
Clark University Clark University

Clark Digital Commons Clark Digital Commons

Computer Science Faculty Works by Department and/or School

2024

Byzantine Consensus in Abstract MAC Layer Byzantine Consensus in Abstract MAC Layer

Lewis Tseng
Clark University, LTseng@clarku.edu

Callie Sardina
University of California, Santa Barbara

Follow this and additional works at: https://commons.clarku.edu/faculty_computer_sciences

 Part of the Computer Sciences Commons

Repository Citation Repository Citation
Tseng, Lewis and Sardina, Callie, "Byzantine Consensus in Abstract MAC Layer" (2024). Computer
Science. 94.
https://commons.clarku.edu/faculty_computer_sciences/94

This Conference Paper is brought to you for free and open access by the Faculty Works by Department and/or
School at Clark Digital Commons. It has been accepted for inclusion in Computer Science by an authorized
administrator of Clark Digital Commons. For more information, please contact larobinson@clarku.edu,
cstebbins@clarku.edu.

https://commons.clarku.edu/
https://commons.clarku.edu/faculty_computer_sciences
https://commons.clarku.edu/faculty_departments
https://commons.clarku.edu/faculty_computer_sciences?utm_source=commons.clarku.edu%2Ffaculty_computer_sciences%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=commons.clarku.edu%2Ffaculty_computer_sciences%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.clarku.edu/faculty_computer_sciences/94?utm_source=commons.clarku.edu%2Ffaculty_computer_sciences%2F94&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:larobinson@clarku.edu,%20cstebbins@clarku.edu
mailto:larobinson@clarku.edu,%20cstebbins@clarku.edu

Byzantine Consensus in Abstract MAC Layer
Lewis Tseng #

Clark University, USA

Callie Sardina #

UCSB, USA

Abstract

This paper studies the design of Byzantine consensus algorithms in an asynchronous single-hop
network equipped with the “abstract MAC layer” [DISC09], which captures core properties of
modern wireless MAC protocols. Newport [PODC14], Newport and Robinson [DISC18], and Tseng
and Zhang [PODC22] study crash-tolerant consensus in the model. In our setting, a Byzantine
faulty node may behave arbitrarily, but it cannot break the guarantees provided by the underlying
abstract MAC layer. To our knowledge, we are the first to study Byzantine faults in this model.

We harness the power of the abstract MAC layer to develop a Byzantine approximate consensus
algorithm and a Byzantine randomized binary consensus algorithm. Both of our algorithms require
only the knowledge of the upper bound on the number of faulty nodes f , and do not require the
knowledge of the number of nodes n. This demonstrates the “power” of the abstract MAC layer,
as consensus algorithms in traditional message-passing models require the knowledge of both n and
f . Additionally, we show that it is necessary to know f in order to reach consensus. Hence, from
this perspective, our algorithms require the minimal knowledge.

The lack of knowledge of n brings the challenge of identifying a quorum explicitly, which is a common
technique in traditional message-passing algorithms. A key technical novelty of our algorithms is
to identify “implicit quorums” which have the necessary information for reaching consensus. The
quorums are implicit because nodes do not know the identity of the quorums – such notion is only
used in the analysis.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Byzantine, Randomized Consensus, Approximate Consensus, Abstract MAC

Funding This material is based upon work partially supported by the National Science Foundation
under Grant CNS-2238020.

ar
X

iv
:2

31
1.

03
03

4v
1

 [
cs

.D
C

]
 6

 N
ov

 2
02

3

2 Byzantine Consensus in Abstract MAC Layer

1 Introduction

We study the Byzantine consensus problems [23, 13, 29] in the “abstract MAC layer” model
[21, 25, 18, 16]. The model was proposed by Kuhn, Lynch, and Newport [21] which harnesses
the basic properties provided by existing wireless MAC (medium access control) protocols.
The main purpose is to separate the high-level and low-level logic of algorithm design and the
management of the wireless medium and participating nodes, respectively. Understanding
the dynamics of these two levels helps one to explore the fundamental tradeoffs in algorithm
design, and hopefully enables the development and deployment of high-level algorithms onto
low-level MAC protocols [21, 28, 27].

The model is focused on an asynchronous single-hop network in which nodes communicate
via “mac-broadcasts,” the broadcast primitive provided by the abstract MAC layer. The mac-
broadcast sends a message to all the fault-free nodes in the network, and the broadcaster
will eventually receive an acknowledgement (ACK) upon the successful completion of the
mac-broadcast. That is, upon learning the ACK, the broadcaster can be sure that all
the fault-free nodes have received the message that was broadcast. The abstract MAC layer
additionally provides authentication of messages between unknown processes. This primitive
is stronger than the traditional point-to-point message-passing [3, 24] in the sense that prior
works have proposed wait-free crash-tolerant randomized consensus protocols [27, 28] in
the abstract MAC layer, which is typically infeasible in the point-to-point message-passing
models [3, 24].

To see the “power” of the abstract MAC layer, consider the case when node i sends a mes-
sage m using mac-broadcast. Node i does not need to wait for explicit acknowledgement
messages from other nodes. Instead, the abstract MAC layer provides the ACK which
identifies the completion of the mac-broadcast. This indicates that all the other fault-free
nodes have received the message m. In the case of traditional asynchronous point-to-point
message-passing models, such guarantee is only ensured when node i receives acknowledge-
ment messages from all the other fault-free nodes, which is impossible when nodes may
crash.

Another important modeling choice is that prior works [21, 25, 18, 16, 27, 28, 32] assume
little information known to the nodes to better capture the limitations of existing MAC
protocols and the nature of the wireless networks. In particular, nodes do not have any a
priori information about other nodes within the system. Some prior works (e.g., [27, 28])
even study anonymous algorithms in which nodes do not have unique identifiers. We assume
that each node has a unique identifier, but does not have prior information on the size of
the system, or the identifiers of any other node at the beginning of the algorithm.

Consensus in Abstract MAC Layer

To our knowledge, there are three prior papers [28, 27, 32] that study fault-tolerant consensus
in the abstract MAC layer. All three works consider either no failure, or assume only crash
faults. In [28], Newport proves several impossibilities and identify consensus algorithms
when there is no failure. Newport and Robinson [27] propose two algorithms that employ
the abstract MAC layer to solve randomized binary consensus when nodes may crash. Tseng
and Zhang [32] provide another randomized consensus algorithm with improved storage
complexity and expected time complexity. Approximate consensus is also studied in [32].

We are not aware of any work on tackling Byzantine faults in the abstract MAC layer. We

L. Tseng and C. Sardina 3

assume that a Byzantine faulty node can behave arbitrarily. It may also send inconsistent
messages to other nodes. The only constraint of the Byzantine adversary is that it cannot
break the underlying abstract MAC layer. First, it cannot “nullify” the delivery guarantee
provided by the ACK at fault-free nodes. Second, even though nodes do not have informa-
tion about other nodes a priori, communication is authenticated (by the MAC layer), and
the receiver can verify the identity of the message sender, once it receives the message. Con-
sequently, a Byzantine adversary cannot fake its identity. From a more practical perspective,
we are focused on the Byzantine faults at the application layer. For example, the Byzantine
adversary under our consideration cannot use jamming or sybil attacks to undermine the
abstract MAC layer.

The Fischer-Lynch-Paterson (FLP) impossibility result [14] proves that it is impossible to
design a deterministic exact consensus algorithm when nodes may fail in asynchronous
message-passing systems. The result can be extended to the abstract MAC layer model
[28]. Therefore, we focus on approximate consensus [13] and randomized binary consensus
[29] problems. In the first problem, the agreement property is relaxed so that the out-
puts at fault-free nodes only need to be roughly equal, whereas in the second problem, the
termination only holds in a probabilistic sense.

Our Contributions

Consider an asynchronous system consisting of n nodes and up to f Byzantine faulty nodes.
We propose the two following Byzantine-tolerant consensus algorithms:

Approximate Consensus: We present MAC-BAC, which is correct given n ≥ 5f + 2.
Similar to prior approximate algorithms [13, 1], nodes proceed in rounds and maintain a
state value which is updated every round and eventually will become the output. MAC-
BAC achieves convergence rate 3/4. More concretely, after every two rounds, the range
of the state values at fault-free nodes is reduced by at least 1/4.

Randomized Consensus: We present MAC-RBC, which is correct given n ≥ 5f + 1. The
expected time complexity is constant. The algorithm assumes the existence of a common
coin [29] among all fault-free nodes.

Our algorithms require only the knowledge of f, and do not need to know n. We also prove
that the knowledge of f is necessary for solving Byzantine consensus in Appendix E.

Our model is weaker than the synchronous point-to-point message-passing model [23]; hence,
the lower bound on resilience 3f + 1 still applies. Moreover, a node can use mac-broadcast
to simulate a point-to-point communication if n is known. Therefore, prior algorithms
[1, 29, 26] with optimal resilience 3f + 1 can be simulated in our model with the knowledge
of n. The lower bound on resilience when n is unknown is left as an interesting future work.

The lack of knowledge of n makes it impossible to identify a quorum explicitly, which is a
common technique in consensus algorithms in the traditional message-passing models, e.g.,
[3, 24, 23, 13, 29, 26]. A key novelty of our algorithms is to identify “implicit quorum.”
More precisely, our technique ensures that there exists a quorum whose information will
eventually be propagated to other fault-free nodes; however, nodes do not know the explicit
identifiers of the nodes inside the quorum.

One challenge of such an implicit quorum is that the analysis becomes more complicated,
as we first need to ensure that an implicit quorum exists and then we need to argue that

4 Byzantine Consensus in Abstract MAC Layer

other nodes will be able to learn the necessary information from the implicit quorum (which
is not always obvious due to asynchrony and Byzantine faults).

2 Related Work

We discuss the most relevant consensus algorithms and the works on the abstract MAC layer.
Modeling wireless networks with the abstract MAC layer was first introduced by Kuhn,
Lynch, Newport in [21], in which they present algorithms for multi-message broadcasts in a
multi-hop network when there is no failure. Non-fault-tolerant leader election and maximal
independent set problems are later studied in the model [25, 18, 16].

The three prior works [28, 27, 32] that study fault-tolerance in the abstract MAC layer
all focus on crash faults. The techniques are different from our work, because Byzantine
adversary can send inconsistent messages. For example, a technique of “counter racing” (for
identifying when to output a value safely) is used in [27] and a technique of “jumping” to
a state proposed by another node is proposed in [32]. These techniques do not work if a
Byzantine node lies about its observations or state value.

The problem of Byzantine consensus in message-passing has been extensively studied in the
literature since the seminal work by Lamport, Shostak and Pease [23]. Dolev et al. [13] pro-
pose an iterative approximate Byzantine consensus algorithm that is correct given n ≥ 5f +1.
Our algorithm MAC-BAC is inspired by their algorithm and requires n ≥ 5f + 2. Moste-
faoui et al. [26] propose a Byzantine randomized binary consensus with optimal resilience
n ≥ 3f + 1 and achieve expected constant time complexity. Our MAC-RBC algorithm is
inspired by their algorithm, but requires n ≥ 5f + 1. Both algorithms use “common coin”
[29], which guarantees that every node receives the same sequence of random bits. Unlike
prior algorithms, MAC-BAC and MAC-RBC does not use the information regarding n or
the notion of “explicit quorum,” so our design and analysis are more complicated than the
ones in [13, 26].

Abrahm et al. [1] present an approximate consensus algorithm with optimal resilience.
Their algorithm relies on the reliable broadcast primitive and the witness technique. Many
works [6, 30, 31] describe Byzantine randomized binary consensus algorithms with various
guarantees. These algorithms all achieve optimal resilience n ≥ 3f +1. There are also recent
works on Byzantine randomized consensus that require more powerful primitives such as PKI
[11, 15, 5, 10, 8]. All these algorithms require the knowledge of n and rely on the usage of
explicit quorum and some variation of reliable broadcasts [7].

Without knowing n, it is difficult to identify quorums explicitly so that there is an intersection
between any two quorums. For example, in many prior works that use reliable broadcast
(e.g., [1, 7]), a quorum of size n − f is used, which ensures that a Byzantine node cannot
equivocate. However, when n is unknown, it is unclear whether such property can be
guaranteed, forcing us to develop new techniques. In fact, the lower bound on the resilience
of Byzantine consensus problems in the abstract MAC layer is still an open problem.

There is also a line of works aiming to reach consensus in synchronous systems with unknown
participants. The problem is named CUPs (Consensus with Unknown Participants). Similar
to our model, the CUPs problem assumes no knowledge of n. It was first studied by Cavin
et al. [9] when nodes do not crash. Greve and Tixeuil [17] study the tradeoffs between
synchrony and the shared knowledge between nodes in a multi-hop network. Later, Alcheriri

L. Tseng and C. Sardina 5

et al. [2] and Khanchandani and Wattenhofer [19] consider the Byzantine consensus in CUPs.
These work assume synchrony; hence, are very different from our model.

3 Preliminaries

3.1 System Model
Our system model consists of a static system with n nodes, with up to f nodes which may
be Byzantine faulty. The set of nodes is denoted as the set of their unique identifiers, i.e.,
{1, . . . , n}. However, the knowledge of n is only used in analysis. In our algorithms, nodes
do not know n. Moreover, due to asynchrony and faults, it is impossible to learn n exactly.

Byzantine nodes may send arbitrary messages to other nodes, or act as crashed nodes. The
messages which Byzantine nodes send to all other nodes need not be consistent. We assume
that the behavior of the Byzantine nodes is controlled by a malicious adversary with access
to the system state throughout the algorithm. Nodes which are not Byzantine are called
fault-free nodes. Fault-free nodes follow the algorithm protocol. Our algorithm MAC-BAC
assumes n ≥ 5f + 2, and MAC-RBC assumes n ≥ 5f + 1.

Our algorithm operates on top of a single-hop network equipped with the abstract MAC
layer [20]. The model provides a communication primitive “mac-broadcast,” which ensures
an eventual delivery guarantee. More specifically, at some point after a node i has broadcast
a message via “mac-broadcast,” node i will receive an acknowledgment (ACK) which indi-
cates that all other fault-free nodes within the system have received i’s message. No other
information is contained within the ACK, e.g., the ACK relays no information concerning
the number of other nodes within the system. As discussed in Section 1, we consider Byzan-
tine faults in the application layer; hence, the guarantees of the underlying abstract MAC
layer cannot be disrupted by the Byzantine adversary.

3.2 Approximate and Randomized Consensus
A correct approximate consensus algorithm [13] must satisfy the following conditions:

Termination: Every fault-free node must output a value in a finite amount of time.

Validity: the output must remain in the convex hull of the inputs of the fault-free nodes.

ϵ-Agreement: For any ϵ > 0, the output of all fault-free nodes are within ϵ of each other.

A correct randomized binary consensus algorithm [29, 4] must satisfy the following conditions
when the input is a binary value (either 0 or 1):

BC-Termination: Every fault-free node outputs a value with probability 1.

BC-Validity: Every output value was proposed by a fault-free node.

BC-Agreement: The output of all fault-free nodes are identical.

4 Byzantine Approximate Consensus: MAC-BAC

This section presents our algorithm MAC-BAC, which is a correct Byzantine approximate
consensus given n ≥ 5f + 2. It follows the structure of the algorithm by Dolev et al. [13].
In both algorithms, node i proceeds in rounds and keeps a state value vi that eventually
becomes the output, after a sufficient number of rounds. The key difference between the

6 Byzantine Consensus in Abstract MAC Layer

Algorithm 1 MAC-BAC: Steps at each node i

Local Variables:
pi ▷round index, initialized to 0
vi ▷state, initialized to xi, the input at node i

1: for pi ← 0 to pend do
2: mac-broadcast(i, vi, pi)
3: wait until node i has received

≥ 4f + 2 messages from round pi

4: Ri[pi]← received round-pi messages
5: l = minf+1{Ri[pi]}

6: u = maxf+1{Ri[pi]}
7: vi[pi + 1]← l+u

2
8: pi ← pi + 1
9: end for

10: output vi[pend + 1]

two algorithms is that in MAC-BAC, node i waits until it receives at least 4f + 2 messages
from the same round (instead of n − f in [13]). By assumption, node i is able to transmit a
message to itself using mac-broadcast.

Recall that in our model, we assume nodes do not have the knowledge of n. Consequently,
we do not have the notion of explicit quorum. (In [13], the n − f nodes from which a node
i received a message act as a quorum.) Therefore, our analysis is more complicated in the
sense that we need to identify how important information is propagated throughout the
rounds, via the help of “implicit quorum.”

4.1 MAC-BAC
MAC-BAC is presented in Algorithm 1. The first step of the algorithm is to broadcast its
identifier, its current value and round index using mac-broadcast. Once this mac-broadcast
has completed, an ACK will be received from the abstract MAC layer acknowledging that
the message has been received by all the fault-free nodes.

Each node i then waits to receive at least 4f + 2 messages from round pi. Upon receiving
these messages, node i discards extreme values and update its new state value. We introduce
two notations to facilitate the presentation:

minf+1{Ri[pi]} denotes the (f + 1)-st minimum value in Ri[pi];1 and

maxf+1{Ri[pi]} denotes (f + 1)-st maximum value in Ri[pi].2

Our strategy of updating the state value is as follows: at line 5, l takes the (f + 1)-st
minimum value in Ri[pi]. At line 6, u takes the (f + 1)-st maximum value in Ri[pi]. The
new state value at node i is then updated to be the average of l and u, at line 7. This is
also the strategy used in [1, 12].

Node i then proceeds to the next round. Once node i reaches the final round, pend, it outputs
the final state value, vi[pend + 1].

4.2 Correctness Proof
Termination is obvious, as pend is a fixed value defined in Eq. (1). Moreover, since there are
at least 5f +2 nodes, each node is able to receive enough messages at Line 3. We present the

1 Alternatively, the smallest value after discarding f smallest values in Ri[pi].
2 Alternatively, the largest value after discarding f largest values in Ri[pi].

L. Tseng and C. Sardina 7

proof in Appendix A. Validity also follows from the strategy of discarding extreme values.
Essentially, both l and u are guaranteed to be in the convex hull of the state values (vi’s) at
fault-free nodes from the previous round. The proof is presented in Appendix B.

A key novelty is the way we prove ϵ-agreement. In prior works [1, 13], the range of state
values at fault-free nodes shrinks every round, whereas in our proof, the range shrinks every
two rounds. Moreover, in prior algorithms, any pair of two fault-free nodes must use at least
one identical value to update their new state values, due to the usage of an explicit quorum.
However, such a condition might not hold for MAC-BAC. This is because n is unknown,
and nodes might receive messages from two groups of nodes such that the intersection of
the two group is less than f nodes. In this case, there is no guarantee that nodes will use
common value(s) to update the state values. In fact, in our algorithm, some nodes might
use completely different values for updating (i.e., after discarding the common values) in the
same round.

4.2.1 Proof of ϵ-Agreement and Implicit Quorum in MAC-BAC
Useful Notions

We first introduce some terminology to facilitate the proof.

▶ Definition 1 (First and Second Mover). For each round r, the set of first movers is defined
as the first 2f + 1 fault-free nodes that complete their respective mac-broadcasts (at Line 2)
in round r.3 All the other fault-free nodes are called second movers.

In our analysis, we are interested in how first and second movers propagate and update their
values. Therefore, we introduce two sets Fr and Sr below.

▶ Definition 2. Let Fr be the set of state values of the first movers at the end of round r –
the vi after a first mover i updates its state value at Line 7 in round r. Let Sr be the set
of state values of the second movers at the end of round r – the vj after a second mover j

updates its state value at Line 7 in round r.

▶ Observation 3 (Sequential Order). Without loss of generality, we can assume nodes com-
plete Line 2 following a sequential order for each round.

For brevity of the presentation, we relabel the IDs so that node j completes before node i.4

We know by sequential ordering that if j < i, then j completes its mac-broadcast before i.
This means that node j must have received its ACK from the mac-broadcast before node i

completes Line 2. Therefore, in order to move to the next round r + 1, i must receive node
j’s round-r state, i.e., vj [r] that is assigned at Line 5. Wth a slight abuse of terminology,
let node’s round-0 state be the input for that node.

3 We can break ties using IDs without affecting the correctness.
4 Assuming that nodes complete Line 2 in a sequential order within each round does not affect the

correctness because nodes only process messages received from nodes at the same round, and the state
of a node changes only once within a round. When the state updates at Line 7, the round number
increments as well on Line 8 (only round p messages are processed in round p, so any change of states
is the value for the subsequent round). Ordering does not alter the values sent to/ from nodes, nor does
it allow for values to be considered from the incorrect round. Therefore, correctness is not violated,
after the ID relabeling.

8 Byzantine Consensus in Abstract MAC Layer

▶ Observation 4. Following the sequential order and the property of the mac-broadcast, we
know that for each round r + 1, node i must receive node j’s round-r state if j < i for all
fault-free i and j.

Note that by definition, if j is fault-free, then it is either a first or second mover. Additionally,
this observation does not indicate the relationship between Ri[r + 1] and Rj [r + 1]. In
particular, it is possible that vk[r] ∈ Ri[r + 1] and vk[r] /∈ Rj [r + 1]. This is possible if
i, j < k or j < k < i.

Observation 4 and the guarantees of the abstract MAC layer together imply that the state
values broadcast by the first movers are received by all the second movers.

Implicit Quorum in MAC-BAC

In our analysis, first movers are the “implicit quorum” for second movers in round r, due
to Observation 4. This is because even though second movers do not know the identities of
the first movers, second movers will share the same information from the first movers and
use some of the state values at first movers to update their new state values.

Interestingly, first movers may not have enough shared information in round r within them-
selves. This is possible if they receive many messages from non-overlapping sets of second
movers at Line 3. They are only guaranteed to receive common information from their “im-
plicit quorum” in the next round. More concretely, first movers of round r+1 are guaranteed
to receive enough information (for convergence) from the second movers of round r. This is
because node i waits for 4f + 2 messages. Among them, 2f + 1 could be from first movers
of round r, f could be from Byzantine nodes, and the remaining f + 1 could be from second
movers of round r. This turns out is enough for first movers of round r +1 to converge. The
proof of Lemma 7 presents this intuition in more detail.

Proof of ϵ-Agreement

Without loss of generality, we can scale the inputs to [0, 1] as long as we scale ϵ down by
the same factor. For simplicity of the presentation, we assume that for each fault-free node
i, its input xi ∈ [0, 1].

We first prove the following lemma. The lemma below follows from the fact that each node
discards extreme values from Byzantine nodes. The proof is presented in Appendix C.

▶ Lemma 5. Fix a round r ≥ 1. Assume the range of state values at fault-free nodes is
[x, y], where 0 ≤ x, y ≤ 1, i.e., Fr ∪ Sr = [x, y]. Then, we have Fr+1 ⊆ Fr ∪ Sr = [x, y].

Using the same argument, we can also show that F1 ⊆ [0, 1], the range of input xi.

Before proving how the state values at second movers evolve, we first introduce two notations
for a round r ≥ 1:

Let mr be the minimum fault-free state value at the end of round r, mr = min{Fr ∪ Sr}.

Let Mr be the maximum fault-free state value at the end of round r, Mr = max{Fr ∪Sr}.

It follows that the interval length of Fr ∪ Sr is Mr − mr.

Then, we prove the following lemma. The lemma is where we utilize the “implicit quorum”
for second movers. By the property of mac-broadcast, every second mover must receive the
state values from all the first movers (Observation 4); hence, we can use this observation to

L. Tseng and C. Sardina 9

show that the interval length of Sr+1 must shrink by at least half. This particular proof is
similar to the ones in traditional message-passing networks [13, 1].

▶ Lemma 6. Fix round r ≥ 1. The interval length of Sr+1 is at most half of the interval
length of Fr ∪ Sr.

Proof. Let xr+1 be the median of the state values at first movers in round r + 1. By defini-
tion, we have mr ≤ xr+1 and Mr ≥ xr+1.

Now, consider any two second movers i and j. Without loss of generalization, assume
vi[r + 2] ≥ vj [r + 2]. Recall that these values are produced at the end of round r + 1 at Line
7.

Since i discards extreme values, u ≤ Mr and l ≤ xr+1 at node i. Similarly, xr+1 ≤ u and
mr ≤ l at node j. Therefore, we have in round r + 1,

vi[r + 2] = l + u

2 ≤ xr+1 + Mr

2

and

vj [r + 2] = l + u

2 ≥ mr + xr+1

2

Consequently, we have

vi[r + 2] − vj [r + 2] ≤ Mr + xr+1

2 − xr+1 + mr

2 = Mr − mr

2

Since the inequality applies to any pair of second movers i and j, the interval length of Sr+1
is at most half of the interval length of Fr ∪ Sr. (Note that the interval length of Fr ∪ Sr is
simply Mr − mr.)

◀

The proof can be easily applied to the case of S1. That is, the interval length of S1 is at
most half of the interval length of the inputs, [0, 1].

We then prove the following key lemma. This proof is where we use the notion of implicit
quorum for first movers. In particular, first movers in round r + 1 rely on second movers in
round r to learn the information that is essential for convergence.

▶ Lemma 7. The interval length of Fr+2 ∪ Sr+2 is at most 3
4 (Mr − mr).

Proof. First, let us define

Fr+1 = [aF
r+1, bF

r+1]

Sr+1 = [aS
r+1, bS

r+1]

10 Byzantine Consensus in Abstract MAC Layer

Note that all these four values (at a respective bound) are in the range of [mr, Mr] due to
Lemma 5.

Now, we consider the smallest possible value for Fr+2 ∪ Sr+2.

Case I: if aF
r+1 < aS

r+1.

In this case, the smallest value is aF
r+1+aS

r+1
2 . This is because there are at most 2f + 1

aF
r+1 in Fr+1 and up to f Byzantine nodes can send values ≤ aF

r+1. The remaining f + 1
values must come from Sr+1 whose smallest value is aS

r+1. After discarding f values, at
least a value that is ≥ aS

r+1 remains to be used to update the state value at Line 7.

Case II: if aF
r+1 ≥ aS

r+1.

In this case, the smallest value is aS
r+1. This is because there could be more than 4f + 2

aS
r+1’s in Sr+1 ∪ Fr+1.

Next, we consider the largest possible value for Fr+2 ∪ Sr+2.

Case III: if bF
r+1 > bS

r+1.

In this case, the largest value is bF
r+1+bS

r+1
2 . This is because there are at most 2f + 1 bF

r+1
in Fr+1 and up to f Byzantine nodes can send values ≥ bF

r+1. The remaining f +1 values
must come from Sr+1 whose largest value is bS

r+1. After discarding f values, at least a
value that is ≤ bS

r+1 remains to be used to update the state value at Line 7.

Case IV: if bF
r+1 ≤ bS

r+1.

In this case, the largest value is bS
r+1. This is because there could be more than 4f + 2

bS
r+1’s in Sr+1.

Now, we can consider the following four cases to bound the interval length of Fr+2 ∪ Sr+2:

aF
r+1 < aS

r+1 and bF
r+1 > bS

r+1:

The interval length is

bF
r+1 + bS

r+1
2 −

aF
r+1 + aS

r+1
2 = 1

2{(bF
r+1 − aF

r+1) + (bS
r+1 − aS

r+1)}

= 1
2{(Mr − mr) + (Mr − mr)/2} = 3(Mr − mr)

4

aF
r+1 < aS

r+1 and bF
r+1 ≤ bS

r+1:

The interval length is

bS
r+1 −

aF
r+1 + aS

r+1
2 = 1

2{(bS
r+1 − aS

r+1) + (bS
r+1 − aF

r+1)}

= 1
2{(Mr − mr)/2 + (Mr − mr)} = 3(Mr − mr)

4

L. Tseng and C. Sardina 11

aF
r+1 ≥ aS

r+1 and bF
r+1 > bS

r+1:

The interval length is

bF
r+1 + bS

r+1
2 − aS

r+1 = 1
2{(bF

r+1 − aS
r+1) + (bS

r+1 − aS
r+1)}

= 1
2{(Mr − mr) + (Mr − mr)/2} = 3(Mr − mr)

4

aF
r+1 ≥ aS

r+1 and bF
r+1 ≤ bS

r+1:

The interval length is

bS
r+1 − aS

r+1 = (Mr − mr)
2

In each case above, we saw that compared to Fr ∪ Sr, the interval length of Fr+2 ∪ Sr+2
shrinks by at least 1/4, proving the lemma. ◀

Now, we are ready to prove that MAC-BAC converges with the desirable convergence rate.

▶ Theorem 8. MAC-BAC achieves ϵ-agreement in

pend ≥ 2 · log 3
4

ϵ (1)

rounds.

Proof. By the conclusion of Lemma 7, Fr ∪ Sr ≤ 3
4 · Fr−2 ∪ Sr−2. Therefore, to satisfy

ϵ-agreement, the number of iteration r must satisfy the following inequality.

ϵ ≥ 3
4

⌊ r
2 ⌋

log ϵ ≥ ⌊r

2⌋ · log 3
4

2 · log ϵ ≥ r · log 3
4

2 · log ϵ

log 3
4

≤ r

r ≥ 2 · log 3
4

ϵ

Therefore, ϵ-agreement will be achieved in ≥ 2 · log 3
4

ϵ rounds. If we define pend as the
smallest integer that satisfies the inequality in Algorithm MAC-BAC, then ϵ-agreement is
achieved.

◀

12 Byzantine Consensus in Abstract MAC Layer

5 Byzantine Randomized Binary Consensus: MAC-BRC

Assuming n ≥ 5f + 1, our algorithm MAC-BRC correctly solves Byzantine randomized
binary consensus. In MAC-BRC, each node is assumed to have a common coin provided by
a trusted dealer, as in the work by Rabin [29], which guarantees that every node shares the
same sequence of random bits b1, b2, · · · , bk, · · · with value 0 or 1, each with probability 1

2 .
Additionally, the common coin is “global,” meaning that the k-th call to coinflip() (Line
9 of Algorithm MAC-RBC) by a fault-free node will return the same bit, bc, to all nodes
invoking the k-th coinflip().

Our algorithm is inspired by [26], especially the way we use the common coin to decide
whether it is safe to output a value. As mentioned earlier, the key technical contribution is
the usage of implicit quorum, which will become clear when we present the algorithm.

5.1 MAC-RBC
MAC-RBC is presented in Algorithm 2. Nodes proceed in phases. In phase p, each node
i first does a mac-broadcast of an EST message containing i’s “estimated” value (that i

estimates to be the output based on the information it collected in the previous phase) and
phase number to other nodes. Once this mac-broadcast has completed, an ACK will be
received. Meanwhile, a background event handler processes all EST messages to determine
when a value can be safely added to a local estimated set, estV aluesi[p]. The way the handler
is constructed ensures that the value added estV aluesi[p] must be an estimate value vi by
some fault-free node.

Once estV aluesi[p] is non-empty, the main thread resumes at Line 4, where node i mac-
broadcasts an AUX message for this value at node i. Another background event handler
processes AUX messages, and adds the identifiers of all nodes which sent AUX messages
(for a particular value w) to its set Ui. Ui is used to count the number of other nodes that
supports a certain value w. Node i then mac-broadcasts a COMPLETE message indicating
that it has completed its broadcasting of an AUX message.

Once our Condition WAIT (defined below) – which ensures that a node only adds fault-free
values which have been sent and received by sufficiently many other nodes – is satisfied, node
i will have some value(s) in its set valuesi[p]. A call to coinflip() on Line 9 employs the
global common coin whose returned value c is then compared to valuesi[p]. If these values
are equal, that is valuesi[p] = {v} = c, node i will output v. Otherwise, node i will adopt
the value of the common coin and continue to the subsequent phase until it outputs a value.

The key novelty is the construction of Condition WAIT, defined in Definition 9. The con-
dition makes sure that enough information is shared between any pair of fault-free nodes
upon the satisfaction of Condition WAIT. On a high-level, the condition relies on two key
elements: (i) a counter set Ui[p] that keeps track of nodes that i knows; and (ii) an “im-
plicit quorum” X which contains the nodes that saw the same estimate value v and have
completed their mac-broadcast. Note that X is implicit in the sense that the X at node i

might not always intersect with the X at node j. However, it turns out that it is already
sufficient for our purpose. (More details in the proof of BC-Agreement in Section 5.2.1.)

▶ Definition 9 (Condition WAIT). In phase p, node i satisfies Condition WAIT with value
v, if there exist two sets of nodes X and Y such that

1. |X| ≥ 2f + 1;

L. Tseng and C. Sardina 13

Algorithm 2 Mac-RBC: Steps at each node i

Local Variables:
pi ▷phase, initialized to 0
vi ▷state, initialized to xi, the input at node i
estV aluesi[p] ▷set, initialized to {}
Ui[p] ▷set, initialized to {}

1: while true do
2: mac-broadcast(EST, vi, pi)
3: wait until estV aluesi[pi] ̸= ∅
4: for each w ∈ estV aluesi[pi] do
5: mac-broadcast(AUX, w, i, pi)
6: end for
7: mac-broadcast(COMP LET E, pi)
8: wait until Condition WAIT is satisfied

with some value z
9: c← coinflip()

10: if valuesi[pi] = {v} then
11: if v = c then
12: output v
13: end if
14: vi ← v
15: else
16: vi ← c
17: end if
18: pi ← pi + 1
19: end while

//Background EST message handler
Upon receiving (EST, v, p) do
20: if (EST, v, p) is received from f + 1 nodes and

(EST, v, p) not yet broadcast by i then
21: mac-broadcast(EST, v, p))
22: end if
23: if (EST, v, p) is received from 2f +1 nodes then
24: estV aluesi[p]← estV aluesi[p] ∪ {v}
25: end if

//Background AUX message handler
Upon receiving (AUX, ∗, j, p) do
26: Ui[p]← Ui[p] ∪ {j} ▷Even if j sends

two different AUX msgs, j is added only
once

2. i received (COMPLETE, p) message for each x ∈ X;

3. i received (AUX, v, x, p) message for each x ∈ X and some identical value v;

4. |Y | = |Ui[p]| − f ;

5. i received (AUX, ∗, y, p) message for each y ∈ Y ;5

6. X ⊆ Y ;

7. let valuei[p] be the set of values contained in Y ’s (AUX, ∗, ∗, p) messages;

8. valuei[p] ⊆ estV aluesi[p].6

Figure 1 illustrates the relation between set Y and set X specified in Condition WAIT.

5.2 Correctness Proof
The BC-Validity proof follows from the construction of estV aluesi[p] (the f + 1 threshold),
and the observation that the output must be some value from estV aluesi[p].

▶ Theorem 10. Given that n ≥ 5f + 1, MAC-RBC satisfies BC-Validity.

Proof. Fix a phase p and let node i be a fault-free node with value v ∈ valuesi which has
been mac-broadcast as an estimate value by a fault-free node. By the wait statement at

5 Note that these AUX messages might not contain v.
6 Note that estV aluesi[p] could keep growing even after the execution of Line 3 to Line 5, as the

background message handler is long-living.

14 Byzantine Consensus in Abstract MAC Layer

Figure 1 Illustration of Condition WAIT

Line 3, since each fault-free node i mac-broadcasts the values within its set estV aluesi, and
by the Condition WAIT, the set valuesi contains only values from fault-free nodes. The set
estV aluesi contains only values from fault-free nodes because all values added to estV aluesi

must have been sent by at least f + 1 nodes on in order to pass Line 20. There are at most
f Byzantine nodes, so one of these (EST, v, p) messages must have been broadcast by a
fault-free node.

If valuesi = {v} = c, the value of the common coin, node i outputs v at Line 13 and sets
its estimate value to c. If valuesi = {v, v′}, both values have been processed by fault-free
nodes, and node i adopts the value of the common coin as the estimate value for node i in
phase pi + 1 at Line 17. In both cases, the estimate value of a fault-free node is a value that
has been proposed by a fault-free node. ◀

The BC-Termination proof is focused on showing that as long as n ≥ 5f +1, then Condition
WAIT can always be satisfied under all possible scenarios. Moreover, the termination with
probability 1 roughly follows the proof structure in [26], which relies on the usage of common
coin and the cardinality of valuei[p] (the condition to check at Line 10). The full proof is
presented in Appendix D.

▶ Theorem 11. Given that n ≥ 5f + 1, MAC-RBC terminates with probability 1.

5.2.1 Proof of BC-Agreement and Implicit Quorum in MAC-RBC
Let us define valuesr

i [p] to be the set of values valuesi[p] right after node i completes
Line 8. That is, the valuesi[p] that node i derived from Condition WAIT (Definition 9). As
mentioned earlier, X identified in Condition WAIT could be different for two different nodes.
This is because n is unknown, and two nodes might use different sets of 2f + 1 nodes as X.
However, in the proof of lemma below, we demonstrate that under a certain case, X at node
i is guaranteed to intersect with Y at node j. This is mainly the usage of the COMPLETE
message. Even though this claim does not imply that X at node i will intersect with X

at node j; however, due to the usage of a common coin, this is already enough for showing
agreement of MAC-RBC.

▶ Lemma 12. Fix a phase p. For any fault-free i and j with valuesr
i [p] = {v} and

valuesr
j [p] = {u}, then v = u.

Proof. Assume node i completes line 8 at time Ti with valuesr
i [p] = {v}. By construction,

node i has Condition WAIT satisfied with value v.

L. Tseng and C. Sardina 15

From conditions (1), (4), (6) and (7) of Condition WAIT, node i has received AUX messages
from a set Yi of size |Ui[p]| − f ≥ 2f + 1. (At this point, estV aluesi[p] might contain some
value other than v, but we do not care about it.) We first prove the following claim.

▷ Claim 13. At least f + 1 fault-free nodes in Yi have completed line 5 with value v

in the AUX message before time Ti. That is, at least f + 1 fault-free nodes have mac-
broadcast(AUX, v, y, p) for some y ∈ Yi by time Ti.

Proof of Claim 13. By condition (3) and (6) in Condition WAIT, Yi contains Xi, and
every fault-free node in Xi have completed line 5 with value v before broadcasting the
COMPLETE message. Since |Xi| ≥ 2f + 1, and up to f nodes can be Byzantine, at least
f + 1 nodes in Xi has completed line 5 with value v before time Ti, proving the claim.

◀

Let us denote the set of fault-free nodes identified in Claim 13 by Y v. (Note that Yv is a
superset of Xi)

Now consider node j with valuesr
j [p] = {u}. Without loss of generality, assume that j

completes line 8 at some later time Tj , i.e., Tj ≥ Ti. This assumption together with Claim
13 imply that Uj [p] contains Y v at time Tj , due to the guarantee of mac-broadcast.

By the definition of Condition WAIT, Yj contain |Uj [p]| − f nodes at time Tj . This implies
that the intersection of Yj and Y v is non-empty. This is because the size of Y v is at least
f + 1. Therefore, value v must be in valuej [p], i.e., v ∈ valuej [pj]. Since valuej [p] contains
a single element, this implies that v = u. ◀

▶ Theorem 14. Given n ≥ 5f + 1, MAC-RBC satisfies BC-Agreement.

Proof. Let phase p be the first phase at which a fault-free node i outputs a value v at Line
12. For any j that also outputs a value in phase p, both i and j must output the same value,
namely, the value of the common coin.

Consider any node j that has not output in phase p. Observe that we have valuesi[p] = {v}.
It is then impossible by Lemma 12 for valuesj [p] = {v′}, with v′ ̸= v. Therefore, valuesj =
{v, v′}. Node j will then execute Line 16 and set vj to be the value of the common coin in
phase p. By construction, this value is v.

Then, node j’s estimate value in phase p + 1 will be v. The output values must be an
estimate value, and in phase p + 1, all fault-free nodes have the same estimate value and
will hence output v. This proves that the BC-Agreement property of MAC-RBC. ◀

6 Impossibility

In this section, we provide the intuition for our proof that without the knowledge of f , it is
impossible to solve consensus. The full proof is included in Appendix E.

We construct an indistinguishably proof by constructing scenarios in which there is no way
for a node i to distinguish whether another node j’s behavior is Byzantine or not, which
could lead to a violation of validity. We assume the existence of an algorithm A which solves
consensus for a certain n and f without the knowledge of these values. We construct two

16 Byzantine Consensus in Abstract MAC Layer

scenarios with different value for n and f . These scenarios remain indistinguishable to all
nodes because no nodes have knowledge of n or f . In the first scenario, node i can only
communicate with one other node to update its state, and in the second, node i can receive
messages from ≥ 2f + 1 other nodes within the system. In the second scenario, we impose
a time delay, D, on all messages sent from any node other than an arbitrary node j. We
observe that within the time interval (0, D], a node i cannot distinguish between the two
scenarios (whether there is only one, or more than one other nodes within the system). Now,
node i has no way of determining whether the behavior of node j is Byzantine or fault-free.
Node i then runs algorithm A, and may output a value that is outside the range of fault-free
inputs if i considers a Byzantine node j’s value, hence, violating validity.

7 Summary

This paper studies Byzantine consensus problems in the abstract MAC layer. We present
MAC-BAC, a Byzantine approximate consensus algorithm, and MAC-RBC, a Byzantine
randomized binary consensus algorithm. Both algorithms do not require the knowledge of n.
To achieve so, we rely on the notion of implicit quorum. Therefore, our analysis is sufficiently
different from prior work. One interesting open problem is the lower bound on the resilience
of Byzantine consensus algorithms.

References
1 Ittai Abraham, Yonatan Amit, and Danny Dolev. Optimal resilience asynchronous approxi-

mate agreement. In Principles of Distributed Systems, 8th International Conference, OPODIS
2004, Grenoble, France, December 15-17, 2004, Revised Selected Papers, pages 229–239, 2004.
doi:10.1007/11516798_17.

2 Eduardo A. Alchieri, Alysson Neves Bessani, Joni Silva Fraga, and Fabíola Greve. Byzantine
consensus with unknown participants. In Proceedings of the 12th International Conference
on Principles of Distributed Systems, OPODIS ’08, page 22–40, Berlin, Heidelberg, 2008.
Springer-Verlag. doi:10.1007/978-3-540-92221-6_4.

3 Hagit Attiya and Jennifer Welch. Distributed computing: Fundamentals, Simulations, and
Advanced topics, volume 19. John Wiley & Sons, 2004.

4 Michael Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-
chronous agreement protocols. In Proceedings of the Second Annual ACM Symposium on
Principles of Distributed Computing, PODC ’83, page 27–30, New York, NY, USA, 1983.
Association for Computing Machinery. doi:10.1145/800221.806707.

5 Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. Asynchronous byzantine
agreement with subquadratic communication. Cryptology ePrint Archive, Paper 2020/851,
2020. https://eprint.iacr.org/2020/851. URL: https://eprint.iacr.org/2020/851.

6 Gabriel Bracha. Asynchronous byzantine agreement proto-
cols. Information and Computation, 75(2):130–143, 1987. URL:
https://www.sciencedirect.com/science/article/pii/089054018790054X,
doi:https://doi.org/10.1016/0890-5401(87)90054-X.

7 Gabriel Bracha. Asynchronous Byzantine agreement protocols. Information and Computation,
75(2):130–143, 1987.

8 Christian Cachin and Luca Zanolini. Asymmetric asynchronous byzantine consensus. In
Data Privacy Management, Cryptocurrencies and Blockchain Technology: ESORICS 2021

L. Tseng and C. Sardina 17

International Workshops, DPM 2021 and CBT 2021, Darmstadt, Germany, October 8,
2021, Revised Selected Papers, page 192–207, Berlin, Heidelberg, 2021. Springer-Verlag.
doi:10.1007/978-3-030-93944-1_13.

9 David Cavin, Yoav Sasson, and André Schiper. Consensus with unknown participants or
fundamental self-organization. In Ioanis Nikolaidis, Michel Barbeau, and Evangelos Kranakis,
editors, Ad-Hoc, Mobile, and Wireless Networks: Third International Conference, ADHOC-
NOW 2004, Vancouver, Canada, July 22-24, 2004. Proceedings, volume 3158 of Lecture Notes
in Computer Science, pages 135–148. Springer, 2004. doi:10.1007/978-3-540-28634-9_11.

10 Ran Cohen, Pouyan Forghani, Juan Garay, Rutvik Patel, and Vassilis Zikas. Concur-
rent asynchronous byzantine agreement in expected-constant rounds, revisited. Cryptol-
ogy ePrint Archive, Paper 2023/1003, 2023. https://eprint.iacr.org/2023/1003. URL:
https://eprint.iacr.org/2023/1003.

11 Tyler Crain. A simple and efficient asynchronous randomized binary byzantine consensus
algorithm, 2020. arXiv:2002.04393.

12 Danny Dolev, Cynthia Dwork, and Larry J. Stockmeyer. On the minimal synchronism needed
for distributed consensus. J. ACM, 34(1):77–97, 1987.

13 Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E. Weihl.
Reaching approximate agreement in the presence of faults. J. ACM, 33(3):499–516, 1986.
doi:10.1145/5925.5931.

14 Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed con-
sensus with one faulty process. J. ACM, 32(2):374–382, apr 1985. doi:10.1145/3149.214121.

15 Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Effi-
cient asynchronous byzantine agreement without private setups. In 2022 IEEE 42nd In-
ternational Conference on Distributed Computing Systems (ICDCS), pages 246–257, 2022.
doi:10.1109/ICDCS54860.2022.00032.

16 Mohsen Ghaffari, Erez Kantor, Nancy A. Lynch, and Calvin C. Newport. Multi-message
broadcast with abstract MAC layers and unreliable links. In Magnús M. Halldórsson and
Shlomi Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC ’14,
Paris, France, July 15-18, 2014, pages 56–65. ACM, 2014. doi:10.1145/2611462.2611492.

17 Fabiola Greve and Sebastien Tixeuil. Knowledge connectivity vs. synchrony requirements
for fault-tolerant agreement in unknown networks. In 37th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks (DSN’07), pages 82–91, 2007.
doi:10.1109/DSN.2007.61.

18 Majid Khabbazian, Dariusz R. Kowalski, Fabian Kuhn, and Nancy A. Lynch. Decompos-
ing broadcast algorithms using abstract MAC layers. Ad Hoc Networks, 12:219–242, 2014.
doi:10.1016/j.adhoc.2011.12.001.

19 Pankaj Khanchandani and Roger Wattenhofer. Brief announcement: Byzantine agreement
with unknown participants and failures. In Proceedings of the 39th Symposium on Principles
of Distributed Computing, PODC ’20, page 178–180, New York, NY, USA, 2020. Association
for Computing Machinery. doi:10.1145/3382734.3405740.

20 Fabian Kuhn, Nancy Lynch, and Calvin Newport. The abstract mac layer, 2011.
doi:10.1007/s00446-010-0118-0.

21 Fabian Kuhn, Nancy A. Lynch, and Calvin C. Newport. The abstract MAC layer. In Idit
Keidar, editor, Distributed Computing, 23rd International Symposium, DISC 2009, Elche,

18 Byzantine Consensus in Abstract MAC Layer

Spain, September 23-25, 2009. Proceedings, volume 5805 of Lecture Notes in Computer Science,
pages 48–62. Springer, 2009. doi:10.1007/978-3-642-04355-0_9.

22 Saptaparni Kumar and Jennifer L. Welch. Byzantine-tolerant register in a system with con-
tinuous churn. CoRR, abs/1910.06716, 2019. URL: http://arxiv.org/abs/1910.06716,
arXiv:1910.06716.

23 Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine gen-
erals problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982. URL:
http://doi.acm.org/10.1145/357172.357176, doi:10.1145/357172.357176.

24 Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

25 Nancy A. Lynch, Tsvetomira Radeva, and Srikanth Sastry. Asynchronous leader election
and MIS using abstract MAC layer. In Fabian Kuhn and Calvin C. Newport, editors,
FOMC’12, The Eighth ACM International Workshop on Foundations of Mobile Computing
(part of PODC 2012), Funchal, Portugal, July 19, 2012, Proceedings, page 3. ACM, 2012.
doi:10.1145/2335470.2335473.

26 Achour Mostefaoui, Hamouma Moumen, and Michel Raynal. Signature-free asynchronous
byzantine consensus with t < n/3 and o(n2) messages. In Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, PODC ’14, page 2–9, New York, NY,
USA, 2014. Association for Computing Machinery. doi:10.1145/2611462.2611468.

27 Calvin Newport and Peter Robinson. Fault-tolerant consensus with an abstract MAC
layer. In Ulrich Schmid and Josef Widder, editors, 32nd International Symposium on Dis-
tributed Computing, DISC 2018, New Orleans, LA, USA, October 15-19, 2018, volume
121 of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.DISC.2018.38.

28 Calvin C. Newport. Consensus with an abstract MAC layer. In Magnús M. Halldórsson and
Shlomi Dolev, editors, ACM Symposium on Principles of Distributed Computing, PODC ’14,
Paris, France, July 15-18, 2014, pages 66–75. ACM, 2014. doi:10.1145/2611462.2611479.

29 Michael O. Rabin. Randomized byzantine generals. 24th Annual Symposium on Foundations
of Computer Science (sfcs 1983), pages 403–409, 1983.

30 T. K. Srikanth and Sam Toueg. Simulating authenticated broadcasts to derive simple fault-
tolerant algorithms. Distrib. Comput., 2(2):80–94, jun 1987. doi:10.1007/BF01667080.

31 Sam Toueg. Randomized byzantine agreements. In Proceedings of the Third Annual ACM
Symposium on Principles of Distributed Computing, PODC ’84, page 163–178, New York, NY,
USA, 1984. Association for Computing Machinery. doi:10.1145/800222.806744.

32 Lewis Tseng and Qinzi Zhang. Brief announcement: Computability and anonymous storage-
efficient consensus with an abstract mac layer. In PODC ’22: ACM Symposium on Principles
of Distributed Computing, Italy, 2022. ACM, 2022.

A Proof of Termination of MAC-BAC

pend is defined in equation 1. Termination for MAC-BAC is proven by induction on p ≥ 0.
The base case for p = 0 holds since every node is initialized with pi = 0.

Inductive Hypothesis: all fault-free nodes proceed to phase p′ ≥ 0 within finite time.

Now consider phase p. When every node is in phase ≥ p, each node has received 4f + 2
messages with phase p. Thus, due to the inductive hypothesis, each node will update to
phase p + 1 by line 8.

L. Tseng and C. Sardina 19

B Proof of Validity of MAC-BAC

Fix a round p. After each round of the algorithm, the state of each fault-free node in round
p+1 must remain in the convex hull of the states of the fault-free nodes from round p. That
is, the set of states of fault-free nodes in phase p+1 is in a convex hull of the values in phase
p for all rounds p.

Take a random fault-free node i in phase p which is updating its phase to phase p + 1. For
this to occur, we know that node i has received at least f + 1 phase p states.

vi is computed using the average of the f + 1-th largest value in Ri[pi] and the f + 1-th
smallest value in Ri[pi]. There are at least 4f +2 values within Ri[pi], and there are at most
f byzantine nodes, so we know that these two values are within the range of all received
fault-free states. Thus, vi must be within the range of all received fault-free states as well
for every node i.

So, we know that for a round p, the states of all nodes in round p + 1 must be within the
convex hull of values in round p.

Therefore, as all rounds of values remain within the convex hull of the values from the
previous round, we know that the states of all nodes in round pend will be within the range
of the fault-free inputs and will satisfy validity.

C Proof of Lemma 5

Proof. x is a possible state when a first mover receives at least 2f + 1 x’s and at most
f non-x’s. Note that Byzantine node can send any value.

y is a possible state when a first mover receives at least 2f + 1 y’s and at most f non-y’s.
Note that Byzantine node can send any value.

◀

D Proof of BC-Termination for MAC-RBC

▶ Lemma 15. Each fault-free node outputs a value with probability 1.

Proof. First, we prove that no fault-free node remains at a wait statement forever during
any phase p – neither at the wait statement at Line 4, not the wait statement at Line 9.

To show that no fault-free node is blocked forever at Line 4, we demonstrate that the
predicate of Line 4 will eventually become true at every fault-free node i. All nodes mac-
broadcast their estimate value v at Line 3. By the construction of the background handler
for EST messages, all nodes which receive the mac-broadcasts with estimate value v will
propagate this message on Line 22. There are at least 4f + 1 fault-free nodes, so f + 1 of at
least one value v ∈ {0, 1} must be received by at least f + 1 distinct nodes. Eventually, this
value v will be added to estV aluesi on Line 25 because all nodes must eventually receive and
broadcast v by the guarantees of the abstract MAC layer and Line 22. Therefore, the set
estV aluesi must eventually be non-empty for all nodes in phase p, satisfying the predicate
on Line 4.

20 Byzantine Consensus in Abstract MAC Layer

To show that no fault-free node is blocked forever at Line 9, we demonstrate that the
predicate of Line 9 will eventually become true at every fault-free node i, meaning that the
Condition WAIT is satisfied.

Condition WAIT (1, 2) are eventually satisfied because every node will progress to Line
8, and by the guarantees of the abstract MAC layer, the mac-broadcast on Line 8 will
eventually return an ACK at every fault-free node i; thus, X will eventually have 2f + 1
elements.

Condition WAIT (3) must hold true by the nature of the mac-broadcast on Line 3. All
nodes which send (COMPLETE, p) messages must have received their ACK from the
mac-broadcast on Line 3. All nodes x ∈ X must have the same value v. This is because
there are at least 5f + 1 nodes within the system. Each node which passes Line 4 will
broadcast either one (v) or two (v and v′) AUX messages on on Line 6. In order for
a value to be added to estV aluesi[p], an EST message containing this value must have
been sent from at least f + 1 distinct nodes. There are two cases:

(1) Let time T(3) be the time that i receives its 2f + 1-st (COMPLETE, p) message
corresponding to an (AUX, v, p) message sent by a node x ∈ X. If estV aluesi[p] =
{v}, then there must have been fewer than f + 1 nodes who mac-broadcast v′ on Line
3 by time T(3). It follows that either (a) there must have been at least 4f + 1 nodes
which mac-broadcast value v at Line 3 by time T(3), hence X has at least 4f +1 nodes
with value v; or (b) there were at least 2f + 1 nodes which mac-broadcast value v

at Line 3 by time T(3), and any other nodes which broadcast value v′ will do so only
after time T(3).

(2) If estV aluesi[p] = {v, v′}, then at time T(3), there must have been at least f +1 nodes
which mac-broadcast v at Line 3, and at least f + 1 nodes which mac-broadcast v′ at
Line 3. There are 5f + 1 − 2(f + 1) = 3f − 1 other nodes within the system, so it is
possible for 2f + 1 nodes to broadcast v, and another 2f + 1 nodes to broadcast v′.
Then, estV aluesi[p] = {v, v′}.

Condition WAIT (4, 5) are eventually satisfied because at most f nodes are Byzantine,
so if node i has seen messages from |Ui| other nodes at Line 6, it is guaranteed that node
i can receive at least |Ui| − f values which are added to set Y .

Condition WAIT (6) is given by construction of X and Y .

Condition WAIT (7, 8) must be true by construction of valuei[p] since all values received
from Y ’s (AUX, ∗, p) messages must have been elements of estV alues[p].

Therefore, all predicates of the Condition WAIT must be satisfied for all nodes in phase p,
satisfying the predicate on Line 9.

▶ Lemma 16. With probability 1, there is a phase p in which all fault-free nodes have the
same estimate value.

Proof. Fix a phase r. There are three possible scenarios:

(1) If the predicate on Line 11 evaluates to true at all fault-free nodes in phase r, then there
are two cases. (i) If the predicate of Line 12 evaluates to true, all fault-free nodes execute
Line 13, they will have output v, and their estimate value remains equal to v which is
also the value of the common coin in phase r; (ii) Otherwise, all fault-free nodes will

L. Tseng and C. Sardina 21

continue to execute Line 15 and will set their estimate value to equal the value of the
common coin in phase r. Note that by the assumption of common coin, all fault-free
nodes will see the same value c; hence, they will take the same action in this case.

(2) If all fault-free nodes execute Line 17, then they will all take the value of the common
coin in phase r as their estimate value for phase r + 1, and the claim directly follows.

(3) Let behavior output be the scenario at node i if the predicate of Lines 11 and 12 both
evaluate to true and node i outputs value v = c. Let behavior continue be the scenario at
node i if the predicate of Line 11 evaluates to true, but the predicate of Line 12 evaluates
to false, that is, v ̸= c.

By Lemma 12, valuesi[r] = valuesj [r] = {v}. for all nodes at which the predicate of
Line 11 evaluates to true. Therefore, either all nodes at which the predicate of Line 11
evaluates to true will output, or all will continue. Meanwhile, all other nodes for which
the predicate of Line 11 evaluates to false will execute Line 17 and take the value of the
common coin. The value of the common coin at any phase r is independent from its
value in any other phase by the properties of the common coin.

Therefore, v = c (Line 12 will evaluate to true, and nodes will output v) with probability
p = 1

2 . Similarly, v ̸= c and nodes which pass Line 11 will continue with probability p = 1
2 .

Let P (r) be the probability that there is a phase r′ where r′ < r such that the value v in
phase r′ is equal to the value of c in round r′. Then, P (r) = p+(1−p)p+· · ·+(1−p)r−1p =
1 − (1 − p)r. So, limr→∞ P (r) = 1, proving Claim 16.

◀

▶ Lemma 17. Fix a phase p at the beginning of which all fault-free nodes have the same
estimate value v. These nodes will remain with value v forever. That is, vi = v for all
fault-free node i after phase p.

Proof. If all fault-free nodes have the same estimate value v at the beginning of phase p,
they all mac-broadcast(EST, vi, pi) at Line 2. Then, each fault-free node will have v ∈
estV alues[pi], where v is the only value in estV alues[pi]. There are at least f + 1 fault-free
nodes, so the predicate of Line 20 will eventually evaluate to true. Every fault-free node
which passes Line 20 will mac-broadcast an (EST, v, p) message. We know by the guarantees
of the mac-broadcast, that all the other fault-free nodes will eventually receive and broadcast
any value which is received by f + 1 fault-free nodes. There are at least 4f + 1 fault-free
nodes within the system, so eventually they will broadcast (EST, v, p) message, satisfying
the predicate to Line 23, and v will be added to estV aluesi[p]. Therefore, the estimate value
vi is set to v and must remain v in phase p + 1 and all subsequent phases. ◀

By Lemma 16 and Lemma 17, it follows that the estimate value vi of all fault-free nodes i will
remain vi = v. Let phase p be the phase in which all fault-free nodes have the same estimate
value v. Hence, the predicate of Line 11 will evaluate to true at every phase after phase
p. Following from the common coin, we know that with probability 1, there is eventually a
phase in which coinflip() outputs v, so c = v. Hence, the predicates of Lines 11 and 12 will
evaluate to true, and all fault-free nodes will output v with probability 1.

◀

22 Byzantine Consensus in Abstract MAC Layer

E Impossibility

E.1 Proof that without the knowledge of f, it is impossible to solve
consensus

▶ Theorem 18. Without the knowledge of f, it is impossible to solve Byzantine approximate
consensus.

Proof. Assume that there exists a uniform algorithm A that solves consensus for a certain
n and f , but the algorithm itself does not know these values for n and f . An algorithm is
uniform if all nodes are using the same algorithm.

To satisfy ϵ-agreement, all n − f fault-free nodes must have an output such that no two
fault-free noes i and j have states |vi − vj | > ϵ.

Consider Scenario 1 and Scenario 2 below. In both scenarios, the nodes do not know the
exact value of n, nor f :

1. Scenario 1: Suppose n = 2, f = 0. Assume two nodes, a and b, are fault-free nodes. A
node can only communicate with one other node to make a decision, since n = 2.

Suppose node a has input 0 and node b has input 1.

To satisfy validity, there must be an output which can be any value in the range [0, 1] at a

and b such that ϵ-agreement is satisfied. In fact, a can have one value and b can have one
value as long as |va − vb| ≤ ϵ.

2. Scenario 2: Assume there are any number of nodes within the system satisfying n ≥ 2f +1.
In this scenario, a node, say node a, can only communicate with one other node to make
a decision. This is because to node a, it is indistinguishable whether a is in Scenario 1 or
Scenario 2 since there is no way for node a to know the values of n or f .

We can impose a delay D on all messages other than those from node b.

Similar to the setup in [22], assume that D is an unknown upper bound, on the delay of
any message sent between between fault-free nodes. Let D = t′ − t where D > 0 be the
maximum delay on a message sent at time t and received at time t′.

For two fault-free nodes a and b, if a message sent from node a at time t and node b is active
throughout [t, t + D], then we know that node b will receive the message from a, and that
the delay of every received message is in the range (0, D].

Assume (0, D] is the bound on the delay of the message sent from node b. In the time
interval (0, D], assume the only message which node a receives is a message from node b.
During this time interval, node a cannot distinguish between Scenarios 1 and 2.

Run A in Scenario 2, within the time interval (0, D], assuming the Byzantine node b behaves
in the exact same manner as it did in Scenario 1 to node a. Once again, from the perspective
of node a, Scenarios 1 and 2 remain indistinguishable and there is no way for node a to know
whether the behavior from b is Byzantine or not. Node a can output a value in (0, 1], but
this is a contradiction because any value in (0, 1] is not within the range of fault-free inputs,
[0], so validity is violated.

Next, run A in Scenario 2, this time assuming the Byzantine node a behaves in the exact
same manner as it did in Scenario 1 to node b. Once again, from the perspective of node b,

L. Tseng and C. Sardina 23

Scenarios 1 and 2 remain indistinguishable and there is no way for node b to know whether
the behavior from a is Byzantine or not. Node b can output a value in [0, 1), but this is a
contradiction because any value in [0, 1) is not within the range of fault-free inputs, [1], so
validity is violated. ◀

	Byzantine Consensus in Abstract MAC Layer
	Repository Citation

	tmp.1709831585.pdf.NaVOf

