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Real-Time Perceptual Moving-Horizon
Multiple-Description Audio Coding

Jan @stergaatrd Member, IEEE Daniel E. Quevedayiember, IEEE and Jesper Jensen

Abstract—A novel scheme for perceptual coding of audio for
robust and real-time communication is designed and analyzk
As an alternative to PCM, DPCM, and more general noise-
shaping converters, we propose to use psychoacousticallyp-o
timized noise-shaping quantizers based on the moving-haon
principle. In moving-horizon quantization, a few samples bok-
ahead is allowed at the encoder, which makes it possible to ther
shape the quantization noise and thereby reduce the resuittg
distortion over what is possible with conventional noise{saping
techniques. It is first shown that significant gains over linar
PCM can be obtained without introducing a delay and without
requiring post-processing at the decoder, i.e., the encodesamples

fading. In order to guarantee a certain degree of robustness
towards channel impairments without introducing addgilon
delay, we rely on multiple-description (MD) coding [2]. We
consider the general case af channels. For example, a
hearing aid may have more than one receiving antennas,
and, furthermore, since hearing aids are typically worm-pai
wise, the hearing aids may communicate with each other.
Thus, several channels are available even in the singl®pers
situation.

1
I

can be stored as e.g., 16-hit linear PCM on CD-ROMs, and "
played out on standards-compliant CD players. We then show k MH/MD —y2
that multiple-description coding can be combined with movihg- Encoder : k
horizon quantization in order to combat possible erasures o the ] n—1
wireless link without introducing additional delays. Y
Index Terms—Low delay source coding, multiple-description Hy(z)
coding, moving horizon quantization, perceptual audio cothg
Psychoacoustic
I. INTRODUCTION "I model
The aim of this work is to encode and communicate audio
. (a) Encoder

from a remote encoder (e.g., cell phone, ipod, CD player, .
radio, tv, concert) over a wireless link to a low power listen Y ———— .
devi i ing ai MD 2y

evice e.g., a pair of hearing aids or head phones. Contary t ) S— |
other applications, it is here essential that the latendyest : Decoder
low. Low latency is important, primarily in order to avoid y]?*l

distortions due to a direct path acoustic signal reachimg th
eardrums earlier than the hearing aid output [1], but also

to facilitate lip synchronicity in a real-time communiaati

(b) Decoder

situation. We will assume that the tolerable latency is a few

samples or at most up to a few milliseconds.

Fig. 1. The encoder consists of two parts; the moving-harimuultiple-
deslcriptionMH/MD Encoderand thePsychoacoustic model

Due to battery and space considerations, the computationa . .
complexity at the decoder should be kept low. Thus, besidesVID coding was recently used for robust perceptual audio
the cost of operating the antenna(s) and the demodulaters,$9ding [31-[5]. In [3], [4], the case of two descriptions was
only allow simple scaling and table look-up operations iis thconsidered, whereas in [5] it was shown, that even with

work.

highly unreliable networks, it is possible to achieve audio

Since the persons wearing the listening devices are often AB€amMing of acceptable quality by using more than two

spatially stationary, the transmission channel is suduepto
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descriptions. In [4], [5], perceptual models were employed
at the encoder in order to derive masked thresholds. These
were used as perceptual weighting filters at the decoder and
therefore needed to be encoded and transmitted to the decode
as side information, in addition to the encoded audio data. |
turns out that the bit rate required for encoding the percpt
weighting filter is up to 8 kbps for mono audio signals with a
sampling frequency of 44.1 kHz [4], [5]. Since the perceptua
weighting filters are required in all the descriptions, thie b
rate of the side information can be significant. Moreoveis it

an open question how to optimally distribute the bit budget
between the perceptual model and the actual audio data.



To achieve perceptually efficient encoding without introdu precisely, given the current input vecta¥., the quantizer
ing large delays, we employ moving-horizon (MH) quantiQY (-) minimizes a cost function,/Q(-), which includes
zation techniques at the encoder [6]. MH quantization seliperceptual weighting. For example, the cost function may be
upon online optimization of a finite-horizon cost functiortaken to bé
and was recently cast in the framework of low delay audio N1
coding [6]. In [6], given a fixed rather than a time-varying Ni=\ & 2 =12
perceptual weighting filter, it was shown that, by increggime T (@) = Z & = el @)
optimization horizon, better performance could be actdeate
the expense of increased complexity at the encoder. Thg del¢heree; € R is the perceptually weighted error at thit
of the design in [6], was dictated by that of the optimizatiotime-lag, that is
horizon, i.e. was on the order of a few samples.

In the work presented here, we first extend [6] to the case
of atime-varyingperceptual weighting filter. A key feature of
our design is that, as in [6], the perceptual weighting filter
need not be transmitted as side information to the decodehere
Thus, we avoid the issue of having to distribute the bits By = (hioshits . hix)T
between the audio data and the perceptual weighting filters. T ’

We then provide a rate-distortion analysis of MH quant@ati denotes the set of filter coefficients of the perceptual wigigh
Subsequently, we show how one can combine MD coding afiler H,(z) to be used at time (and+ is the linear convolution
MH quantization in order to achieve robustness towards@ackperator). Thus,

losses. The overall delay of the proposed design, depends

upon the choice of perceptual model. For example, if the €i(z) = Hi(z)(Z(z) — ¢(z))

psychoacoustic model of MPEG1 layer 1 [7] is chosen, then

the delay is abous ms. at44.1 kHz. sampling frequency. We and

also show that significant gains over conventional lineaMPC K

can be achieved with zero delay, by deriving the perceptual Hi(z) =1+ Z hinz™" ®3)

weighting filters from an approximation of the threshold in n=1

quiet of the human hearing system. Interestingly, if onedea s a causal linear time varying filter of finite ord&f with a

out entropy coding, the MH encoded samples may be storedfigct feedthrough and thu370 =1,Vi.

e.g., 16-bit linear PCM on CD-ROMSs, and no post-processing|; follows that, given an input vectot;, the (locally)

is then required at the decoder. Thus, the encoded sampies G&imal output vectoj; = QN (z,) (locally, for the current
be directly played out on any typical CD-player. The encod@pne 1) is given by

and decoder of our proposal are presented in Fig. 1(a) and
Fig. 1(b), respectively. 7y = arg min TN () (4)
This paper is structured as follows: In Section I, we T €V Tk =QF (Tx)

describe the setup, present known results on MH quantrzatwhereyk denotes the alphabet (or codebook)jef

for the case of fixed and time-invariant filters, and finally Th tout of the MH deris th imply taken ta/b
extend these results to include time-varying filters. $edtilll . € oufputotine encoder is then simply taken ta/pe
i.e. the first sample of the quantized vecggr. Thus, an MH

and IV contain the main contributions, i.e., a rate-disoort d iste of th Y @y (7+) — 7+ which
analysis of single-description MH quantization and the-pr(‘)ﬂnCO €r consists ot the non-iinear m () = g whic
ollowed by a function that picks out the scalar element

: : -1, f
posed perceptual MH MD audio coding scheme, respectlvel'f/. At any time &, the MH encoder therefore takes as input

In Section V we show how to design the system in practiégﬁ" ¢ I I asN — 1 fut | d
and provide extensive rate-distortion simulations. Cosicns € current sampie: (as well asV — 1 future samples) an
outputs a single samplg,.

appear in Section VI.

i=k

62 hix (T =) 2 hin(@ion —Yin), )

Il. THE PERCEPTUALMOVING HORIZON CODER B. State-Space Interpretation

In this section, we present background material on MH
guantization. In particular, we revise the framework of, [61qi
[8] and extend it to the case of time-varying filters.

Since we are working with time varying filters it is conve-
ent to formulate the problem in the state space domain.
An equivalent minimal state-space form for the fil#éf.(z)
] . o is, see, e.g., [9]
A. Perceptual Moving Horizon Quantization
In MH quantization, the current scalar samplg € R is Hy(z) =1+ Cy(zl — A)"'B (5)
combined withN — 1 future samples and quantized using a

vector quantizerQX () [6]. Thus, the input to the quantizer *The cost functions} () depends upon the current input vecti, the

is the N-dimensional vecto;, = (Ik, Ty, ,Ik+N71)T choice of reconstruction alp'hatl@’gg contalnlng_the candidate o_utput vect(_)rs
and the perceptual weights;. Moreover, in the next section, we will

and th.e output of the quantizer' i.e. the quantized VerSiéﬁend the cost function so that it also depends upon a staterv To keep
of Z is the vectorgy = (Yk,Ykt1, - ,YktnN—1) . MoOre the notation brief, we will simply write/2 () throughout the document.



whereA € REXE B ¢ REX1 andCy € R'™X are given by andT, € RV*K satisfies
T

0 0 0 T 0 1 h Fk = I:Cg7 (Ck+1A)T7 ceey (C]g_;,_N_lAN_l)T:I . (14)
1 0 0 - 0 0 ol . - o :
0 1 0 - 0 0 . hi,2 Following a similar recursive principle, the final staig; »
A= _ 1 b= _ G = can be written as
0 . 0 1 0 0 i, i Zien = AN+ M (7 — i), (15)
B (6) where
and are related to the sequence of filtéhs } through [9] M2 [AN=1B, AN=2B, ... AB, B]. (16)
higm = CLA" ‘B, n=1,...,K, k=0,.... (7) With this, the cost functiorai,iv(fk) can be written as
With this, we can express the weighted erepre R as given IN (@) = |AN 2 + M (3% — 52) |15
by (2) in state-space form, that is W@ — i) + Tu il (17)
Zry1 = AZ; + B(zk — yg) (8) . . o
R D. Nearest Neighbor Euclidean Vector Quantization
e = Cr2k + (v — Yx) (9) J Q

In this section, we use ideas of [6], [8] and show that the
wherez;, € R¥ is the current system state vector given by \MH quantizer can be implemented as a nearest neighbor vector
T, (10) guantizer by utilizing appropriate mappings in the stqtaes

domain.
C. Cost Function with Terminal State Weighting Let us define®, € RY*V as the positive semidefinite
matrix square root e} &, = VTW, + MTPM and rewrite
?_Tlhe cost function (17) as

Zi = [Tho1 = Yh—1, The2 — Yk—2, - - s Tho K — Yh— K|

As mentioned in Section II-A, we will make use of
cost function, which includes perception, cf. (1). In the M
quantization literature, it has been suggested to incltate-s J; (Zx) = ||gk||?{>fq>k

weighting on the final stat&, 5 within the cost function [8], i TP, 7 OIT, + MTPAN)Z 2 (Zh. 3
[10].2 In this work, the cost function will be based on the (s @ D1 + (V3o T + Zi) + =i k’(fé)
following expression: . . . o o N
Nie v A o2 . ) = ||yk||<qu>k—2<(I>kyk7fI>kxk + &, (U T+ M PAY)Z,)
Ji (k) = l€l” + 1 Zeen 5, (11) o
+:k($k72k), (29)
whereéy, = [ex, €xi1,...,exin_1]7 and where the latter term

provides a final-state weigthing via a positive semidefinitghere the functiorE (Z, Z) at timek is independent ofj;
matrix P € RV*V i.e., we have|Zi v |3 = 25 v PZesn. and given by

We will now express (11) from a state-space point of view. 2, (i, 2i,) = |5/ 5rq, + 2(Zk, (ViTx + MTPAN)Z)
To do so, we iterate (9) (as was done in [6]) in order to obtain "

120l Frp, 1 (avyrpan- (20)
€rr1 = Crp1AZy + Crop1 B(or — yi) + (Trg1 — Yrg1) o at _,)
erse = CrioA2Z, + Cryo AB(zr — 1) Inspired by (19), we now leg, £ ®.7, and introduce the
metric ;7 : RN — R defined as
+ Cri2B(xry1 — Yrs1) + (Thr2 — Yry2) e a e o
fid (&) = IExll” — 285 Wk, (21)
he ab ded hat th I there
From the above, we deduce that the perceptually weighte . B B .
error can be written as W, £ Oy + O (L Tk + MTPAY)Z. (22)
Hng2 _ H\pk(fk _ 17]@) +szk|‘27 (12) With this notation,J,iV(fk) = fkm({];) + Ek(fk,gk), which

) o ) ) _~implies that the optimal/;” is given by
where¥;, € RV*Y is the matrix with unit determinant given

by Yy, = arg min TN (&) = @,;1 arg min  f;"(&).  (23)
Yk EVk £ €LV

fik0 0 0 From (21), it may be observed thﬁf(fk) has isocontours
Rkt1,1 hi+1,0 0 : (level sets) that are shifted spheresRiff and centered afy,.
S ) ) 0 Thus, for anyé}, i/ € S, whereS. £ {&, e RN : f7(&) =
k2,2 k2,1 Th+2,0 c}, for somec € R, it follows that ||&], — w|| = ||€} — w]|-

: 0 Clearly, the optimaEk should therefore be chosen as close as
|Ak4N—1,N—1 - e hi+N-—11 hr+n—10| POssible tow, and we establish the following relationship:
B = e ag min f7(6) = 97 Qe (), (24)
2The motivation behind using final state weighting is partystabilize the EL€PRY

feedback loop by a_pproxinjating the_effect of the infiniteitmn_ _beh_avior [_8], where Q%)’k () € ®,)), is a conventional nearest-neighbor
[10]. For example, in certain cases, it may be useful (frortabikization point Euclid . ith d in th
of view) to chooseP,, so that it satisfies the Lyapunov equatidd P, A + ( ucli ean) vector quantizer with code vectors In the trans

clcy, = P, cf. [8], [11]. formed alphabet given b Vs.



E. Noise Shaping Architecture first element of the quantized vector will be equal to the

In this section, we show that the closed-form expression f8fSt element ofyj. . _
the optimizer given in (24) allows us to describe the system ! the general case whete is not the all-zero matrix and
by a noise-shaping architecture, which can be implementét§ codebook for the nearest neighbor quantigar,y, is
efficiently. arbitrarily designed (e.qg., the codebook could be a fixdt&t
. i 12
As is evident from (17), the optimizing vectgi® should the resulting ouput variablg, = [1 0 --- 0@, ¢ generally

be chosen such that the filtered error vectdns(z), — ;) lies in a time-varying domain, sinc@,, is time-varying. In
and M (&, — i) are close to the mirror images af" 7, and this case, care must be taken, sinkg is not known at the
7, respectively. Thus, the past decisions contained;in decoder and hence the resulting codebook is not known at the

affect current and future decisions. We will now follow thélécoder. One possible apP:rFo_ach is to méke all integers (in
approach of [6], [8] and show that the MH quantizer has aphich case the transpodg; * is also all integers). If now the

equivalent noise-shaping architecture. cod_ebookyk is <_:hosen to cons_ist of all integer coordinat_es,
Let Gy (z) be defined as as is the case if e.g., appropriately scaled scalar quasitize
R are used, theny, € Z as desired. This approach where the

Gir(z) £ (z] — A)7'B, (25) quantization operation is applied before the transforometias

been studied in e.g., the Wavelet literature where it is kmaw
(ﬁfting [13] and in the source coding literature where it is com-
monly referred to amteger-to-integetransformations [14] or
reversible integemappings [15].

where the square matrix/ contains the one-step advanc
(forward) operatotz on its diagonal and lef,(z) € RV*YV
be defined as

Fi(z) 2 07 ®, + (ViT, + MTPAN)G(2)[10---0], (26)
IIl. RATE-DISTORTIONANALYSIS OF PERCEPTUAL

where the unit row vectofl 0---0] is of dimensionl x N
MOVING HORIZON QUANTIZATION

as will become clear below. Then, writing,; in terms of
the forward operator, i.ezyzl = 7,1, inserting into (8) and  In this section we perform a rate-distortion analysis of the
solving for z, yields perceptual MH quantizeL. We use bold faced symbols for
. . stochastic variables, e.g§,, denotes thekth vector of the
Zy = (2l = A)" " B(zg —yr) (27)  vector procesg and¢;, denotes a realization. For sequences
=Gr(z)[1 0 - 0)(Zk — T)- (28) e.q. {&.€1....,€,} we use the notatio&;}*_;. Also
recall the slight abuse of notation thgt denotes the first
sample of thekth vector{k so thaté,y; is the first sample
Wy = (O + . T (ULT, + MTPAN)G(2)[1 0---0])F of the vector ;. We will make use of the following

Moreover, we may express; given by (22) through

— & T(UTT, + MTPANYG(2)1 0- .- 017 information theoretic quantitiesE[-], H(-), h(-),I(-;-), and
—:/]f (7 f + ) T(z)[ ~ [5 D(-;-), which denote statistical expectation, discrete entropy,
=0, " (Fi(2)Tx — (Fi(2) — O Pi)¥i) (29)  continuous entropy, mutual information, and Divergence (o

Recalling thaty, — [10-- - 0]g, G — <I>’15k and using (29), Kullback Leibler distance), respectively, see [16] forailst

leads to the noise-shaping nearest-neighbor quantizatan-
tecture shown in Fig. 2. A. Without Final State Weighting

The analysis provided in the previous sections showed thaip first consider the case of MH quantization without final
the MH quantizer can be implemented as a nearest neighgjie weighting (i.e., wher® = 0I). In this case, it follows

(Eucli_dean)l\{ector quantizer. It is important to see th& thom the previous section thak, = ®; is lower triangular
mapping®; ~ is applied upon the quantized vectgrto obtain  gnq hencey, = ¢,. To make the proposed system amenable
Y. whereafter the first elemenj, of g, is transmitted to the 15 3 rigorous analysis, we will be using entropy coded and
decoder. In general, it may not be possible to apply an ayitraypsractively dithered lattice quantizers, which areehfter
tran.sformtbk ona quantized vect@C and yet be within a zppreviated ECDQs and denoted by the sym@al, where
desired quantization space, e.g., withip. - . A € RN refers to the underlyingV-dimensional lattice. An

If the nearest neighbor quantiz@, y, (-) is obtained as the ECDQ uses a dither signal, € RY which is iid. and
transformationb; ). of the codebook);. of the MH quantizer pniformly distributed over a Voronoi cell of the lattice[17].

Q1Y (-), then clearlyd, ¢, e Vi In this case, ify), defines  Gjyen an input, the output of the ECDQ is given by
a lattice codebook, thet;)). will be a shapedlattice w.r.t.

Vi, Whered,, is called the shaping operator [12]. Thds, ), €k = On (W + D). (30)
will also be a lattice.

If the final state weighting matri is taken to be the all- Thus, ¢, belongs to a discrete alphabet (i.&). The first

zero matrix, then the cost function simplifies to the one givez:rcg:;ezgﬁéegegygg Slsé(;ﬂgr?i 3? tlg;tgi (é‘czgedylgl cv)vrr?grreto
: : . k> Vk)s
in (1). In this cased, = W, and it follows from (13) that £(-,-) denotes the entropy codeiThe reconétructior{,’g at

@, will then be lower unitriangular. But since the invers : . . : : :
kT . guiar. | . $he encoderis obtained by subtracting the dither signal, i.e.
of finite-dimensional and lower unitriangular is also lower

. . . . 71 .
un!trlangular, it follows tha_t the fI_I’St row ol W”I. be the sy emphasize that the entropy coding is conditioned upodither signal
unit vector[1 0 --- 0]. This implies thaty, = &, i.e., the u; [17].



T - Wy, & _ Yk Yk
- Fk(z) & (I)k g Q(I)kyk (I)k ! [1 0--- 0] —
Fk (Z) - (I){q)k
Fig. 2.  MH quantization implemented using a noise-shapimitecture.
5,; = gk—ﬁk, andy, is then given by, = \1/,;15;. Notice that as
due to ditheringg,, andy;, belong to continuous alphabets. It _ ) 1 k=t s
was shown in [17], that the quantization erigr, where D = klggo N ZEHEiH (37)
=0

o = . - o -
G = & = W = & = Wy = T, (1) Lemma 1:The average perceptual distortiéhof Fig. 3 is
is i.i.d., independent ofw,, and distributed as-vj;. The given by
reconstructioné;. at the decoderfollows by first obtaining =
&, = D(by, ), whereD(-,-) denotes entropy decoding, and D= lim — Y E|#|> (38)
then subtracting the dither,, that is koo kN =

& = D(bg,vk) — vk (32) Proof: Whether or not we use dithering, the outgitof
=& — U (33) the quantizer can always be written@s= @, + gk, whereg;
= wi + qu (34) at this point can be arbitrarily distributed. The cost nee(di)

’ can be rewritten as

where it is assumed that the first sampjeof the dither vector

Ji is known at the decodérTo accomodate dithering, we 1€kl = /i (&) + i (T, k) (39)
redraw the schematics of Fig. 2 into the form shown in Fig. 3. = |\{,€||2 — 255@ + Ex(Tr, Z) (40)
Let R denote the average conditional entropy of the ECDQ, — e + G ll? T
. . . = + — 2(wy + Wy, + Zg (T, 2 41
when the quantized variabl€g;} are independent (sample- | f ) %l (@ + @) B K@ 2) (1)
by-sample) entropy coded, i.e., = lla1°, (42)
- it where the last equality follows sincB = 0/ so thatw, =
R2 klingo % Z H(¢|vi). (35) U.TL+Tk2 and=g (2, Ek) = |‘ka%I/E\I/k+2<fk’ \Iffl“ké’k)—k

i=0 Hg’“”%frk‘ When the quantizer is an ECDQ, we note that the

—

It is known that this conditional entropy provides a lowefeconstruction i) = & — i = @ + G and the perceptual
bound on the per sample average (operational) codingﬁfate distortion satisfiege; |2 = f}gv(g;c)JrEk(fk’ %,). Inserting this

of the ECDQ. Moreover, the conditional entropi(&, |vx) IS into (39) and using thaltd,||? = ||7;? yields (38). -
equal to the mutual information over the additive noise clehn Corollary 1: If the lattice A in Fig. 3 is fixed, i.e..5 is

¢, = wy, +q, [17]. Thus, the operational coding rate is Iowe[.i'd' and ||, ||? = 02, ¥k, then

bounded by
_ 152 D= o (43)
R'>R= lim o S I(wis &), (36) N
—00
i=0 Proof: Follows immediately from Lemma 1 by using the

We are interested in designing the quantizer codebofi€t thatv is zero-mean and identically distributed for alif
A so as to minimize the time-averaged expected perceptlé}ais fixed. u
distortion D (per dimension)’ for a fixed horizon |ength Theorem 1:Let = be stationary, having finite differential
N, subject to a target entropy constraift < Rr on the €ntropy rate, but otherwise arbitrarily distributed. Thibe
average conditional entrop? when independently encodingcoding rate for the scheme in Fig. 3 is bounded between:
the sequence of “first coordinates” of the quantized outputs

_ . _

ie., {gj};goﬁ Specifically, by use of (1), we can expreBs R< R <R+1.2547, (44)
51 1 k—1 N _ )

4This kind of commonrandomness can be obtained by e.g., guaranteeirthereR _ hmk—foo k Zi:O h(ﬁl) h(VZ)' . .

that the encoder and decoder are synchronized w.r.t., to medom gener- Proof: We first prove the lower bound. As explained in

ators, or e.g., by transmitting (or agreeing upon) a comnesu.s Section II-E, forP = 01, the first element ofj;, is identical

5We are interested in the situation where the elements of dogience to the first element Ofk The marginal distributiop,, of &
of output samples{gj };’0:0 are encoded separately for two reasons. First, It ; S k

leads to a simple low delay design. Second, it guarantedsttiraencoder is therefore identical to the margina} di;triputigagk of Yk
and decoder remain “synchronized” also in the case of patiagouts. We may therefore proceed by considerifig instead ofy,.



T i 3 b
Tk Fi(z) P & ) & [10---0] s L2k
- Vi T
T -1 Uk
Fi(z) — ®T®,, - o _
T &

Fig. 3. MH quantization (with subtractive dithering) implented using a noise-shaping architecture.

The operational coding rate is lower bounded by the averagges and large vector quantizer dimension, the lower bound
scalar mutual information betwean; and¢).. Specifically, is achievable. In the simulations section, we show that even
without dithering, simple scalar quantization gets verysel

2> lim 1 : ll(wi;éi) (45) the lower bound. _ _ _ _
k—oo k et Remark 2:If the quantizer codebook is designed in the
b1 original domain, i.e., it} is designed and the#i; ). is used,
= lim 1 Z (h(&) — h(&i|w,)) (46) then the performance is inferior as to when the codebook is
koo k =0 designed in the transform domain. However, in this casegusi
k—1 larger horizon lengths can be expected to give additionakga

= lim % Z (h(&)) — h(q,)) (47) overthat of the space-filling gain of the vector quantiz8isch

i=0 situations were examined in [8], [11].
Ry We have so far considered the case where the encoder
. ! A .
= klggoE (h(Si) - h(”z‘))- (48) separately encodes the sequence of quantized variables. It
=0 would be interesting to compare this to the gain by allowing

We will now prove the upper bound by using [18, Lemmé#he encoder and decoder to exploit all the memory within the
2] in order to show thaf (w,; £}) can be upper bounded bysystem, when encoding the first sample of the vector outputs.
replacing the variablesv; and ¢; by Gaussian variables? In this case, we have the following lower bound on the average
andq?, having the same second-order statistics. With this, v@itropy R of the procesg&/}52,:

have that Lemma 2:Let = have finite differential entropy rate but
, otherwise arbitrarily distributed. Moreover, fix the lattiin the
I(w; &) = I(wi;w; + q;) (49) ECDQ such that is i.i.d., and independent af If all memory

=1
< I(w?;w? + q7) + D(qy||q7)- (50) within the system is exploited, then the average entropy is

) g lower bound by
It follows that the Divergence termv(q,||q;), only depends

upon the marginal distribution of the first sample of the R>h({€}2,) — h(v), (51)
guantization noise vector. Since we are using lattice vecto N 7

quantizers, where the quantization noise (due to dith®ringhere(.) denotes the differential entropy rate [16].

is uniformly distributed over a Voronoi cell, the resulting Proof: Since we have a source coding system within a
marginal distribution depends only upon the shape of thgaqpack loop, there is memory in the system and it follows
Voronoi cells. In general, the more spherically shaped Roro .5, [20] (see also Theorem 1 in [21]), that the average

cells, the more “Gaussian”-like quantization noise [12heT entropy is lower bounded by Massey's notion of directed
worst lattice vector quantizer is obtained by using a sed@€ny, tyal information [22]. Thus

of scalar uniform quantizers individually along each dirsien

of the source vectors. In this cas®(q,||q}) < 0.2547 [12]. B> T({w; )2y — {y,3%) (52)
The proof is completed by using the well known fact, thatéher B ! f;l 1=

exists entropy coders with an average rate, which is striesis 2y 1 Il {w. Vi i1 53
than the output entropy pluss bit/dimension [19]. | fsoo & — (yii {wJ}J:Ol{yJ}J:O)' (53)

Remark 1:Theorem 1 provides a sandwich on the oper-

ational C(_)ding rgte. The upper bound i§ due to using NOBe now use thaf,’c = @), + G, and recall thay, = &, since
asymptotic quantizers and non-asymptotic entropy codess. p — (7. This allows us to further lower bound the rate as
is well known, the 1 bit/sample “loss” of the entropy codefg|lows:

tends to zero at high coding rates or at high vector dimen-

sions [19]. The remaining gap, i.e., the 0.2547 bits/samiple f > I{w; ¥ — {€/1520) (54)
the loss due to not using optimal vector quantizers. Thus, in ) b1 '

the limit whereN — oo and if optimal vector quantizationis 2 15, = I(E): {w; )i [{g"}iz] (55)
used, it can be shown that also this gap vanishes. Thus, fat hig *— k ; (s {w}j=0l€5}5=0)



1 i A. Multiple-Description Moving Horizon Quantization
= D MERE Y Z0) — h(EHE 20, {w;};
kz 715=0 =0 JJj= ~0)

=0

In MD coding a single source vectar; is mapped to

(56) multiple output vector$i, 7, ..., %), which are usually
B = referred to as_descriptions [2]. In the general case, we have
= h({€)}320) — klggo I h(w; + q,{&; }J —o-{w;}’—y) n =1 descriptions, see e.g., [23]. Hence, we havencoders
=0 (57) fj:kaggeRN,j:O,...,n—l, (62)
e R and2" decoders
= h’({éj}j:o) - klingo % — (q1|{£ = 07 {wj}j 0) o {y el 6 RN ¢ C 0. .n-1}. (63)
(58)

- For every time instancé, the first sample of each of the

= h({&;}520) = h(v), (59 current gescriptions, i.e{yd yi, ... ,yg‘q}, are transmitted
where the last equality follows singg is independent of past over n channels so that descriptiop i.e. yi is transmitted
and current input and quantization error samples due to the the jth channel. At any time:, an arbitrary subset of the
use of independent dithering. Moreovey, is distributed as channels may break down. Which of the channels are currently
—vy, but negation does not affect the differential entrop®  working is not known to the encoder, but it is known to the

Remark 3:As expected, the reduction in the lower boundecodef The problem is then to construct thedescriptions,
on the average entropy when memory is utilized is solelyrgivgo that they provide a certain degree of redundancy, which ca
by the difference between the average differential entany be exploited at the decoder during channel failures. Géigera

the differential entropy rate of¢). }. the descriptions are able to refine each other, and the tigstor
] o achieved therefore depends upon which subset of deseriptio
B. VVith F|na.| State We|ght|ng was received.

We will now examine MH quantization with non-zero final To successfully combine MD coding and MH quantization,
state weighting, i.e., wher® # 0. We will assume that the one needs to carefully consider several issues. Firstly, an
codebook), is given and a nearest neighbor vector quatD encoder outputs multiple descriptions, whereas the MH
tizer is using the transformed codebo®)).. The average quantizer Q' (-) studied in Sections Il and Ill gives only
expected distortion is now based on (11), that is a single output. Furthermore, there is a feedback loop at

the encoder, since past decisions affect the current decisi
D= hm i ZE{”QH? + |\Z1+N||p} (60) through the system state vectdr, see e.g., (10) and Fig. 2.
In order for this feedback loop to to be well defined at the
encoder, we need to form a single output based onrthe
descriptions. Towards that end, for some fixed set of scalar
weights{y; € R}y (o, .. n—1}, We definé

Lemma 3:Let £, = Wy + §;, whereg, € RY is an
arbitrarily distributed quantization error vector. Then,

= 2
D-&PkNﬁﬁ%mm+wmu¢} (61)

.....

RE Y i (64)

0C{0,....,n—1}

<
I

where
ol 2TTT; + (AN)T pAN
—(O,T; + MTPANYT® 1@, T (0,1, + MTPAN).
Proof: The proof follows along the lines of the proof of
Lemma 1. B where g, denotes the first sample of the vectﬁ;{ given
Unfortunately, we have not been able to obtain non-trivigh (64). The weights{~,} in (64) may, for example, reflect
rate bounds for this harder situation where# 01. The main successful decoding probabilities, i.e. the probabilifyre-
reason is that, even if one fixes the latti@% in the origi- ceiving only the descriptions, which are indexed by
nal g,-domain, the resulting lattice after the transformation Another issue which should be taken into account when
®)). is random since®; is a random matrix. Moreover, designing an MD coder for MH quantization is that the cost
after quantization the quantized vectgy is mapped to the function J¥ introduced in (1) and extended to include state
original 4j,-domain where the first sample, Iey.k, is to costin (17) does not explicitly take into account the distor
be transmitted. Thus, the inverse mapplﬁg affects the as observed by the decoder. While this might be somewhat
marginal distribution ofy, so that it is not identical to the curious from a coding point of view, it is the de facto stamtlar
marginal distribution of,. in moving horizon optimization methods (see e.g., [11]) and
model predictive control [10]. However, motivated by (64),

and update the state vectgy (which was previously given
by (10)) by the following rule:

= [Th1 = U1, Tk — U2y - - -, Tk ic — Uk—Kc) "~ 5 (65)

IV. MULTIPLE-DESCRIPTIONPERCEPTUAL MOVING

HORIZON QUANTIZATION 61t is assumed that the decoder can deduce which channels cakingy

With the results of Sections Il and 11l as background, in thi&9; based on the set of received descriptions.
/We note that how to form the vector to be fed back at encodernisra

section we will present our main proposal namely' the use tﬂ\;lal problem. This is partly due to the fact that the enemodoes not know
MH quantization together with MD coding. in advance which descriptions will be received at the decode



we propose to rewrite (1) as a weighted sum over the possibldixed mapping function. The MD quantizer consists of a
outcomes due to packet dropouts. Specifically, in the casestfgle high-quality quantizer, referred to asentralquantizer,

n descriptions, we propose the following cost function: andn coarser quantizers referred to sisle quantizers. The
. . central quantizer has Voronoi cells of volume and the
i (@) & Z vellégll?, (66) side quantizers have Voronoi cells of volume = p"v,,
C40,.m—1} wherep > 1 denotes the nesting factor, which is inversely
where, for¢ C {0,...,n — 1}, the perceptually filtered error proportional to the amount of redundancy within the system.
sample is given by Thus, a large nesting factor yields poor side performante bu
VoA ; very good central performance, whereas a small nestingrfact
€r = CrZi + (Tk — ) (67) yields good side performance and only slightly better @ntr

Lemma 4:Let the cost function be given by (66). More-Performance, see [23] for details. Under high-resolutisn a
over, let the weight®) < v, € R,/ C {0,...,n — 1} sumptions, the coding rate per description is given by [23]

be given. Then, the optimal set of reconstruction vectors

k—1
{5t € Yi}icqo,...n—1}, Where)} denotes the codebook for Al Zh(wi) _ 1 log, (v), (72)
¢, can be found as ks N
arg  min Z e fE(ED, (68) where = means that the app.ro.xi.mation is exact in.the limit
{Efev Vi icqo...., "1} 0C {01} where the rate diverges to infinity and the distortion tends
. to zero. In the case of an-description system, the average
whergf,?(g,f) is given by (21), by using the relationshji = distortionDy . ,,—1 when receiving alh descriptions is given
vl ec{o,...,n—1}. by [23]
Proof: By adopting a similar approach as when form- Do...n1 G(A)yf/N, (72)

ing (12), it is easy to show thate! || = | Ux(d% — 7)) + _ _ .
T'.2,]|2, wherez, is given by (65). Moreover, using (18) —Where G(A) denotes the dimensionless normalized second-
(22) it follows that moment of inertia [28] of theV-dimensional lattice quantizer
A being used. On the other hand, since we are here referring to
|0 (Z — GE) + T Zell® = fEED + Zx(#, Z:),  (69) asymmetrié setup, the distortio®, where? C {0,...,n—1}

L iy ) and |¢| = k, when receiving anyl < x < n descriptions, is
where =, (2%, Zx) is independent ofy (at time k). We given by [23]

therefore establish that" (Z,) given by (66) can be rewritten
" Dy~ (" - “) G(Sy) B2y 220€- R g (R R,

- 2nk
W@y= > w(fEH+2@n5). (70 7 7 (73)
¢c{0,...,n—1} where R* is given by (71), R = %Zf;ol h(w;) —

h : .
The lemma is now proved by recognizing that minimizing (70) 1082(v¢), G(Sn) denotes the dimensionsless normal-
is equivalent to solving (68). ized second-moment of inertia of aN-dimensional hyper-

Remark 4:Lemma 4 shows that minimizing the percep-Sphere,[zs]' ands,, v is an expans_ior_1 factor. The latter is
tually weighted cost function (66) is equivalent to solving, function of the number of descriptions and the vector
the weighted MSE minimization problem (68), i.e., SOMn&IlmensmnN, See [2_3] for details. W't_h this, the average
argmin ", ye|lwx — &) Since this defines a (Weighted_perceptual cost function (66) can be written as
Euclidean) nearest-neighbor MD vector quantization pohl N(z,) 2 Z vellEE|? & Z ~eDy, (74)

. T ) J
we may use conventional MD quantization techniques. In this k

. L . . £C{0,...,n—1} £C{0,...,n—1}
work, we will apply then-description index-assignment based -
lattice vector quantization construction of [23], [24]. where Dy is given by (72) and (73).
B. Rate-Distortion Analysis of Perceptual MD MH quantiza- V. DESIGN STUDY
tion In this section, we design and simulate the proposed coding

The optimum rate-distortion performances of MD problemarchitecture. We first show how one may obtain the perceptual
are generally not known. In fact, it is only completely salveweighting filter. We then motivate the use of MH quantization
for two descriptions in the case of MSE distortions and whitey considering a single-description setup, and show that by
Gaussian sources [2], [25] or colored Gaussian sources [263ing a simple fixed perceptual weighting filter, significant
[27]. In the case of more than two descriptions, even lessgsins over linear PCM can be achieved. We finally construct an
known. MD MH quantization based scheme, and consider a scenario

In this work, we let the MD quantizer be the simple indexwith three descriptions.
assignment based lattice vector quantizer presented i [23
With this MD quantizer, the reconstruction rule is given 8SymmetricMD coding refers to the case where: 1) all side descriptions

' . . . are encoded at the same descriptions rate. 2) the distasbierrved at the
as the average of the received descriptions, or in the ¢

= - h X ' &eCoder depends only upon the number of received descigptiad as such
all descriptions are received, it is given by the inverse @bt upon which descriptions that are received.



A. Obtaining the Perceptual Weighting Filter o Jazz music

——MHQ
PCM
-*-A?/12

Most psychoacoustic models are defined in the frequency
domain and are based on a block/dftime-domain samples.
We therefore need to introduce a certain amount of delay in |
order to achieve sufficient accuracy of the frequency respon
The specific choice of psychoacoustic model is not essential
for our design. We could, for example, choose the model from
the MPEGL1 layer 1 standard [7], which is based on a block of
M = 512 samples, at a sample rate£f.1 kHz or one could
use the model presented in [29], which is based\on= 128
time-domain samples. Alternatively, one could simply use a
fixed perceptual weighting filter in which case there is nothee
for a delay.

In order to obtain the perceptual filtén, of order K, we al. ‘ ‘ ‘ }
use an idea suggested by Schuller et al. [30].|2gtf)|* be 60 B motonmselE %
the masked threshold as computed by the perceptual mog@.,zl_ Operational rate-distortion curves.
for the kth block, and notice that we would like to find a
perceptual weighting filter with a transfer function thatifees approximated by [34]:

Hi(H]? ~ |60:(f)|72. If we use|0,(f)|?> as a short-term .

||oovv(er)|spectr|um(, t)r|1en the symmelric(al)Jtocorrelation sampien H(y) = h(z) —logy(A), (77)
{re.i},i=0,.... 4, is found simply as the inverse DFT Ofywhere A denotes the step-size of the quantizer. Moreover, it
|61(f)[?. The filter coefficientsiz ..., hx. i are now easily is well known that the (MSE) distortiol is approximately
found from{r.;} by use of the Yule-Walker equations [31]. p ~ A2/12. It follows from (77), that for a given coding

In the simulations that follow in the next sequel, we will usgate R* ~ H(4)), the step-size of the quantizer is given by
a simple fixed third-order perceptual weighting filter. Imtia A — 2h(®@)-R" and knowledge of the differential entropy of
ular, we use a filter which mimics the threshold in quiet [32}he source signal is required in order to obtain the optiral-s
Let f denote frequency (in Hz), then the threshold in quighg A of the quantizer. If the signals are Gaussian distributed,
74(f) can be approximated by the following expression [32},(z) = 1log,(2res?), where o? denotes the variance of

[33]: the signal. Thus, in this case, only knowledge of the source

751

o
o
T

Bitrate [bits/sample]
ol
o0 o

ol
T

>
3]
T

¥ -0.8 7 2\ variance is required.
Te(f) =3.64 (m) — 6.5 exp ( — O.G(M — 3.3) ) We use three different fragments of musiezz Pop, and
. Rock all having a sampling rate of8 kHz and a duration of
X 103<L) _ 15.0, 6.8, and 13.5 seconds, respectively. We measure their
1000 variances, and use the Gaussian approximation given above,
(75) in order to derive the scaling factak. As can be observed
from Fig. 4, the approximation is quite accurate, i.e., the
operational rate-distortion function of the linear PCM eded
signal approximately coincides with that obtained fromudytr
Hi(2) =1+ 0436721 — 0.64072~2 — 0.5839z 3,  Vk. Gaussian signdl.In Fig. 4, thex-axis describes the MSE
76) distortion in dB, and the-axis describes the discrete entropy
in bits per samplé?

Also shown in Fig. 4, is the operational MSE rate-distortion
performance obtained with the proposed perceptual MH quan-
tizer, in the simplest case whe® = 1,P = 0I, and
B. Real-Time Single-Description Perceptual MH quant@ati only a single description is used. It may be noticed that

To avoid delay, we will in this first simulation use simplgh® performance of MH quantization appears to be up to 5
uniform scalar quantization. Thusy = 1 and the current dB worse than that of linear PCM. However, it is important

sample is encoded and decoded independently of future sdfhXke€ep in mind, that the MH quantizer is optimized for a

ples. However, the current sample is encoded by taking irkgrceptual measure and not for the MSE. To further stress thi

account previous samples and coded values, as summarRet: we have shown the objective difference grades (ODGs)
by the current state vector. Withh = 1, and using only for the linear PCM signal as well as for the MH quantized

Using the technique described above, we obtairfirom (75),
i.e., for K = 3, we get

Recall thath,, is used in anoise-shapingrocess, and that this
operation does not introduce a delay.

a single description, the proposed scheme is akin to noise; . .
9 P prop eE’We note that in general such behavior cannot be expectedoramavould

shaping code_rs. _ _ _ ~ then need to use an alternative estimate of the differeetiafopy in order to
As a baseline, we first directly quantize the music signalptain A.

using a uniform scalar quantizer, which corresponds to con-°The discrete entropy lower bounds the resulting coding thg one
would obtain when using entropy coding on the quantized adight high-

Ventiqnal ".near PCM. UndeAr high-resolutipn as;umptichhe, resolutions, e.g., at least 2 — 3 bits/sample, the resuttotting rate will be
resulting discrete entropsf (y) of the quantized signal can bevery close to the discrete entropy.
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signal in Table II*! The ODGs provide an indication of theThus, this is not a trivial result, which follows from high-
perceived quality of the coded audio signals and are relategsolution quantization theory. The discrete entropy o th
to the standard ITU-R 5-grade impairment scale as showndoantized signal is measured to B& = 5.9677 bits/sample,
Table I. which is close to the desired target rate @®fbits/sample.

At this point, we replace the scalar quantizer by an additive

TABLE | . ; o . . X .
RELATIONSHIP BETWEEN THEITU-R 5-GRADE IMPAIRMENT ScALE Ao White noise, which is uniformly distributed in the interval
ODGs[33]. [-A/2; —A/2]. It follows that & is continuous valued and
Impairment ITU-R 5-grade scale ODG therefore has a density (instead of being discrete due to
Imperceptible _ 5.0 0.0 guantization). Using a nearest-neighbor entropy estanati
Zﬁéﬁ%@“gfﬁ Ot;,‘ijrfg”m annoying 3.‘(1)‘0 _2'_%)'0 approach [38], we numerically measure the average diffeen
Annoying 2.0 3.0 entropy of £ to be h(¢) = %Zf;ol h(g;) = —0.3492
Very annoying 10 4.0 bits/sample. Since is uniformly distributed, it is easy to show

thath(q) = log,(A) and thatR* = h(&) —log,(A) = 5.9538

As can be seen from Table I, the quality of the M._Elts/sample which is close to the above measutéd- 5.9677

guantized audio is significantly better than conventioimaddr It_?_fg?g;éfigg% us(l)ngerztis(():r?lir t(?]léaggfneer. for our scheme
PCM, when ODG rather than MSE is the preferred figure g op

of merit. We have also performed simulations where s for the schemes used for comparison. Thus, the particular

. . construction is not of importance. In the simulations weetes
replaced the scalar quantizer in the PCM setup biog . ) . .
. . . L . two different settings. First, an optimal Huffman losslessler
quantizer, i.e., the signal is firsbmpressetly thelog-function . S - .
; . . . was designed on the empirical statistics of the quantized

and quantized using a uniform scalar quantizer. Then, a - . S .

. L . : output. This is an ideal situation. Second, a Gaussian amieb
the decoder, the inverse operation is required, i.e.,ethe

function is applied in order to map the reconstruction from o> designed using only knowledge of the variance of the

the perceptual domain and back into the Euclidean doﬁ‘r‘r’ainInpUt S'g.r‘a': Th.'s IS a worst case situation for twq reasons.
. . : . The distribution is not matched to the source distributio
However, this companding approach did not give better OD

. . The Gaussian source is the hardest to code under MSE
than that achieved by standard linear PCM encoding. distortion. Thus, if the source variance is fixed, the ratemvh

TABLE |I using a Gaussian codebook is greater than or equal to the

OBJECTIVE DIFFERENCE GRADES FOR THREE FRAGMENTS OF MUSIC rate When using the true distribution' Th|s is a|so inte'rgst

Jazz Pop, AND Rock from a practical perspective, since by designing the lassle
EntropyMHQ — PCM —— MHQ ~ PCM — MHQ ~ PCM codebook for a Gaussian distribution (of a fixed variance),
[bits] (Jazy (%az) (Pon (Pop) (Roch _ (Roch one makes sure that the operational coding rate will never
3191 3.733  3.808  -3.854 3864  -3.862 _ pera -0ding
-2.890  -3.440  -3460 -3.752 -3.779  -3.810 exceed that what it would be if the distribution was truly
'é-ggi 'i-ggg 'i-%g -i-ggg 'g-ggg ggéi Gaussian. When using thiazzsignal, we have measured the
0473 -1206 -0418 -0.855 -1027 -1719 average empirical discrete entropy @f.}, as well as the the
coding rate obtained after entropy coding using an optimal

We now compare the numerical performance obtained godebook (i.e., designed using the empirical distributisn

this section to the analytical expressions provided in Sefi€ actual sequencg}). For comparison, we have designed

tion 1ll-A. We will consider the case of?* — 6 bits/sample & Gaussian codebook, i.e., by using the variancgyp} and

and use theRock music signal. First, the variance of the@ndomly generating Gaussian samples, which are then used
music signal is measured to 0385, which results in a to train a Huffman codebook. Then, we used this unmatched
differential entropy ofh(z) = —0.3030 bits/sample, when codebook to encodgy; }. The obtained rates (in bits/sample)

using the Gaussian approximation. From this, the scalife illustrated in Table IIl. Notice that in both cases, the
factor is obtained ag\ — 2-0-3030—6 _ 9127 Thé average operational bit rates are close to the desired discret@ntr

distortion given by (12) is measured to Be= 1.3381- 107 of the output, which again is close to the desired target rate
which is close toE[||q||?] = A?/12 = 1.3366 - 10~° (where TABLE II

the firSt equa"t)’_is \_/a"d U_nder the assumption of uniformly operationaL BIT RATES[BITS/SAMPLE] AFTER LOSSLESS CODING
distributed quantization noisg) as follows from Lemma 1. It USING HUFFMAN CODING.

0~ O U1 N

is important to note thak[||z — y||?] # A?/12, since we are Target rate| Discrete entropy  Rate: optimal CB  Rate: Gaussian CB
not optimizing for the MSE and as suchy, # [1 0 --- 0]. 4 3.985 4.021 4.061
5 4.981 5.013 5.053
11The ODGs scores are obtained by using the Matlab implementat ? gg;g ggié 2(0):;‘31
provided by Kabal et al. [35] of the PEAQ standard [36]. 8 7'978 8.009 8.054

12|nterestingly, no such operation is required at the decdoethe MH
quantization approach, since the encoded symbols aredglnegpresenting
the signal in the original domain.

13The log-companding approach is particular useful for fixee- coding We next consider an application where final state weight-

and when the distortion is the input-weighted mean squaned, avhere the ing and vector quantization is used. Note that when vector
weight is given by the reciprocal of the square of the inpfit{37]. However,

we are here using entropy-constrained coding and a diztontieasure which quantizaﬂon is utilized, it is important that the first sdm.p.
is different from the input-weighted. of the vector can be decoded independently of the remaining
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. TABLE IV
subvector. For example, the whole vector may be quantizegpgs ror pIFFERENT SUBSETS OF DESCRIPTIONS AS A FUNCTION OF

using entropy-constrained vector quantization and then thTHE WEIGHTS. TOP THREE ROWSR* = 7 AND BOTTOM THREE ROWS
. . . L —
first coordinate of the vector is separately entropy codedl an R* = 4 BITS/SAMPLE PER DESCRIPTION

transmitted to the decoder. Alternatively, the first cooate _ 2 v° y! T o e " A

: : ; . >01 -3.164 -3.191 -3.267 -2.540 -2.038 -2.206 -0.139

may pe quantized using a.scalar _quan.tlzer and the remalr.nr‘@2 3164 3212 3282 2540 2068 -2.222  -0.099

coordinates may be quantized using either a vector quantize.3 -3.138 -3.204 -3.287 -2.535 -2.044 -2.183 -0.052

or a sequence of scalar quantizers applied individuallpglo 8-; -g-ggg -g-ggg -g-ggg -g-ggg g;ié -g-;gg -i-ggg

the remaining dimensions of the input vector. _ 923 3861 -3794 -3870 -3834 -3741 -3812 -2458

Let N = 4 so that three future samples are required, and

thus there is an inherent delay of three samples. Furthermor TABLEV _

we use thek’ = 3 order perceptual weighting filter from (76). ~ AVERAGE ZEIEEEETTI%’LLSDL%f?;g’g;g’:g&%g“)AND BY

We use theD, (four-dimensional) lattice vector quantizer at 0.05 o io o1 0,20 ' 0.5 0,50

it pr _ i 4 i p=0.05 p=0.10 p=0.15 p=0.20 p=0.25 p=0.

a bit-rate of B* = 6 bits/sample [28}* We use a simple —ys ottt s e s e P

state-weighting? = I, i.e., theK x K identity matrix, which , —3

results in an ODG 0f-2.5037 on the Pop music signal. On ~ MDsim. | —48.872 —43.052 —38.869 —35.563 —33.013 —30.982
weinhting i . n=3

the other hand, when np stgte weighting is u.sed_, e Rep.sim| —43.314 —41.292 —38.348 —35.344 —32.762 —30.545

01, the performance is in this case2.7391, which is only ,, =73

slightly worse. It is an interesting topic for further studg ~Rep.sim| —41.002 —35.080 —31.557 —29.0633—27.126 —25.554

examine the impact of final state-weighting on the subjectiv gD: 2

audio quality and to find optimal weighting matrices.

—28.083 —25.073 —23.312 —22.063 —21.093 —20.302

n=1

C. Real-Time Multiple-Description Perceptual MH quantiza

tion

We now propose a design for the MD case and Whe?émulatlons is the range € [5%;30%)] and is incremented
n steps of5%. For each packet-loss rate, the numeric results

P = 0I. Recall from Lemma 4 that a (Euclidean) nearesl[- : )
neighbor MD quantizer may be used and that we use t ge averaged over 10 different randomly chosen packet-loss

: . . . . realizations. The shown results are for tlezzfragment using
!ndex—aSS|g.nrr.1ent cons_tructlon prese_nted in [23]. Thisites three descriptions and bits/sample per description. Also
n n _descnp'uons, which are Co”.‘b'”e‘?' at the encoder_ 2Rown is the theoretic performance obtained if one would
described by (64). In the following simulations, we will

considerN — 1 andn = 3 descriptions. Thus, each sampl use single-description (SD) MH quantizationlatbits/sample

) . o . last row in Table V). From Table V, it is clear that the perfor
is encoded into three descriptions, which are each trea . . . . .

. ; . mance obtained from simulations is close to that descrilyed b
as a separate packet. Let the weights in (64) be given

tﬁ%or . As expected, the performance decreases as thetpacke
Yo =71 = Y2 = (1 —p)p2,701 = Y2 = Y12 = (1 —p)Qp, 4 P P P

loss rate increases. Interestingly, a three-descriptimtem
andyo12 = (1—p)3, wherep = 0.1,0.2,0.3. Moreover, let the gy P

nesting factor b@ = 9 and let the rates of the side description%?eraltlng ab bits/sample per description and at a packet-loss

be identical. Table IV shows the ODGs for different subsétsg te ofp = 30.%’ performs better than a single-description
descriptions when thdazzmusic signal is encoded. It may be ystem operating al5 bits/sample and at a packet-loss rate
observed that the performance of the individual descni]stiOOf p = 5%. The latter observation strengthens the relevance

) " of the scheme proposed in the present work. A suboptimal
as well as the performance when using any two descriptio brop P P

is largely unaffected by the choice of weights. However, th%gproach to multiple descrl_ptl_on g:odlng 'S repet|t|<_)n_ &
S 2 I.e., where the same description in a single-descriptidapse
central reconstruction, i.e., when all descriptions aeduflast . . : .
column) is hiahly affected. In fact. at relativelv hiah bittes is simply repeated a number of times. Table V illustrates
. ) gnly : ’ y high | the situation when allowing one and two repetitions. When
(relatively low bit rates), the central reconstruction noyes

(becomes worse) with increasing packet loss rates. The allowing one repetition, the bitrate per description 1$

lationship between weights (and how to form the feedbacq?S/Sample’ whereas when allowing .tWO repetltlons,t tm
: : iS'5 bits/sample. Thus, the total rate is 15 bits/sample as in the
at the encoder), bit rates, and performance is unfortunatel

o ; ther simulations presented in the table. At high loss rates
non-trivial and open problem, see also Footnote 7. Figs. 5{) P 9 '

. often the case that only a single description is receivet a

N 5(c) show the ODG.S for all three fragments at dn‘fereq e performance of repet?:ion cogding becopmes close to that o
bit rates. Here the weights are basedonr- 0.1. It may be MD coding
noticed that, the more descriptions used in the reconsrnyct '
the better the performance. Moreover, as expected, irnogeas
the bit-rate also leads to better performance. VI. CONCLUSIONS

In Table V, we compare the average run-time perceptual ) i )
distortion given by (74) to the performance observed at thel_n this work, we have propoged a rea_l-tl_me audl_o coder
receiver and obtained by simulations. At this point, we Ié(Yh'Ch uses elements of multiple-description coding and

the weightp denote the the packet-loss rate, which in th@oving-horizon guantization. In particular, it was shovnatt
MH optimization could be mapped into a domain which

140nly the first sample of the vector is entropy coded and tréttesin allowed the use of existing (Euclidean) nearest-neighbbr M
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Fig. 5. ODGs when using different subsets of descriptionseiconstructions.

guantization techniques. The moving-horizon constructb
lowed us to efficiently incorporate perceptual weightingtie
single-description case and without packet losses, it wawis

could be improved over what was possible with conventional
noise-shaping techniques. It was also shown that the iioclus
of multiple descriptions provided a certain degree of rébus
ness towards packet losses.

ACKNOWLEDGMENT

The authors would like to thank the referees for their
comments and suggestions, which helped improve the quality
and presentation of the paper.

REFERENCES

[1] L. Bramslgw, “Preferred signal path delay and high-passoff in open
fittings,” International Journal of Audiologyvol. 49, pp. 634 — 644,
2010.

[2] A. A. E. Gamal and T. M. Cover, “Achievable rates for mplé
descriptions,"IEEE Trans. Inf. Theoryvol. IT-28, pp. 851 — 857, Nov.
1982.

[3] R. Arean, J. Kovacevi¢, and V. K. Goyal, “Multiple deftion per-
ceptual audio coding with correlating transforniZEE Trans. Speech
Audio Processingvol. 8, pp. 140 — 145, March 2000.

[4] G. Schuller, J. Kovagevi¢, F. Masson, and V. K. GoydRobust low-
delay audio coding using multiple description$ZEE Trans. Speech
Audio Processingvol. 13, Sep. 2005.

[5] J. Dstergaard, O. A. Niamut, J. Jensen, and R. Heusdé&escéptual
audio coding using:-channel lattice vector quantization,” Rroc. IEEE
Int. Conf. Acoustics, Speech, and Signal Processinog 5, pp. 197 —
200, May 2006.

[6] G. C. Goodwin and D. E. Quevedo, “Moving-horizon optingalantizer
for audio signals,”J. Audio Eng. Soc.vol. 51, pp. 138 — 149, March
2003.

[7] International Standard ISO/IEC 11172-3 (MPEG), “Infation technol-
ogy - coding of moving pictures and associated audio fortaligitorage
media at up to about 1.5 mbit/s. part 3: Audio,” 1993.

[8] D. E. Quevedo and G. C. Goodwin, “Multistep optimal argato-digital
conversion,”IEEE Trans. Circuits Syst, hol. 52, pp. 503 — 515, March
2005.

[9] G.C. Goodwin and K. S. SirAdaptive Filtering Prediction and Control
Prentice-Hall, 1984.

[10] J. B. Rawlings and D. Q. Mayné&jodel Predictive Control: Theory And
Design Nob Hill Publishing, 2009.

[11] D. E. Quevedo, H. Bdlcskei, and G. C. Goodwin, “Quaattizn of filter
bank frame expansions through moving horizon optimizgtidBEE
Trans. on Signal Processingyol. 57, pp. 503 — 515, February 2009.
February.

[12] R. Zamir and M. Feder, “On lattice quantization noisEEEE Trans.
Inf. Theory vol. 42, pp. 1152 — 1159, July 1996.

[13] A. R. Calderbank, I. Daubechies, W. Sweldens, and Brda, “Wavelet
transforms that map integers to integerdppl. Comput. Harmonic.
Anal, vol. 5, pp. 332 — 269, July 1998.

[14] V. K. Goyal, “Transform coding with integer-to-integdransforms,”
IEEE Trans. Inf. Theoryvol. 46, pp. 465 — 473, march 2000.

[15] P. Hao and Q. Shi, “Matrix factorization for reversibigeger mapping,”
IEEE Trans. Signal Prog.vol. 49, pp. 2314 — 2324, October 2001.

[16] T. M. Cover and J. A. Thomaglements of information theanwiley,
1991.

[17] R. Zamir and M. Feder, “Information rates of pre/pod#tefied dithered
quantizers,"IEEE Trans. Inf. Theoryvol. 42, pp. 1340 — 1353, Septem-
ber 1996.

[18] M. S. Derpich, J. @stergaard, and G. C. Goodwin, “The dgatic
Gaussian rate-distortion function for source uncorrelatéstortions,”
in Proc. Data Compression Conf2008.

[19] C. E. Shannon, “A mathematical theory of communicatidBell Syst.
Tech. Journal vol. 27, pp. 379 — 423; 623 — 656, July and October
1948.

[20] R. Zamir, Y. Kochman, and U. Erez, “Achieving the Gaassirate-
distortion function by prediction,"EEE Trans. Inf. Theoryvol. 54,
pp. 3354 — 3364, July 2008.

[21] E. Silva, M. Derpich, and J. @stergaard, “A framework dontrol system

that significant gains over linear PCM could be achieved design subject to average data-rate constraifEZE Transactions on
without introducing delay and without having to change the  Automatic Contral 2010. Accepted for publication.

decoding architecture of existing systems. By introducng

] J. Massey, “Causality, feedback and directed inforomgt in Proceed-
ings of the International Symposium on Information Theong ats

few samples delay, with the proposed coder the noise shaping Applications (Hawaii, USA), 1990.



(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]
[32]
(33]

[34]
[35]
[36]

[37]

(38]

J. @stergaard, J. Jensen, and R. Heusdemschannel entropy-
constrained multiple-description lattice vector quaatin,” IEEE
Trans. Inf. Theoryvol. 52, no. 5, pp. 1956 — 1973, 2006.

J. Ostergaard, R. Heusdens, and J. Jenserchannel asymmetric
entropy-constrained multiple-description lattice veciuantization,”
IEEE Trans. Inf. Theoryvol. 56, pp. 6354 — 6375, December 2010.
L. Ozarow, “On a source-coding problem with two chasnahd three
receivers,”Bell Syst. Tech. Joyrvol. 59, pp. 1909 — 1921, December

13

Daniel E. Quevedo(S'97 — M'05) received Inge-
niero Civil Electronico and Magister en Ingenieria
Electronica degrees from the Universidad Técnica
Federico Santa Maria, Valparaiso, Chile in 2000.
In 2005, he received the Ph.D. degree from The
University of Newcastle, Australia, where he is
currently a research academic. He has been a visiting
researcher at ETH Zirich, Switzerland, at Uppsala

1980.

J. Chen, C. Tian, and D. Diggavi, “Multiple descriptiazoding for
stationary Gaussian sourcel2EE Trans. Inf. Theoryvol. 55, pp. 2868
— 2881, June 2009.

University, Sweden, at The University of Melbourne,
Australia, at Aalborg University, Denmark, at KTH,
Stockholm, and at Kyoto University, Japan.

Dr. Quevedo was supported by a full scholarship from the aluassoci-
J. @stergaard, Y. Kochman, and R. Zamir, “Colored Gaumssultiple ation during his time at the Universidad Técnica Federiemt® Maria and
descriptions: Spectral-domain characterization and-tlorain design,” received several university-wide prizes upon graduatiteyreceived the IEEE
IEEE Trans. Inf. Theory2010. Submitted. Electronically available at:Conference on Decision and Control Best Student Paper Aima2®03 and
http://arxiv.org/abs/1006.2002. was also a finalist in 2002. In 2009, he was awarded an Aumtrdiesearch
J. Conway and N. SloaneSphere Packings, Lattices and Groups Fellowship. His research interests cover several areasitofveatic control,
Springer, 3rd ed., 1999. signal processing, communications, and power electronics

H. F. F. Baumgarte and C. Ferekidis, “A nonlinear psyatmistic model
applied to the ISO mpeg layer 3 coder,” Broc. 99th AES SympOct.
1995.

G. D. T. Schuller, B. Yu, D. Huang, and B. Edler, “Peraggtaudio
coding using adaptive pre- and post-filters and losslesspoession,”
Trans. Speech and audio Prowol. 10, p. 379, Sep. 2002.

J. D. Markel and A. H. Grayl.inear prediction of speectPrentice Hall,
1976.

E. Zwicker and H. FastlPsychoacoustics: facts and modeBpringer
series in information sciences, Springer, Berlin, 2nd &899.

M. Bosi and R. E. Goldbergintroduction to digital audio coding and
standards Kluwer Academic Publisher, 2003.

R. Gray, Source Coding TheoryKluwer Academic Press, 1990.

P. Kabal, “An examination and interpretation of ITU-FSR.387: Percep-
tual evaluation of audio quality.” Technical Report, MdQilniversity,
Version 2: 2003-12-08, 2003.

International Telecommunication Union, “ITU-R recomndation
BS.1387: Method for objective measurements of perceivelibaguality
(PEAQ),” 2001.

T. Linder, R. Zamir, and K. Zeger, “High-resolution goa coding
for non-difference distortion measures: multidimensicc@npanding,”
IEEE Trans. Inf. Theoryvol. 45, pp. 548 — 561, March 1999.

R. Duda, P. Hart, and D. StorkPattern Classification Wiley-
Interscience, 2nd ed., 2001.

Jesper Jensemnreceived the M.Sc degree in electrical
engineering and the Ph.D degree in signal process-
ing from Aalborg University, Aalborg, Denmark, in
1996 and 2000, respectively.

From 1996 to 2000 he was with the Center for
Person Kommunikation (CPK), Aalborg University,
as a Ph.D student and assistant research professor.
From 2000 to 2007 he was a post-doctoral researcher
and assistant professor with Delft University of
) ) . Technology, The Netherlands, and an external asso-
Jan @stergaard (S'98 — M'99) received the ciate professor with Aalborg University, Denmark.
M.Sc. degree in electrical engineering from Aal-cyrrently, he is with Oticon A/S, Denmark. His main reseaimierests are
borg University, Aalborg, Denmark, in 1999 and thej, the area of acoustical signal processing, including aigetrieval from
Ph.D. degreedum laud¢ in electrical engineering poisy observations, coding, speech and audio modificatioh synthesis,

from Delft University of Technology, Delft, The jneliigibility enhancement of speech signals, and peeaipaspects of signal
Netherlands, in 2007. From 1999 to 2002, he Worke‘il)rocessing.

as an R&D engineer at ETI A/S, Aalborg, Denmark,
and from 2002 to 2003, he worked as an R&D en-
gineer at ETI Inc., Virginia, United States. Between
September 2007 and June 2008, he worked as a post-
doctoral researcher in the Centre for Complex Dy-

namic Systems and Control, School of Electrical Engingeend Computer
Science, The University of Newcastle, NSW, Australia. Frdume 2008 to
March 2011, he worked as a post-doctoral researcher at Aplbniversity,
Aalborg, Denmark. He has also been a visiting researcher eatAvViv
University, Tel Aviv, Israel, and at Universidad Técnicaderico Santa Maria,
Valparaiso, Chile. He has received a Danish Independes¢dReh Councils
Young Researchers Award and a fellowship from the Daniste&eb Council
for Technology and Production Sciences. Dr. @stergaarduisewtly an
Associate Professor at Aalborg University, Aalborg, Derima



