qk and recall thatyk = ξ′k since
P = 0I. This allows us to further lower bound the rate as
follows:

R̄ ≥ I({wj}
∞
j=0 → {ξ′j}

∞
j=0) (54)

, lim
k→∞

1

k

k−1
∑

i=0

I(ξ′i; {wj}
i
j=0|{ξ

′
j}

i−1
j=0) (55)
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= lim
k→∞

1

k

k−1
∑

i=0

h(ξ′i|{ξ
′
j}

i−1
j=0)− h(ξ′i|{ξ

′
j}

i−1
j=0, {wj}

i
j=0)

(56)

= h̄({ξ′j}
∞
j=0)− lim

k→∞

1

k

k−1
∑

i=0

h(wi + qi|{ξ
′
j}

i−1
j=0, {wj}

i
j=0)

(57)

= h̄({ξ′j}
∞
j=0)− lim

k→∞

1

k

k−1
∑

i=0

h(qi|{ξ
′
j}

i−1
j=0, {wj}

i
j=0)

(58)

= h̄({ξ′j}
∞
j=0)− h(ν), (59)

where the last equality follows sinceqk is independent of past
and current input and quantization error samples due to the
use of independent dithering. Moreover,qk is distributed as
−νk but negation does not affect the differential entropy.

Remark 3:As expected, the reduction in the lower bound
on the average entropy when memory is utilized is solely given
by the difference between the average differential entropyand
the differential entropy rate of{ξ′k}.

B. With Final State Weighting

We will now examine MH quantization with non-zero final
state weighting, i.e., whereP 6= 0I. We will assume that the
codebookYk is given and a nearest neighbor vector quan-
tizer is using the transformed codebookΦkYk. The average
expected distortion is now based on (11), that is

D̄ = lim
k→∞

1

kN

k−1
∑

i=0

E
{

‖~ǫi‖
2 + ‖~zi+N‖2P

}

. (60)

Lemma 3:Let ~ξk = ~wk + ~qk, where ~qk ∈ R
N is an

arbitrarily distributed quantization error vector. Then,

D̄ = lim
k→∞

1

kN

k−1
∑

i=0

E

{

‖~qi‖
2 + ‖~zi‖ϕT

i
ϕi

}

. (61)

where

ϕT
i ϕi , Γ

T
i Γi + (AN )TPAN

− (ΨiΓi +MTPAN )TΦ−1
i Φ

−T
i (ΨiΓi +MTPAN ).

Proof: The proof follows along the lines of the proof of
Lemma 1.

Unfortunately, we have not been able to obtain non-trivial
rate bounds for this harder situation whereP 6= 0I. The main
reason is that, even if one fixes the latticeYk in the origi-
nal ~yk-domain, the resulting lattice after the transformation
ΦkYk is random sinceΦk is a random matrix. Moreover,
after quantization the quantized vector~ξk is mapped to the
original ~yk-domain where the first sample, i.e.,yk, is to
be transmitted. Thus, the inverse mappingΦ

−1
k affects the

marginal distribution ofyk so that it is not identical to the
marginal distribution ofξk.

IV. M ULTIPLE-DESCRIPTIONPERCEPTUAL MOVING

HORIZON QUANTIZATION

With the results of Sections II and III as background, in this
section we will present our main proposal, namely, the use of
MH quantization together with MD coding.

A. Multiple-Description Moving Horizon Quantization

In MD coding a single source vector~xk is mapped to
multiple output vectors(~y 0

k , ~y
1
k , . . . , ~y

n−1
k ), which are usually

referred to as descriptions [2]. In the general case, we have
n ≥ 1 descriptions, see e.g., [23]. Hence, we haven encoders

fj : ~xk 7→ ~y j
k ∈ R

N , j = 0, . . . , n− 1, (62)

and2n decoders

gℓ : {~y
j
k : j ∈ ℓ} 7→ ~̂y ℓ

k ∈ R
N , ℓ ⊆ {0, . . . , n− 1}. (63)

For every time instancek, the first sample of each of then
current descriptions, i.e.{y0k, y

1
k, . . . , y

n−1
k }, are transmitted

over n channels so that descriptionj, i.e. yjk, is transmitted
on thejth channel. At any timek, an arbitrary subset of the
channels may break down. Which of the channels are currently
working is not known to the encoder, but it is known to the
decoder.6 The problem is then to construct then descriptions,
so that they provide a certain degree of redundancy, which can
be exploited at the decoder during channel failures. Generally,
the descriptions are able to refine each other, and the distortion
achieved therefore depends upon which subset of descriptions
was received.

To successfully combine MD coding and MH quantization,
one needs to carefully consider several issues. Firstly, an
MD encoder outputs multiple descriptions, whereas the MH
quantizerQN

k (·) studied in Sections II and III gives only
a single output. Furthermore, there is a feedback loop at
the encoder, since past decisions affect the current decision
through the system state vector~zk, see e.g., (10) and Fig. 2.
In order for this feedback loop to to be well defined at the
encoder, we need to form a single output based on then
descriptions. Towards that end, for some fixed set of scalar
weights{γℓ ∈ R}ℓ⊂{0,...,n−1}, we define7

~̃yk ,
∑

ℓ⊆{0,...,n−1}

γℓ~̂y
ℓ
k (64)

and update the state vector~zk (which was previously given
by (10)) by the following rule:

~zk = [xk−1 − ỹk−1, xk−2− ỹk−2, . . . , xk−K − ỹk−K ]T , (65)

where ỹk denotes the first sample of the vector~̃yk given
in (64). The weights{γℓ} in (64) may, for example, reflect
successful decoding probabilities, i.e. the probability of re-
ceiving only the descriptions, which are indexed byℓ.

Another issue which should be taken into account when
designing an MD coder for MH quantization is that the cost
function JN

k introduced in (1) and extended to include state
cost in (17) does not explicitly take into account the distortion
as observed by the decoder. While this might be somewhat
curious from a coding point of view, it is the de facto standard
in moving horizon optimization methods (see e.g., [11]) and
model predictive control [10]. However, motivated by (64),

6It is assumed that the decoder can deduce which channels are working
e.g. based on the set of received descriptions.

7We note that how to form the vector to be fed back at encoder is anon-
trivial problem. This is partly due to the fact that the encoder does not know
in advance which descriptions will be received at the decoder.
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we propose to rewrite (1) as a weighted sum over the possible
outcomes due to packet dropouts. Specifically, in the case of
n descriptions, we propose the following cost function:

JN
k (~xk) ,

∑

ℓ⊆{0,...,n−1}

γℓ‖~ǫ
ℓ
k‖

2, (66)

where, forℓ ⊆ {0, . . . , n − 1}, the perceptually filtered error
sample is given by

ǫℓk , Ck~zk + (xk − yℓk). (67)

Lemma 4:Let the cost function be given by (66). More-
over, let the weights0 ≤ γℓ ∈ R, ℓ ⊆ {0, . . . , n − 1}
be given. Then, the optimal set of reconstruction vectors
{~y ℓ

k ∈ Yℓ
k}ℓ⊆{0,...,n−1}, whereYℓ

k denotes the codebook for
~y ℓ
k , can be found as

arg min
{~ξ ℓ

k
∈ΨkYℓ

k
}ℓ⊆{0,...,n−1}

∑

ℓ⊆{0,...,n−1}

γℓf
~w
k (~ξ ℓ

k ), (68)

wheref ~w
k (~ξ ℓ

k ) is given by (21), by using the relationship~y ℓ
k =

Ψ−1
k

~ξ ℓ
k , ℓ ⊆ {0, . . . , n− 1}.

Proof: By adopting a similar approach as when form-
ing (12), it is easy to show that‖~ǫ ℓk‖

2 = ‖Ψk(~xk − ~y ℓ
k ) +

Γk~zk‖
2, where~zk is given by (65). Moreover, using (18) –

(22) it follows that

‖Ψk(~xk − ~y ℓ
k ) + Γk~zk‖

2 = f ~w
k (~ξ ℓ

k ) + Ξk(~xk, ~zk), (69)

where Ξk(~xk, ~zk) is independent of~y ℓ
k (at time k). We

therefore establish thatJN
k (~xk) given by (66) can be rewritten

as

JN
k (~xk) =

∑

ℓ⊆{0,...,n−1}

γℓ

(

f ~w
k (~ξ ℓ

k ) + Ξk(~xk, ~zk)
)

. (70)

The lemma is now proved by recognizing that minimizing (70)
is equivalent to solving (68).

Remark 4:Lemma 4 shows that minimizing the percep-
tually weighted cost function (66) is equivalent to solving
the weighted MSE minimization problem (68), i.e., solving
argmin

∑

ℓ γℓ‖~wk − ~ξ ℓ
k‖

2. Since this defines a (weighted-
Euclidean) nearest-neighbor MD vector quantization problem,
we may use conventional MD quantization techniques. In this
work, we will apply then-description index-assignment based
lattice vector quantization construction of [23], [24].

B. Rate-Distortion Analysis of Perceptual MD MH quantiza-
tion

The optimum rate-distortion performances of MD problems
are generally not known. In fact, it is only completely solved
for two descriptions in the case of MSE distortions and white
Gaussian sources [2], [25] or colored Gaussian sources [26],
[27]. In the case of more than two descriptions, even less is
known.

In this work, we let the MD quantizer be the simple index-
assignment based lattice vector quantizer presented in [23].
With this MD quantizer, the reconstruction rule is given
as the average of the received descriptions, or in the case
all descriptions are received, it is given by the inverse of

a fixed mapping function. The MD quantizer consists of a
single high-quality quantizer, referred to as acentralquantizer,
and n coarser quantizers referred to asside quantizers. The
central quantizer has Voronoi cells of volumeνc and the
side quantizers have Voronoi cells of volumeν = ρNνc,
whereρ > 1 denotes the nesting factor, which is inversely
proportional to the amount of redundancy within the system.
Thus, a large nesting factor yields poor side performance but
very good central performance, whereas a small nesting factor
yields good side performance and only slightly better central
performance, see [23] for details. Under high-resolution as-
sumptions, the coding rate per description is given by [23]

R̄∗ .
≈

1

k

k−1
∑

i=0

h(wi)−
1

N
log2(ν), (71)

where
.
≈ means that the approximation is exact in the limit

where the rate diverges to infinity and the distortion tends
to zero. In the case of ann-description system, the average
distortionD̄0,...,n−1 when receiving alln descriptions is given
by [23]

D̄0,...,n−1
.
≈ G(Λ)ν2/Nc , (72)

whereG(Λ) denotes the dimensionless normalized second-
moment of inertia [28] of theN -dimensional lattice quantizer
Λ being used. On the other hand, since we are here referring to
asymmetric8 setup, the distortion̄Dℓ whereℓ ⊆ {0, . . . , n−1}
and |ℓ| = κ, when receiving any1 < κ < n descriptions, is
given by [23]

D̄ℓ
.
≈

(

n− κ

2nκ

)

G(SN )B2
n,N22(h(ξ)−R̄c)

∗

2
2n

n−1
(R̄∗

c−R̄∗),

(73)
where R̄∗ is given by (71), R̄∗

c = 1
k

∑k−1
i=0 h(wi) −

1
N log2(νc), G(SN ) denotes the dimensionsless normal-
ized second-moment of inertia of anN -dimensional hyper-
sphere [28], andBn,N is an expansion factor. The latter is
a function of the number of descriptionsn and the vector
dimensionN , see [23] for details. With this, the average
perceptual cost function (66) can be written as

JN
k (~xk) ,

∑

ℓ⊆{0,...,n−1}

γℓ‖~ǫ
ℓ
k‖

2 .
≈

∑

ℓ⊆{0,...,n−1}

γℓD̄ℓ, (74)

whereD̄ℓ is given by (72) and (73).

V. DESIGN STUDY

In this section, we design and simulate the proposed coding
architecture. We first show how one may obtain the perceptual
weighting filter. We then motivate the use of MH quantization
by considering a single-description setup, and show that by
using a simple fixed perceptual weighting filter, significant
gains over linear PCM can be achieved. We finally construct an
MD MH quantization based scheme, and consider a scenario
with three descriptions.

8SymmetricMD coding refers to the case where: 1) all side descriptions
are encoded at the same descriptions rate. 2) the distortionobserved at the
decoder depends only upon the number of received descriptions and as such
not upon which descriptions that are received.
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A. Obtaining the Perceptual Weighting Filter

Most psychoacoustic models are defined in the frequency
domain and are based on a block ofM time-domain samples.
We therefore need to introduce a certain amount of delay in
order to achieve sufficient accuracy of the frequency response.
The specific choice of psychoacoustic model is not essential
for our design. We could, for example, choose the model from
the MPEG1 layer 1 standard [7], which is based on a block of
M = 512 samples, at a sample rate of44.1 kHz or one could
use the model presented in [29], which is based onM = 128
time-domain samples. Alternatively, one could simply use a
fixed perceptual weighting filter in which case there is no need
for a delay.

In order to obtain the perceptual filter~hk of orderK, we
use an idea suggested by Schuller et al. [30]. Let|θk(f)|

2 be
the masked threshold as computed by the perceptual model,
for the kth block, and notice that we would like to find a
perceptual weighting filter with a transfer function that satifies
|Hk(f)|

2 ≈ |θk(f)|
−2. If we use |θk(f)|

2 as a short-term
power spectrum, then the symmetric autocorrelation sequence
{rk,i}, i = 0, . . . , M

2 , is found simply as the inverse DFT of
|θk(f)|

2. The filter coefficientshk,1, . . . , hk,K are now easily
found from{rk,i} by use of the Yule-Walker equations [31].

In the simulations that follow in the next sequel, we will use
a simple fixed third-order perceptual weighting filter. In partic-
ular, we use a filter which mimics the threshold in quiet [32].
Let f denote frequency (in Hz), then the threshold in quiet
Tq(f) can be approximated by the following expression [32],
[33]:

Tq(f) = 3.64

(

f

1000

)−0.8

− 6.5 exp

(

− 0.6

(

f

1000
− 3.3

)2)

+ 10−3

(

f

1000

)4

.

(75)

Using the technique described above, we obtainh̄k from (75),
i.e., for K = 3, we get

H̄k(z) = 1 + 0.4367z−1 − 0.6407z−2 − 0.5839z−3, ∀k.
(76)

Recall that̄hk is used in anoise-shapingprocess, and that this
operation does not introduce a delay.

B. Real-Time Single-Description Perceptual MH quantization

To avoid delay, we will in this first simulation use simple
uniform scalar quantization. Thus,N = 1 and the current
sample is encoded and decoded independently of future sam-
ples. However, the current sample is encoded by taking into
account previous samples and coded values, as summarized
by the current state vector. WithN = 1, and using only
a single description, the proposed scheme is akin to noise-
shaping coders.

As a baseline, we first directly quantize the music signal,
using a uniform scalar quantizer, which corresponds to con-
ventional linear PCM. Under high-resolution assumptions,the
resulting discrete entropyH(ŷ) of the quantized signal can be
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Fig. 4. Operational rate-distortion curves.

approximated by [34]:

H(ŷ) ≈ h(x)− log2(∆), (77)

where∆ denotes the step-size of the quantizer. Moreover, it
is well known that the (MSE) distortionD is approximately
D ≈ ∆2/12. It follows from (77), that for a given coding
rate R̄∗ ≈ H(ŷ), the step-size of the quantizer is given by
∆ = 2h(x)−R̄∗

, and knowledge of the differential entropy of
the source signal is required in order to obtain the optimal scal-
ing ∆ of the quantizer. If the signals are Gaussian distributed,
h(x) = 1

2 log2(2πeσ
2), where σ2 denotes the variance of

the signal. Thus, in this case, only knowledge of the source
variance is required.

We use three different fragments of music;Jazz, Pop, and
Rock, all having a sampling rate of48 kHz and a duration of
15.0, 6.8, and 13.5 seconds, respectively. We measure their
variances, and use the Gaussian approximation given above,
in order to derive the scaling factor∆. As can be observed
from Fig. 4, the approximation is quite accurate, i.e., the
operational rate-distortion function of the linear PCM encoded
signal approximately coincides with that obtained from a truly
Gaussian signal.9 In Fig. 4, the x-axis describes the MSE
distortion in dB, and they-axis describes the discrete entropy
in bits per sample.10

Also shown in Fig. 4, is the operational MSE rate-distortion
performance obtained with the proposed perceptual MH quan-
tizer, in the simplest case whereN = 1, P = 0I, and
only a single description is used. It may be noticed that
the performance of MH quantization appears to be up to 5
dB worse than that of linear PCM. However, it is important
to keep in mind, that the MH quantizer is optimized for a
perceptual measure and not for the MSE. To further stress this
point, we have shown the objective difference grades (ODGs)
for the linear PCM signal as well as for the MH quantized

9We note that in general such behavior cannot be expected, andone would
then need to use an alternative estimate of the differentialentropy in order to
obtain∆.

10The discrete entropy lower bounds the resulting coding ratethat one
would obtain when using entropy coding on the quantized signal. At high-
resolutions, e.g., at least 2 – 3 bits/sample, the resultingcoding rate will be
very close to the discrete entropy.
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signal in Table II.11 The ODGs provide an indication of the
perceived quality of the coded audio signals and are related
to the standard ITU-R 5-grade impairment scale as shown in
Table I.

TABLE I
RELATIONSHIP BETWEEN THEITU-R 5-GRADE IMPAIRMENT SCALE AND

ODGS [33].

Impairment ITU-R 5-grade scale ODG
Imperceptible 5.0 0.0
Perceptible, but not annoying 4.0 -1.0
Slightly annoying 3.0 -2.0
Annoying 2.0 -3.0
Very annoying 1.0 -4.0

As can be seen from Table II, the quality of the MH
quantized audio is significantly better than conventional linear
PCM, when ODG rather than MSE is the preferred figure
of merit. We have also performed simulations where we
replaced the scalar quantizer in the PCM setup by alog-
quantizer, i.e., the signal is firstcompressedby thelog-function
and quantized using a uniform scalar quantizer. Then, at
the decoder, the inverse operation is required, i.e., theexp-
function is applied in order to map the reconstruction from
the perceptual domain and back into the Euclidean domain.12

However, this companding approach did not give better ODGs
than that achieved by standard linear PCM encoding.13

TABLE II
OBJECTIVE DIFFERENCE GRADES FOR THREE FRAGMENTS OF MUSIC;

Jazz, Pop, AND Rock.

Entropy
[bits]

MHQ
(Jazz)

PCM
(Jazz)

MHQ
(Pop)

PCM
(Pop)

MHQ
(Rock)

PCM
(Rock)

4 -3.191 -3.733 -3.808 -3.854 -3.864 -3.882
5 -2.890 -3.440 -3.460 -3.752 -3.779 -3.810
6 -1.568 -2.830 -2.570 -3.299 -3.440 -3.512
7 -0.803 -1.837 -1.200 -1.995 -2.382 -2.654
8 -0.473 -1.206 -0.418 -0.855 -1.027 -1.719

We now compare the numerical performance obtained in
this section to the analytical expressions provided in Sec-
tion III-A. We will consider the case of̄R∗ = 6 bits/sample
and use theRock music signal. First, the variance of the
music signal is measured to be0.0385, which results in a
differential entropy ofh(x) = −0.3030 bits/sample, when
using the Gaussian approximation. From this, the scaling
factor is obtained as∆ = 2−0.3030−6 = 0.0127. The average
distortion given by (12) is measured to bēD = 1.3381 ·10−5,
which is close toE[‖q‖2] = ∆2/12 = 1.3366 · 10−5 (where
the first equality is valid under the assumption of uniformly
distributed quantization noiseq) as follows from Lemma 1. It
is important to note thatE[‖x− y‖2] 6= ∆2/12, since we are
not optimizing for the MSE and as suchΨk 6= [1 0 · · · 0].

11The ODGs scores are obtained by using the Matlab implementation
provided by Kabal et al. [35] of the PEAQ standard [36].

12Interestingly, no such operation is required at the decoderfor the MH
quantization approach, since the encoded symbols are already representing
the signal in the original domain.

13The log-companding approach is particular useful for fixed-rate coding
and when the distortion is the input-weighted mean squared error, where the
weight is given by the reciprocal of the square of the input, cf. [37]. However,
we are here using entropy-constrained coding and a distortion measure which
is different from the input-weighted.

Thus, this is not a trivial result, which follows from high-
resolution quantization theory. The discrete entropy of the
quantized signal is measured to beR̄∗ = 5.9677 bits/sample,
which is close to the desired target rate of6 bits/sample.
At this point, we replace the scalar quantizer by an additive
white noise, which is uniformly distributed in the interval
[−∆/2;−∆/2]. It follows that ξ is continuous valued and
therefore has a density (instead of being discrete due to
quantization). Using a nearest-neighbor entropy estimation
approach [38], we numerically measure the average differential
entropy of ξ to be h(ξ) = 1

k

∑k−1
i=0 h(ξi) = −0.3492

bits/sample. Sinceq is uniformly distributed, it is easy to show
thath(q) = log2(∆) and thatR̄∗ = h(ξ)− log2(∆) = 5.9538
bits/sample which is close to the above measuredR̄∗ = 5.9677
bits/sample obtained using a scalar quantizer.

The lossless coding operation is the same for our scheme
as for the schemes used for comparison. Thus, the particular
construction is not of importance. In the simulations we tested
two different settings. First, an optimal Huffman losslesscoder
was designed on the empirical statistics of the quantized
output. This is an ideal situation. Second, a Gaussian codebook
was designed using only knowledge of the variance of the
input signal. This is a worst case situation for two reasons:
1) The distribution is not matched to the source distribution.
2) The Gaussian source is the hardest to code under MSE
distortion. Thus, if the source variance is fixed, the rate when
using a Gaussian codebook is greater than or equal to the
rate when using the true distribution. This is also interesting
from a practical perspective, since by designing the lossless
codebook for a Gaussian distribution (of a fixed variance),
one makes sure that the operational coding rate will never
exceed that what it would be if the distribution was truly
Gaussian. When using theJazzsignal, we have measured the
average empirical discrete entropy of{yk}, as well as the the
coding rate obtained after entropy coding using an optimal
codebook (i.e., designed using the empirical distributionof
the actual sequence{yk}). For comparison, we have designed
a Gaussian codebook, i.e., by using the variance of{yk} and
randomly generating Gaussian samples, which are then used
to train a Huffman codebook. Then, we used this unmatched
codebook to encode{yk}. The obtained rates (in bits/sample)
are illustrated in Table III. Notice that in both cases, the
operational bit rates are close to the desired discrete entropy
of the output, which again is close to the desired target rate.

TABLE III
OPERATIONAL BIT RATES [BITS/SAMPLE] AFTER LOSSLESS CODING

USING HUFFMAN CODING.

Target rate Discrete entropy Rate: optimal CB Rate: Gaussian CB
4 3.985 4.021 4.061
5 4.981 5.013 5.053
6 5.979 6.011 6.034
7 6.979 7.010 7.023
8 7.978 8.009 8.054

We next consider an application where final state weight-
ing and vector quantization is used. Note that when vector
quantization is utilized, it is important that the first sample
of the vector can be decoded independently of the remaining
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subvector. For example, the whole vector may be quantized
using entropy-constrained vector quantization and then the
first coordinate of the vector is separately entropy coded and
transmitted to the decoder. Alternatively, the first coordinate
may be quantized using a scalar quantizer and the remaining
coordinates may be quantized using either a vector quantizer
or a sequence of scalar quantizers applied individually along
the remaining dimensions of the input vector.

Let N = 4 so that three future samples are required, and
thus there is an inherent delay of three samples. Furthermore,
we use theK = 3 order perceptual weighting filter from (76).
We use theD4 (four-dimensional) lattice vector quantizer at
a bit-rate of R̄∗ = 6 bits/sample [28].14 We use a simple
state-weightingP = I, i.e., theK×K identity matrix, which
results in an ODG of−2.5037 on thePop music signal. On
the other hand, when no state-weighting is used, i.e.,P =
0I, the performance is in this case−2.7391, which is only
slightly worse. It is an interesting topic for further study, to
examine the impact of final state-weighting on the subjective
audio quality and to find optimal weighting matrices.

C. Real-Time Multiple-Description Perceptual MH quantiza-
tion

We now propose a design for the MD case and where
P = 0I. Recall from Lemma 4 that a (Euclidean) nearest-
neighbor MD quantizer may be used and that we use the
index-assignment construction presented in [23]. This results
in n descriptions, which are combined at the encoder as
described by (64). In the following simulations, we will
considerN = 1 andn = 3 descriptions. Thus, each sample
is encoded into three descriptions, which are each treated
as a separate packet. Let the weights in (64) be given as
γ0 = γ1 = γ2 = (1 − p)p2, γ01 = γ02 = γ12 = (1 − p)2p,
andγ012 = (1−p)3, wherep = 0.1, 0.2, 0.3. Moreover, let the
nesting factor beρ = 9 and let the rates of the side descriptions
be identical. Table IV shows the ODGs for different subsets of
descriptions when theJazzmusic signal is encoded. It may be
observed that the performance of the individual descriptions
as well as the performance when using any two descriptions
is largely unaffected by the choice of weights. However, the
central reconstruction, i.e., when all descriptions are used, (last
column) is highly affected. In fact, at relatively high bit rates
(relatively low bit rates), the central reconstruction improves
(becomes worse) with increasing packet loss rates. The re-
lationship between weights (and how to form the feedback
at the encoder), bit rates, and performance is unfortunately a
non-trivial and open problem, see also Footnote 7. Figs. 5(a)
– 5(c) show the ODGs for all three fragments at different
bit rates. Here the weights are based onp = 0.1. It may be
noticed that, the more descriptions used in the reconstruction,
the better the performance. Moreover, as expected, increasing
the bit-rate also leads to better performance.

In Table V, we compare the average run-time perceptual
distortion given by (74) to the performance observed at the
receiver and obtained by simulations. At this point, we let
the weightp denote the the packet-loss rate, which in the

14Only the first sample of the vector is entropy coded and transmitted.

TABLE IV
ODGS FOR DIFFERENT SUBSETS OF DESCRIPTIONS AS A FUNCTION OF

THE WEIGHTS. TOP THREE ROWS:R̄∗ = 7 AND BOTTOM THREE ROWS:
R̄∗ = 4 BITS/SAMPLE PER DESCRIPTION.

p y0 y1 y2 y01 y02 y12 y012

0.1 -3.164 -3.191 -3.267 -2.540 -2.038 -2.206 -0.139
0.2 -3.164 -3.212 -3.282 -2.540 -2.068 -2.222 -0.099
0.3 -3.138 -3.204 -3.287 -2.535 -2.044 -2.183 -0.052
0.1 -3.863 -3.803 -3.868 -3.828 -3.751 -3.796 -1.622
0.2 -3.860 -3.806 -3.865 -3.826 -3.745 -3.795 -1.993
0.3 -3.861 -3.794 -3.870 -3.834 -3.741 -3.812 -2.458

TABLE V
AVERAGE PERCEPTUAL DISTORTIOND̄ GIVEN BY (74) AND BY

SIMULATIONS, FOR THEJazzFRAGMENT.

p = 0.05 p = 0.10 p = 0.15 p = 0.20 p = 0.25 p = 0.30
MD (74)
n = 3

−49.420 −43.311 −38.886 −35.494 −32.768 −30.499

MD sim.
n = 3

−48.872 −43.052 −38.869 −35.563 −33.013 −30.982

Rep. sim
n = 3

−43.314 −41.292 −38.348 −35.344 −32.762 −30.545

Rep. sim
n = 2

−41.002 −35.080 −31.557 −29.0633−27.126 −25.554

SD
n = 1

−28.083 −25.073 −23.312 −22.063 −21.093 −20.302

simulations is the rangep ∈ [5%; 30%] and is incremented
in steps of5%. For each packet-loss rate, the numeric results
are averaged over 10 different randomly chosen packet-loss
realizations. The shown results are for theJazzfragment using
three descriptions and5 bits/sample per description. Also
shown is the theoretic performance obtained if one would
use single-description (SD) MH quantization at15 bits/sample
(last row in Table V). From Table V, it is clear that the perfor-
mance obtained from simulations is close to that described by
theory. As expected, the performance decreases as the packet-
loss rate increases. Interestingly, a three-description system
operating at5 bits/sample per description and at a packet-loss
rate of p = 30%, performs better than a single-description
system operating at15 bits/sample and at a packet-loss rate
of p = 5%. The latter observation strengthens the relevance
of the scheme proposed in the present work. A suboptimal
approach to multiple description coding is repetition coding,
i.e., where the same description in a single-description setup
is simply repeated a number of times. Table V illustrates
the situation when allowing one and two repetitions. When
allowing one repetition, the bitrate per description is7.5
bits/sample, whereas when allowing two repetitions, the bitrate
is 5 bits/sample. Thus, the total rate is 15 bits/sample as in the
other simulations presented in the table. At high loss rates, it
is often the case that only a single description is received and
the performance of repetition coding becomes close to that of
MD coding.

VI. CONCLUSIONS

In this work, we have proposed a real-time audio coder
which uses elements of multiple-description coding and
moving-horizon quantization. In particular, it was shown that
MH optimization could be mapped into a domain which
allowed the use of existing (Euclidean) nearest-neighbor MD
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Fig. 5. ODGs when using different subsets of descriptions for reconstructions.

quantization techniques. The moving-horizon construction al-
lowed us to efficiently incorporate perceptual weighting. In the
single-description case and without packet losses, it was shown
that significant gains over linear PCM could be achieved
without introducing delay and without having to change the
decoding architecture of existing systems. By introducinga
few samples delay, with the proposed coder the noise shaping

could be improved over what was possible with conventional
noise-shaping techniques. It was also shown that the inclusion
of multiple descriptions provided a certain degree of robust-
ness towards packet losses.
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