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Abstract 
 

 Invasive plants cause significant impacts to ecosystems, the economy, and human 

health. California has experienced significant plant invasions and is well suited to future 

invasion because of its Mediterranean climate and human disturbance. Eradication or control of 

invasive plant species requires a detailed understanding of their spatial distribution, which 

typically involves on the ground surveys that can be expensive or inconsistent. Remote sensing 

offers a potential alternative or supplement to in-person invasive plant mapping. This study 

performed a comparative analysis of 41 remote sensing studies that mapped the distribution of 

California invasive plants. I found that while high spectral resolution hyperspectral imagery was 

most often and successfully used to map California invasive plant species, recent studies 

suggest that employing low cost, color or color-infrared imagery are capable of overcoming 

lower spectral resolution with higher spatial or temporal resolution. Imagery obtained by UAVs 

are becoming increasingly more accessible for the use of mapping invasive plants at the site-

scale. From this study, I examine two case studies that illustrate the use of remote sensing for 

large scale invasive plant management. One case study examines the use of remote sensing to 

monitor widespread infestations of salt cedar (Tamarix spp.) across the Western U.S.. A second 

case study examines the use of remote sensing to monitor invasive plants in a complex and 

regulatorily challenging landscape: The Sacramento-San Joaquin Delta. I recommend that land 

managers can incorporate remote sensing to monitor invasive plants by using low cost, color or 

color-infrared imagery obtained by drone or UAVs, developing partnerships with other relevant 

agencies, and collecting in-person data using methods that facilitate remote sensing analysis. 
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1.0 Introduction 

 Invasive species have a measurably negative impact on native ecosystems (Pearson et 

al. 2018). Invasive species are of particular concern to the conservation and restoration of 

native ecosystems and are a contributor to biodiversity loss worldwide (Weidlich et al. 2020). In 

California, invasive species have contributed to altering nutrient cycling processes (Afzal et al. 

2023) and altering fire regimes through increased fire intensity, severity, and frequency and by 

changing fuel loads and continuity within a landscape (Brooks et al. 2004). 

 The recovery and persistence of rare and endangered plants are threatened by invasive 

species due to increased competition, and invasive species control is often noted as a necessary 

management action in the recovery plans for 73% of federally listed endangered plant species 

(Lawler et al. 2002). Of the 958 species listed as federally threatened or endangered, 400 of 

them are impacted by competition with non-native species (Pimentel et al. 2005). Control of 

invasive plants is particularly important in ecological restoration, as invasive plants can prevent 

the establishment of desirable native plant communities (Weidlich et al. 2020). 

 Once established, invasive plants can be expensive to control and long-term results are 

difficult to achieve (Weidlich et al. 2020). The economic cost of invasive species to the U.S. 

economy in 2008 was been estimated to be between $131 and $185 billion USD, largely 

through impacts on agricultural production, fisheries, and recreation (Marbuah et al. 2014). In 

2008, California spent $82 million USD to treat and control invasive species and to mitigate 

their impacts on impacted waterways, degradation of native ecosystems, and increased fire risk 

(Robison et al. 2010). Determining the geographic distribution of an invasive species is required 

before management actions such as treatment and control can be implemented (U.S. 

Department of the Interior 2016). 

1.1 Research Objectives  

 Advances in remote sensing technologies may provide new opportunities for mapping 

the spatial distribution of invasive plant species (Robison et al. 2010). My project seeks to 

investigate the use of remote sensing for managing invasive plant species in California. 

Specifically, I seek to answer the following questions: 
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1) Which invasive species in California have been successfully identified and mapped using 

remotely sensed data, and how were they detected? 

2) How has remote sensing of invasive species contributed to invasive species management, 

either through detection, treatment, or monitoring? 

 I plan to answer my first research question by synthesizing the available remote sensing 

literature about invasive species identification and mapping using remote sensing methods for 

California invasive plants, which I will obtain through a literature review. I will then perform a 

comparative analysis of these studies, comparing the methods used to detect tamarisk and 

which sensors were used. I plan to answer my second research question by two case studies: 

one that explores the role of remote sensing in managing tamarisk (Tamarix spp.), and one that 

discusses how remote sensing has contributed to invasive species management in the 

Sacramento-San Joaquin River Delta. 

 I hypothesize that many, but not all, invasive plants in California are capable of 

detection and mapping by remote sensing but that remote sensing is not a commonly used 

method for the detection and mapping of invasive plants in California. However, some cases 

exist where it has successfully been used for invasive species management. Finally, I 

hypothesize that while significant barriers to the detection of invasive species by remote 

sensing exist, it can still be a useful tool for land managers to detect invasive plant species at 

scale and that emerging tools and methods of data analysis will decrease barriers to use. 

  



 

 3 

2.0 Invasive Species and the Role of Early Detection 

2.1 Invasive Species 

 The California Floristic Province (CFP), which includes California west of the Great Basin 

and deserts, southern Oregon, and Baja California, is characterized by a Mediterranean climate 

with cool, wet winters and warm, dry summers (Keeley 2002). The CFP is a biodiversity hotspot 

with over 4,400 native plant species, half of which are endemic to the region, meaning they are 

only found within the CFP (Keeley 2002). However, roughly 25% of the plants species within the 

CFP are non-native, some of which are invasive, with the majority of non-natives originating 

from areas with similar climates such as the Mediterranean basin, North Africa, and Eurasia 

(Keeley 2002). This has led to the homogenization of California plant communities, particularly 

in developed regions where disturbance has facilitated the spread and establishment of 

invasive plant species and where there is less land held under public ownership for 

conservation (Schwartz et al. 2006). 

 Determining a consistent definition of an invasive species is necessary so that 

environmental managers can draw comparisons between the impacts of different invasive 

species and prioritize their control (Blackburn et al. 2011). Alien plants are those that have been 

introduced, either intentionally or accidentally, by humans outside of their native range 

(Richardson et al. 2000). Once introduced, alien plants may transition to naturalized or invasive 

plants if they are capable of overcoming barriers to survival, reproduction, and dispersal 

(Blackburn et al. 2011). Naturalized plants are alien plants that are capable of reproducing and 

sustaining populations without the help of human intervention, but generally do not disperse 

into adjacent areas (Richardson et al. 2000). Invasive plants are naturalized plants that have 

high reproduction rates and are capable of dispersing far away from initial populations 

(Richardson et al. 2000). 

 Invasive plants can further be differentiated from alien or naturalized plants by 

understanding their impacts on the ecosystems in which the spread. For example, the California 

Invasive Plant Council (CAL-IPC) defines invasive plants as “plants that are not native to the 

environment, and once introduced, [they] establish, quickly reproduce and spread, and cause 

harm to the environment, economy, or human health (CAL-IPC 2024a). This definition differs 
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slightly from that proposed by Richardson et al. (2000) in that impacts to the environment are 

inherent to the definition of invasive species. Throughout this paper, I will be using the CAL-IPC 

definition for invasive plants. Further, invasive plants can be differentiated by traits that 

facilitate their reproduction and spread, such as leaf-area allocation, shoot allocation, growth 

rate, size, and fitness (van Kleunen et al. 2010). 

2.2 History of Invasive Plants in California 

 Invasive species were first brought to California in the 16th century by Spanish settlers, 

who introduced many of the invasive forbs and grasses that are now prevalent throughout 

California (Keeley 2002). The transition to the Mexican Period (1821-1848) saw the widespread 

introduction of cattle to the region that, combined with an extreme drought, led to declines in 

native bunchgrass populations (Keeley 2002). Subsequently, introduced Mediterranean grasses 

and forbs that were both adapted to similar climatic conditions, disturbances, and grazing 

pressures in California rapidly expanded as available niches became available (Keeley 2002). 

Later, the Gold Rush (1848-1855) and American periods (1848-present) brought significant 

agricultural expansion and trade to the region, creating new pathways of invasion through 

infested seed and agricultural escapees (Rejmánek and Randall 1994). 

 Each period of California history saw landscape scale changes that facilitated invasion 

(Rejmánek and Randall 1994). The widespread implementation of agriculture to the state 

brought with it channelization of creeks, drainage of wetlands, and clearing of forests for 

agriculture, grazing, and timber (Rejmánek and Randall 1994). The construction of roads, 

railroads, and later highways created new pathways for introductions and fragmented existing 

habitats (Rejmánek and Randall 1994). Altered fire regimes arising from fire suppression policies 

and increased ignition sources have also changed invasion dynamics throughout California 

(Keeley 2002). Due to increases in tree density and ladder fuels caused by fire suppression 

policies, once resilient ecosystems such as coniferous forests have become more susceptible to 

invasion after fire events (Keeley 2002). Shifts from shrub-dominated communities to non-native 

annual grassland have been observed in areas close to urban centers due to more frequent fires 

caused by increases in ignition sources (Keeley 2002). 
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2.3 Policy Framework of Invasive Plants 

 While there are a variety of laws and policies that grant federal agencies the authority 

to regulate invasive plants, no single agency or law has full authority to manage invasive plants 

(Burgos-Rodríguez and Burgiel 2020). Executive Orders (E.O.s) 13112 and 13751 grant federal 

agencies the ability to implement invasive plant control programs (Burgos-Rodríguez and 

Burgiel 2020). The Plant Protection Act of 2000 (PPA) establishes regulations regarding 

inspection and quarantine of noxious weeds and potential plant pests, though these are 

generally targeted to crop pests (Burgos-Rodríguez and Burgiel 2020). Currently, two 

organizations are primarily responsible for prioritizing and ranking invasive plants in California 

(Brusati et al. 2014). 

 The California Invasive Plant Council (CAL-IPC) is non-profit research group that 

publishes an inventory of invasive plants that impact California’s natural habitats (Brusati et al. 

2014). Plants are rated on a scale from “High”, “Moderate”, and “Limited” based on the degree 

of their impacts on native impacts and how widespread they are across California (CAL-IPC 

2024b). Additional ratings include “Alert”, which describes “High” or “Moderate” rated species 

that have the potential to spread outside their limited range in California, and “Watch” which 

describes species not currently found in California but have the potential to be high risk (CAL-IPC 

2024b). 

 The California Department of Food and Agriculture (CDFA) is a state agency with the 

legal authority to regulate plant species that pose a risk to agriculture (Brusati et al. 2014). Title 

3 of the California Code of Regulations (CCR) Section 4500 lists species that qualify as noxious 

weeds and which fall under CDFA jurisdiction. Species are rated on a scale from A, B, C, D, or Q 

(California Department of Food and Agriculture 2024) where: 

• A rated species: known to cause economic or environmental damage, are either not 

present in California or have limited distribution, are prohibited from entering the 

state, and are subject to state regulation. 

• B rated species: known to cause economic or environmental damage, have limited 

distribution in California, have restrictions on entering the state, and are subject to 

regulation by county agricultural commissioners. 
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• C rated species: known to cause economic or environmental damage, can have 

widespread distribution in California, and are subject to regulation by county 

agricultural commissioners. 

• D rated species: causes no or little economic or environmental damage, not subject 

to regulation 

• Q rated species: suspected to cause economic or environmental damage, but not 

enough information is known to make a determination 

2.4 Early Detection and Rapid Response 

 The establishment, spread, and impacts of invasive species can be prevented or 

controlled through effective management strategies (Weidlich et al. 2020). Early Detection and 

Rapid Response (EDRR) is a management framework that argues for identifying and eliminating 

initial infestations of invasive species before they become established and too costly and 

unmanageable to eradicate (U.S. Department of the Interior 2016). The U.S. Department of the 

Interior, the federal agency responsible for managing most of the open space in the U.S., 

defines EDDR as “a coordinated set of actions to find and eradicate potential invasive species 

before they spread and cause harm” (Reaser et al. 2020). 

 EDDR is based upon the conceptual framework of the “invasion curve,” which illustrates 

how the costs of managing an invasive species increase and the likelihood of eliminating that  

species decreases as its range increases and the longer it is established (Figure 1) (U.S. 

Department of the Interior 2016). The invasion curve proposes four management options for 

controlling invasive species that become progressively more expensive and time intensive as 

the infestation grows: Prevention, Eradication, Containment, and Long-Term Control (U.S. 

Department of the Interior 2016). All four management actions included in the EDRR 

framework require detection, or the verification of an invasive species presence (Reaser et al. 

2020). Historically, detection was conducted through in person, visual surveys, though remote 

sensing may become a more feasible tool for detection as this technology advances (Reaser et 

al. 2020). 

 Prevention, the first management action under the EDDR framework, is the most cost-

effective and includes any actions that prevent an invasive species from being introduced into a 
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new ecosystem (Reaser et al. 2020). This is particularly important because many invasive 

species are introduced to new ecosystems, intentionally or not, by people through global trade 

(Early et al. 2016). For example, 63% of invasive species in California wildlands were introduced 

through the horticultural industry (Brusati et al. 2014). Prevention is a necessary step in the 

EDDR framework, as introductions of potentially invasive plants are believed to increase in the 

future due to climate change (Early et al. 2016). 

 

Figure 1: The invasion curve (U.S. Department of the Interior 2016) 

 Eradication, or the complete removal of an invasive species, is typically only successful 

for small populations of invasive species that have not had sufficient time to expand beyond 

their limited range (Reaser et al. 2020). For example, an invasive marine alga, Caulerpa taxifolia, 

was successfully eradicated in Southern California because treatment efforts were initiated 

seventeen days after it was first detected (Anderson 2005). However, the likelihood that an 

introduced plant species will become invasive increases the longer it is established in an area 

(Ahern et al. 2010). Herbarium studies have shown that non-native plant species with a higher 

Minimum Residence Time (an estimate of the time an introduced plant species has been 
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established in an area based on herbarium collection dates) were more likely to become 

invasive (Ahern et al. 2010). 

 As environmental conditions within an ecosystem change, the ecosystem may become 

more susceptible to invasion (Rew et al. 2009). Climate change, for example, may open up 

available niches for new invasive species in native ecosystems (Hellmann et al. 2008), and 

established invasive species may see their ranges shift or contract as climate conditions change 

(Bradley et al. 2009). Additionally, longer residence times may provide sufficient time for 

genetic adaptations to accumulate within invasive plant populations that confer competitive 

advantages (Ahern et al. 2010). Regardless, detecting invasive or potentially invasive plants 

early in their establishment is a necessary first step to EDRR management actions such as 

eradication or containment (U.S. Department of the Interior 2016). 
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3.0 Remote Sensing Overview 

 Remote sensing is the practice of measuring an object from a distance using the light 

energy that is reflected off of a surface (Bradley 2014), and has been proposed as a promising 

method for detecting early invasions and mapping their distributions (Robison et al. 2010). 

Remote sensing requires a light source, a sensor, a target (in this case an invasive plant), and its 

interaction with electromagnetic radiation in order to gather information (Figure 2) 

(Macarringue et al. 2022). 

 Remote sensing has many applications in environmental management. Land use and 

land cover classification, which is the process of mapping the biophysical attributes of the 

Earth’s surface and its use by humans, has long been conducted with satellite sensors because 

they can regularly acquire imagery across the entirety of Earth’s surface (Macarringue et al. 

2022). Remote sensing has a variety of applications for water resource management as well, 

 

 

Figure 2: Overview of remote sensing process (Macarringue et al. 2022) 
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including measuring drought stress in agriculture, water quality monitoring, flood mapping, and 

mapping wetlands (Govender et al. 2009). 

3.1 Sensor Properties 

 Sensors differ in both the source of light used for remote sensing and the resolutions at 

which they operate (Huang and Asner 2009). Sensors can be characterized as active if they 

provide their own light sources (e.g., LiDAR) or passive if they rely on solar reflectance for their 

light source (e.g., Landsat satellite) (Huang and Asner 2009).The spectral, spatial, and temporal 

resolutions of a sensor are of primary importance for the detection of plants by remote sensing 

(Huang and Asner 2009). Table 1 lists the resolution of many of the most used remote sensors 

used in detecting invasive plant species. 

 Spectral resolution refers to the number of discrete regions within the visible (0.4 𝜇m–

0.7 𝜇m) near-infrared (0.7 𝜇m-1 𝜇m), and short wavelength infrared (1 𝜇m-2.5 𝜇m) portions of 

the electromagnetic spectrum (called spectral bands) that are capable of being detected by a 

sensor (Bradley 2014). Multispectral sensors, such as Landsat, typically contain between 4-10 

bands and can be described as having moderate spectral resolution (Bradley 2014). For 

example, the Landsat 5 near-infrared band measures wavelengths of light between 0.76 𝜇m 

and 0.90 𝜇m (Bradley 2014). Hyperspectral sensors on the other hand may contain hundreds of 

Table 1: Resolution of Different Remote Sensing Platforms (Adapted from Bradley 2014) 

Imagery Spatial Extent Spatial Resolution 
Temporal 

Resolution 

Multi-Spectral 

MODIS 2330 km 250-1000 m 
Weekly 

composite 
Landsat 8 185 km 30 m 16 days 

Aster 60 km 15-30 m Tasked 
Ikonos 11 km 1.8-4m Tasked 

Quickbird 17 km 2.5 m Tasked 

Worldview-2 16 km 1.8 m Tasked 

Hyperspectral 

Hyperion 7.7 km 30 m Tasked 

AVIRIS 2-11 km 4-20 m Tasked 
CASI Various Up to 25 cm Tasked 

HyMap Various 3-10 m Tasked 

Aerial Photos 

NAPP 9 km 1:40,000 Years 

NAIP Mosaic 1 m Years 

USGS DOQ Mosaic 1 m Years 
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bands, with each band containing a narrower region of the electromagnetic spectrum, and can 

be classified as having high spectral resolution (Bradley 2014). 

 Spatial resolution, in this context, refers to how much area of land is contained within 

one pixel of a remotely sensed image (Bradley 2014). However, spatial resolution should not to 

be confused with spatial extent, which in this context is the total area of land covered by a 

remotely sensed image (Bradley 2014). Sensors with moderate spatial resolution (e.g. Landsat 

8) may produce images with pixels anywhere between 30 m2 to 250-1000 m2 whereas high 

spatial resolution sensors (e.g. CASI) may produce pixels as low 25 cm (Bradley 2014). Figure 3 

illustrates the difference between a moderate and high-resolution sensor. 

 

Figure 3: Comparison of spatial resolution of true-color Landsat satellite imagery at 30-m resolution (left) and 
RapidEye satellite resolution imagery at 6.5-m resolution (right). Image: (Hill et al. 2016) 

  Lastly, temporal resolution refers to how often a sensor may return to the same 

location and acquire imagery (Bradley 2014). Satellite based sensors, such as Landsat 8, 

typically have fairly high temporal resolution as they capture imagery of the same footprint 

every 16 days (Bradley 2014). Aerial based imagery typically has lower temporal resolution, 

capturing the same footprint once every few years, or must be tasked, meaning that temporal 

resolution is defined by the user based on how often they choose to acquire imagery (Bradley 

2014). 

 While higher spectral, spatial, and temporal resolution are useful in distinguishing one 

plant species from its surrounding environment, sensors must compromise between all types of 
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resolution (Bradley 2014). Sensors with high temporal resolution typically exhibit a tradeoff 

between frequent imagery acquisition and low spectral or spatial resolution (Huang and Asner 

2009). Likewise, sensors with high spatial or spectral resolution are typically drone or plane-

mounted, which limits their availability and ease of access (Huang and Asner 2009). High spatial 

and spectral resolution imagery is also typically more expensive than moderate resolution 

imagery (He et al. 2011). 

3.2 Detection of Plants by Remote Sensing 

 Methods for discriminating the signal produced by a remote sensor and assigning it to a 

particular category, in this case an invasive species, are generally characterized by spectral 

approaches, textural approaches, and phenological approaches (Bradley 2014). 

 Spectral approaches rely on the unique patterns of absorption and reflection that an 

object displays when interacting with light (Bradley 2014). By plotting the amount of light 

reflected off a surface over the wavelengths or spectra of light detected by a  

 sensor, patterns called spectral signatures can be produced that may be unique to the material 

being sensed (Rocchini et al. 2022). For example, plant material can be distinguished from non-

photosynthetic material such as soil or rocks based on the high reflectance of chlorophyll-a in 

the near-infrared region of light (He et al. 2011). Other leaf pigments such as carotenoids and 

anthocyanins, water, and other plant biochemicals, as well as unique leaf architecture can 

differentially reflect or absorb wavelengths of light, producing different spectral signatures 

(Blackburn, G. A. 2007). The relative abundance of any of these plant tissue constituents can 

differ greatly between species, and when an invasive species possess a substantially different 

spectral properties than surrounding vegetation, it may be capable of being detected using 

remote sensing methods (Bradley 2014). For example, leaf spectral signatures within the 

California flora have been shown to be more similar when plants shared a close  

evolutionary history, and that entire families of plants were spectrally distinct from one 

another, suggesting that remote sensing is a plausible tool for mapping vegetation diversity 

(Griffith et al. 2023). The spectral signatures of many different plant species and land cover 

types can be collected and stored in spectral libraries and used as reference spectra for later 

identification (Jiménez and Díaz-Delgado 2015). Pixels within a remotely sensed image that 
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contain similar spectral signatures to those of a known invasive plant can be classified as such, 

producing maps of invasive species distribution (Bradley 2014). Hyperspectral imagery is 

typically believed to be superior for detection of invasive plants compared to multispectral 

imagery, as differences in reflectance can be distinguished by the numerous, high-resolution 

spectral bands (Figure 4) (Bradley 2014). 

 Textural approaches rely on differentiating neighboring pixels from one another or 

grouping them together as opposed to classifying individual pixels (Bradley 2014). High spatial 

resolution is necessary for textural approaches, as spectral signatures must be compared to 

nearby neighbors (Bradley 2014). If pixels sizes are much larger than individual plants, then 

each pixel represents a mixture of different spectral signatures instead of a unique spectral 

signature that corresponds to a particular species (Bradley 2014). Additionally, target plant 

 

Figure 4: Comparison of spectral signatures for different cover types and tree species from hyperspectral and 
multispectral imagery (Bradley 2014) 
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species must exhibit a different shape, growth habit, or density than native background 

vegetation to be detected by textural approaches (Bradley 2014). 

 Lastly, phenological approaches rely on growth patterns that are significantly different 

than background vegetation or native species (Bradley 2014). For example, invasive species that 

remain evergreen in deciduous ecosystems, become photosynthetically active earlier than 

native species or remain photosynthetically active later than native species can be 

differentiated through phenological approaches (Bradley 2014). Phenological differences 

between different landcover types or species can be expressed through the use of spectral 

indexes such as normalized difference vegetation index (NDVI), which is a ratio of near-infrared 

light (NIR) and the red portion of visible light (VIS) that displays areas of high photosynthetic 

activity and is calculated as 𝑁𝐷𝑉𝐼 =  (𝑁𝐼𝑅 − 𝑉𝐼𝑆) (𝑁𝐼𝑅 + 𝑉𝐼𝑆)⁄  (Bradley 2014). Areas with 

higher NDVI represent vegetation that is greener, healthier, and more photosynthetically active 

than areas of lower NDVI (Bradley 2014). 

3.3 Image Classification 

 Converting a remotely sensed image into a classified image requires preprocessing data, 

determining an appropriate classification system, training data, and an accuracy assessment (Lu 

and Weng 2007). Examples of image preprocessing include radiometric calibration, geometric 

rectification, atmospheric correction, and topographic correction (Lu and Weng 2007). 

Preprocessing data is particularly important for reducing the dimensionality of hyperspectral 

data, which would otherwise require exponentially more training data or computing power to 

compute the additional data (Chutia et al. 2016). Examples of preprocessing techniques for 

hyperspectral data include minimum noise fraction (MNF) and class-based principal component 

analysis (PCA) (Chutia et al. 2016). 

 Supervised classification approaches require training samples of a known spectral or 

textural value, which are then used to create thematic maps (Chutia et al. 2016). Common 

examples of supervised classification approaches include the maximum likelihood classifier 

(MLC), support vector machine (SVM), and object-based image analysis (OBIA) (Chutia et al. 

2016). Alternatively, unsupervised classification approaches require no previous knowledge of 

what classifications are used, and often rely on fuzzy logic (Chutia et al. 2016). 
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 Ensemble methods use a set of supervised learning using defined criteria algorithms to 

predict classification results (Chutia et al. 2016). Random Forests are one example of an 

ensemble method that is commonly used to classify hyperspectral images (Chutia et al. 2016), 

in this case calculating the probability that a pixel belongs to a certain class based on its spectral 

information (Macarringue et al. 2022). 

 Image classification accuracy can best be summarized using an error matrix, in which the 

number of pixels that were identified as a particular class and the true number of pixels 

belonging to that class are arranged in a series of columns and rows (Congalton 1991). From the 

error matrix, two metrics for validating image classifications can be calculated: the producer’s 

and user’s accuracy (Congalton 1991). The producer’s accuracy is a measurement of omission, 

which represents the chance that a correct identification what made classifying training data 

(Congalton 1991). Producer’s accuracy is calculated by dividing the number of correctly 

identified points from validation data by the total number of validation data points (Congalton 

1991). User’s accuracy is a measure of commission error, which represents the probability that 

a classified pixel corresponds to the correct category in the real world (Congalton 1991). The 

user’s accuracy is calculated by dividing the total number of correctly classified points divided 

 

Figure 5: Example of an error matrix (Congalton 1991) 
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by the total number of points of that same classification within the dataset (Congalton 1991). 

Figure 5 shows an example of how to calculate producer’s and user’s accuracy from an error 

matrix. 

3.4 Benefits of Remote Sensing in Invasive Plant Management 

 Remote sensing offers a potential alternative to on-the-ground reconnaissance of 

invasive species because maps can be produced for larger spatial scales in less accessible 

terrain and is only biased by the spatial extent of the sensor (He et al. 2011). This is important 

because early detection of invasive species is insufficiently conducted across the vast majority 

of California ecosystems (He et al. 2011). Most monitoring of invasive species occurs in person, 

limiting the scale of EDRR across large spatial extents and in difficult-to-access terrain, and is 

rarely repeated at regular time intervals (He et al. 2011). Further, efforts to document invasive 

plants is performed unequally throughout a landscape: most EDRR records and herbarium 

collections are from rare locations, which limits our understanding of the true distribution of 

invasive species (Bradley 2014).  

 An additional benefit of remote sensing methods is that a historical record of invasion 

spread over time and space is produced (He et al. 2011). Remote sensing may also provide 

further insights into the mechanisms of invasion (Bradley 2014) and resulting impacts on 

community structure and ecosystem processes (He et al. 2011). Remotely sensed data can also 

contribute to statistical models that predict the current distribution of individual plant species 

based on their known distribution and environmental conditions (Yannelli et al. 2022). These 

models can be updated with projected climate conditions to predict how species may respond 

to climate change (Yannelli et al. 2022). 

3.5 Limits of Remote Sensing for Invasive Plant Detection 

 The resolution of a sensor can greatly impact its ability to differentiate an invasive plant 

species from surrounding vegetation (He et al. 2011). Imagery with coarse spatial resolution 

captures the spectral reflectance of multiple individual plants and potentially several species, 

which can introduce variations in spectral signatures both within and between species as well 

as spectral mixing (He et al. 2011). Alternatively, when pixel sizes are much smaller than the 

size of an individual of a plant species of interest, high spectral variance can occur as light 
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reflects off different plant parts (He et al. 2011). Spectral signatures may also not represent 

discrete species, particularly if nearby species contain similar biochemical constituents 

(Rocchini et al. 2022). 

 Supervised classification methods rely on training data in order to create predictive 

models and validation data to measure their accuracy (Chutia et al. 2016). Yet, field data for 

training and validation can be lacking, particularly for species that are of emerging concern for 

environmental managers (Parker et al. 2021). 

 Because remote sensing typically measures a landscape from a birds-eye view, plant 

species below the canopy are typically missed, making remote sensing of understory species 

unfeasible (Rocchini et al. 2022). Other remote sensing technologies such as microwave remote 

sensing and synthetic aperture radar (SAR) are capable of penetrating through the canopy layer 

as well as through clouds, yet are more difficult to use (Parker et al. 2021). Phenological 

approaches also require that imagery is obtained at the same time distinct life stages such as 

flowering or senescence are occurring, which can occur asynchronously across a landscape (He 

et al. 2011). 

 Lastly, price and processing can preclude the use of higher quality data such as 

hyperspectral imagery (He et al. 2011). Hyperspectral imagery requires large amounts of data 

to store and technical capacity to process (He et al. 2011). Tasking flights to acquire 

hyperspectral imagery can often cost upwards of tens to hundreds of thousands of dollars (He 

et al. 2011). 
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4.0 Comparative Analysis of Remote Sensing for California Invasive 

Plants 

 There are a variety of different remote sensing platforms with varying degrees of 

spatial, spectral, and temporal resolution available to land managers interested in remotely 

sensing invasive species. Understanding the pros and cons of each sensor, the properties of 

each invasive plant that facilitates its detection via remote sensing, and data processing and 

classification methods are essential to mapping invasive plant species.  

4.1 Methods 

 I conducted the literature review across multiple databases, including Fusion, Scopus, 

and Google Scholar with the search terms “remote sensing” followed by each species name in 

quotations to limit my results to studies containing each species in the CAL-IPC inventory as a 

keyword. 

 Plant species used in this comparative analysis were limited to those plants in the CAL-

IPC inventory that were rated “high” (Table 2). These species were chosen to because their 

significant impacts would be of interest to environmental managers throughout California and 

would demonstrate the utility of remote sensing for invasive species monitoring over a variety 

of different ecosystems. For genera represented by more than one species in the inventory, 

only the genus was included in quotation marks. Approximately 5% of the studies were found 

through previously cited works within the papers I found or through incidental findings. Any 

studies that did not include a map illustrating the predicted distribution of the invasive species 

in question was excluded from analysis, as these end products are intended to be provided to 

resource managers. Studies performed outside of California were included so long as a species 

in the CAL-IPC inventory ranked “high” was one of the subjects of the remote sensing study. 

 For each study, I recorded the type of sensor used and its spectral, spatial, and temporal 

resolution, the type of study (e.g. single scene, time series, comparative study etc.), the 

property of the invasive species that permits its detection via remote sensing, data processing 

methods used, and the classification methods used to create distribution maps. Spectral 

resolution was broken down by hyperspectral imagery (imagery containing typically hundreds 
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of spectral bands), multispectral (imagery containing four or more bands), Color-Infrared 

(imagery containing three color bands and one infra-red band) and RGB (imagery only 

containing three bands corresponding to red, green, and blue wavelengths of light). Spatial 

resolution was characterized as “coarse” (pixel size higher than 100 meters), “moderate” (pixel 

size between 10-100 meters), “high” (pixel size between 1-10 meters) and “very high” (pixel 

size smaller than 1 meter). 

4.2 Results 

 A total of 41 studies were found using the above methods and included in my 

comparative analysis, representing 23 species or 57% of the high-rated species in the CAL-IPC 

Table 2: High Rated Species in the CAL-IPC Inventory (CAL-IPC 2024) 

Scientific name Common names Scientific name Common names 

Aegilops triuncialis barb goatgrass Hedera helix English ivy 

Alternanthera philoxeroides Alligatorweed Hydrilla verticillata Hydrilla 

Ammophila arenaria European beachgrass Lepidium latifolium perennial pepperweed 

Arundo donax giant reed Limnobium spongia South American spongeplant 

Brassica tournefortii Sahara mustard Ludwigia hexapetala creeping waterprimrose 

Bromus madritensis ssp. 

rubens red brome Ludwigia peploides floating water primrose 

Bromus tectorum Cheatgrass Lythrum salicaria purple loosestrife 

Carpobrotus edulis highway iceplant Myriophyllum aquaticum parrotfeather 

Carthamus lanatus woolly distaff thistle Myriophyllum spicatum spike watermilfoil 

Centaurea solstitialis yellow starthistle Oncosiphon pilulifer stinknet 

Centaurea stoebe ssp. 

micranthos spotted knapweed Onopordum acanthium Scotch thistle 

Cortaderia jubata Jubatagrass Rubus armeniacus Himalayan blackberry 

Cortaderia selloana Pampasgrass Salvinia molesta giant Salvinia 

Cytisus scoparius Scotch broom Sesbania punicea scarlet Wisteria 

Delairea odorata Cape-ivy Spartina alterniflora x S. foliosa smooth hybrid cordgrass 

Egeria densa Brazilian water weed Spartina densiflora dense-flowered cordgrass 

Ehrharta calycina purple veldtgrass Spartium junceum Spanish broom 

Eichhornia crassipes water hyacinth Tamarix chinensis Chinese tamarisk 

Elymus caput-medusae Medusahead Tamarix gallica French tamarisk 

Euphorbia virgata leafy spurge Tamarix parviflora smallflower tamarisk 

Genista monspessulana French broom Tamarix ramosissima saltcedar 

Hedera canariensis Algerian ivy Ulex europaeus gorse 
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inventory (Table 3). Shrubs were the most represented lifeform in the comparative analysis, 

with fourteen studies included. However, these were overwhelmingly represented by Tamarix 

spp. at eleven studies. Aquatic vegetation, including floating aquatic vegetation (FAV) and 

submerged aquatic vegetation (SAV), were also highly represented in the comparative analysis 

at eleven and six studies respectively. Annual herbs and perennial vines were the least 

represented in the comparative analysis at one study each, though Rubus armeniacus, which is 

a thicket forming vine, was recorded as a shrub in this analysis and could be included as a  

perennial vine. 

 Hyperspectral imagery was the most used type of sensor for detecting invasive plant 

populations having been used in 20 studies, followed by multispectral sensors in 14 studies, 

Color-Infrared (Color-IR) in 13 studies, and RGB Color sensors in six studies (Figure 6). Studies 

incorporating passive and active sensing (such as LiDAR) were only used in 4 studies. Of the 

studies using hyperspectral or multispectral sensors, the hyperspectral sensor HyMap was the 

most used with nine studies, followed by the multispectral sensor Landsat (comprising of the 

Landsat 5, Landsat Land Surface Reflectance, Landsat 7 Enhanced Thematic Mapper Plus 

scenes) at six studies. With the exception of Landsat (sixteen-day return interval) and MODIS 

(weekly composite), all sensors were tasked. 

 Of the 56 sensors used in the remote sensing studies, high spatial resolution (25 studies) 

and very high spatial resolution (19 studies) sensors were used most often to map invasive 

plant populations, followed by moderate spatial resolution (9 studies) and coarse spatial 

resolution (3 studies) sensors.  

 Populations of invasive plants were most often detected by spectral approaches (64%) 

followed by phenological approaches (23%). Combined spectral and textural approaches (7%) 

were used more than textural approaches alone (4%), and even fewer studies combined 

phenological, spectral, and textural approaches (2%). 

4.3 Discussion 

 A majority of the species ranked as “high” in the CAL-IPC invasive plant inventory are 

capable of being mapped by remote sensing. This method of mapping invasive species provides 

a suitable means of mapping infestations across a variety of spatial scales using a repeatable 
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Table 3: Remote Sensing Studies of High Rated Species in the CAL-IPC Inventory 

Study Study Type Species 

Species 

Property for 

Sensing 

Sensor Type 

Resolution Data 

Processing 

Methods 

Classification 

Methods Spectral Spatial Temporal 

(Malmstrom 

et al. 2017) 
Single Scene 

Aegilops 

triuncialis 
Phenological Color-Infrared 4 bands 0.45 m tasked 

Spectral 

Indexes 

Supervised and 

Unsupervised 

Classification 

(Clements 

et al. 2014) 
Single Scene 

Alternanthera 

philoxeroides 
N/A 

RGB Aerial 

Imagery 
3 bands 1 m tasked Segmentation Machine Learning 

(Sheffield et 

al. 2022) 
Time Series 

Alternanthera 

philoxeroides 
N/A 

RGB Aerial 

Imagery 
3 bands 35 cm tasked N/A 

Random Forest 

Algorithms 

(Frati et al. 

2020) 
Time Series 

Ammophila 

arenaria 
Spectral 

Hyperspectral 

and LiDAR 
160 bands 5 cm tasked 

Spectral 

Indexes, SAM, 

MNF 

Decision Tree 

(Timm et al. 

2014) 
Single Scene 

Ammophila 

arenaria 
N/A Color-Infrared 4 bands 1 m 3.5 days 

Spectral 

Indexes 
Linear Regression 

(DiPietro et 

al. 2002) 
Single Scene Arundo donax Spectral Hyperspectral 165 bands 4 m tasked MNF, SAM 

Supervised and 

Unsupervised 

Classification 

(Ustin et al. 

2002) 
Single Scene Arundo donax 

Spectral and 

textural 
Hyperspectral 224 bands 4 m Tasked 

Spectral 

Indexes, 

MNF, SAM 

Supervised and 

Unsupervised 

Classification 
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(Yang et al. 

2011) 
Single Scene Arundo donax Spectral Color-Infrared 3 bands 0.65 m tasked N/A 

Supervised 

Classification 

(Bradley and 

Mustard 

2005) 

Time Series 
Bromus 

tectorum 
Phenological Multispectral 

8 bands 

4-6 bands 

30 m 

1 km 

16 days 

Weekly 

Spectral 

Index, 

Continuum 

Removal 

N/A 

(Weisberb 

et al. 2021) 
Comparison 

Bromus 

tectorum 
Phenological Color-Infrared 5 bands 2 cm tasked N/A 

Random Forest 

Algorithm 

(Innangi et 

al. 2023) 
Comparison 

Carpobrotus 

edulis 
N/A 

RGB Aerial 

Imagery, 

Color-IR 

3 bands 

4 bands 
2-5 cm tasked 

Spectral 

Indexes, 

Image 

Segmentation 

Random Forest 

Algorithm 

(Underwood 

et al. 2007) 
Comparison 

Carpobrotus 

edulis 
Spectral Hyperspectral 174 bands 4 m tasked 

Continuum 

Removal, 

MNF 

Supervised 

Classification 

(Ustin et al. 

2002) 
Single Scene 

Carpobrotus 

edulis 

Spectral, 

Textural 
Hyperspectral 224 bands 4 m Tasked 

MNF, Spectral 

Indexes, SAM 

Supervised and 

Unsupervised 

Classification 

(Miao et al. 

2006) 
Single Scene 

Centaurea 

solstitialis 
N/A Hyperspectral 36 bands 1, 3 m Tasked 

Spectral 

unmixing, 

PCA 

Monte Carlo 

Method 

(Baron and 

Hill 2020) 
Single Scene 

Centaurea 

stoebe ssp. 

micranthos 

Textural Color-Infrared 4 bands 2.9 cm Tasked 
Spectral 

Indexes, OBIA 

Random Forest 

Algorithms 
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(Underwood 

et al. 2007) 
Comparison 

Cortaderia 

jubata 
Spectral Hyperspectral 174 bands 4 m Tasked MNF 

Supervised 

Classification 

(Ustin et al. 

2002) 
Single Scene 

Cortaderia 

jubata 

Spectral and 

Textural 
Hyperspectral 224 bands 4 m Tasked 

Spectral 

Indexes, 

MNF, SAM 

Supervised and 

Unsupervised 

Classification 

(Hill et al. 

2016) 
Time Series 

Cytisus 

scoparius 
Spectral Multispectral 7 bands 30 m 16 days Spectral Index 

Supervised 

Classification 

(Hestir et al. 

2008) 
Single Scene Egeria densa Spectral Hyperspectral 128 bands 3 m Tasked SMA, SAM Decision Tree 

(Santos et 

al. 2009) 
Time Series Egeria densa Spectral Hyperspectral 128 bands 3 m Tasked 

Spectral 

Indexes, 

Spectral 

Unmixing, 

SAM 

Decision Tree 

(Underwood 

et al. 2006) 
Comparative Egeria densa Spectral Hyperspectral 128 bands 3 m Tasked 

SMA, Spectral 

Indexes 
Decision Tree 

(Bolch et al. 

2021) 
Comparative 

Eichhornia 

crassipes 
Spectral Hyperspectral 

128 bands 

270 bands 

1.7 m 

5.4 cm 
Tasked 

MNF, Spectral 

Indexes, OBIA 

Random Forest 

Algorithm 

(Hestir et al. 

2008) 
Single Scene 

Eichhornia 

crassipes 
Spectral Hyperspectral 128 bands 3 m Tasked SMA, SAM Decision Tree 

(Santos et 

al. 2009) 
Time Series 

Eichhornia 

crassipes 
Spectral Hyperspectral 128 bands 3 m Tasked 

Spectral 

Indexes, 

Spectral 

Unmixing, 

SAM 

Decision Tree 
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(Underwood 

et al. 2006) 
Comparison 

Eichhornia 

crassipes 
Spectral Hyperspectral 128 bands 3 m Tasked 

SMA, Spectral 

Indexes 
Decision Tree 

(Dronova et 

al. 2017) 
Single Scene 

Elymus caput-

medusae 

Spectral, 

Textural, and 

Phenological 

Color-Infrared 4 bands 0.15 m Tasked OBIA 

Supervised and 

Unsupervised 

Classification 

(Malmstrom 

et al. 2017) 
Single Scene 

Elymus caput-

medusae 
Phenological Color-Infrared 4 bands 0.45 m Tasked 

Spectral 

Indexes 

Supervised and 

Unsupervised 

Classification 

(Weisberb 

et al. 2021) 
Time Series 

Elymus caput-

medusae 
Phenological Color-Infrared 5 bands 2-5 cm Tasked N/A 

Random Forest 

Algorithm 

(Lake et al. 

2022) 

Time Series, 

Comparative 

Euphorbia 

virgata 

Spectral, 

Phenological 

Multispectral 

Color-IR 

8 bands 

4 bands 

1.8 m 

3 m 

Tasked 

Daily 
N/A 

Deep Learning, 

Image 

Segmentation 

(Chance et 

al. 2016) 
Single Scene Hedera helix Spectral 

Hyperspectral 

and LiDAR 
72 bands 1.0 m Tasked SAM 

Random Forest 

Algorithm 

(Khanna et 

al. 2023) 
Time Series 

Hydrilla 

verticillata 
Phenological Hyperspectral 

430 bands 

126 bands 

3 m 

2.5 m 
Tasked 

Spectral 

Indexes, 

Spectral 

Mixture 

Analysis, SAM 

Random Forest 

Algorithm 

(Andrew 

and Ustin 

2008) 

Site Scene 
Lepidium 

latifolium 
Spectral Hyperspectral 128 bands 3 m Tasked 

Spectral 

Indexes, MNF 

Aggregated 

classification and 

regression trees 

(Hestir et al. 

2008) 
Single Scene 

Lepidium 

latifolium 
Spectral Hyperspectral 128 bands 3 m Tasked MNF 

Logistic 

regression 
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(Takekawa 

et al. 2023) 
Single Scene 

Lepidium 

latifolium 
Spectral 

RGB Aerial 

Imagery 
3 bands 5 cm Tasked 

Spectral 

Indexes 
Spectral Indexes 

(Bolch et al. 

2021) 
Comparison Ludwigia spp. 

Spectral and 

Textural 
Hyperspectral 

128 bands 

270 bands 

1.7 m 

5.4 cm 
Tasked 

Spectral 

Indexes, 

MNF, OBIA, 

Texture 

metrics 

Random Forest 

(Khanna et 

al. 2018) 
Time Series Ludwigia sp. Spectral Hyperspectral 

430 bands 

126 bands 

3 m 

2.5 m 
Tasked 

Spectral 

Indexes, 

Spectral 

Mixture 

Analysis, SAM 

Random Forest 

(Brooks et 

al. 2022) 
Single Scene 

Myriophyllum 

spicatum 
Spectral Multispectral 6 bands 2 cm Tasked Spectral Index 

OBIA, Supervised 

Nearest Neighbor 

Analysis 

(Khanna et 

al. 2023) 
Time Series 

Myriophyllum 

spicatum 
Phenology Hyperspectral 

430 bands 

126 bands 

3 m 

2.5 m 
Tasked 

Spectral 

Indexes, 

Spectral 

Mixture 

Analysis, SAM 

Random Forest 

Algorithm 

(Chance et 

al. 2016) 
Single Scene 

Rubus 

armeniacus 
N/A 

Hyperspectral 

and LiDAR 
72 bands 1.0 m Tasked SAM 

Random Forest 

Algorithm 

(Everitt et 

al. 2002) 
Single Scene 

Salvinia 

molesta 
Spectral Color-Infrared 3 bands 0.6 m Tasked 

Iterative Self-

Organizing 

Data Analysis 

Unsupervised 

Classification 
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(Everitt et 

al. 2008) 
Single Scene 

Salvinia 

molesta 
Spectral Color-Infrared 4 bands 2.4 m Tasked 

Iterative Self-

Organizing 

Data Analysis 

Unsupervised 

Classification 

(Akasheh et 

al. 2008) 
Single Scene Tamarix spp. Spectral Color-Infrared 3 bands 0.5 m Tasked N/A 

Supervised 

Classification 

(Bedford et 

al. 2018) 
Time Series Tamarix spp. Spectral Color-Infrared 4 bands 20 cm Tasked Spectral Index 

Mahalanobis 

Distance Method 

(Branskey et 

al. 2021) 
Time Series Tamarix spp. Spectral Multispectral 8 bands 2 m Tasked SAM 

Supervised 

Classification 

(Carter et al. 

2009) 
Comparative Tamarix spp. Spectral 

Hyperspectral, 

Multispectral, 

Color-Infrared 

220 bands 

7 bands 

4 bands 

30 m 

30 m 

2.5 m 

Tasked 

16 days 

Tasked 

Spectral 

Indexes, PCA, 

MNF 

Supervised 

Classification 

(Dennison 

et al. 2009) 

Time Series, 

Comparative 
Tamarix spp. Phenological Multispectral 

3 bands 

36 bands 

15 m 

250 m 

Tasked 

Weekly 

Spectral 

Indexes 
N/A 

(Evangelista 

et al. 2009) 

Time Series, 

Comparative 
Tamarix spp. Phenological Multispectral 7 bands 30 m 16 days 

Spectral 

Indexes 
Maxent model 

(Hamada et 

al. 2007) 
Single Scene Tamarix spp. Spectral Hyperspectral 120 bands 0.5 m Tasked 

Spectral 

smoothing, 

spectral 

indexes, MNF 

Stepwise 

Discriminant 

Analysis, 

Hierarchical 

Clustering 

(Ji and 

Wang 2016) 

Comparative, 

Time Series 
Tamarix spp. Phenological 

Multispectral, 

Hyperspectral, 

RGB Aerial 

Imagery 

36 bands 

6 bands 

61 bands 

3 bands 

250 m 

30 m 

1 m 

1 m 

Weekly 

16 Days 

Tasked 

Tasked 

N/A SAM 
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(Ji et al. 

2017) 
Single Scene Tamarix spp. Phenological 

Multispectral, 

RGB Aerial 

Imagery 

36 bands 

6 bands 

3 bands 

250 m 

30 m 

1 m 

Weekly 

16 Days 

Tasked 

N/A 

Stepwise 

generalized linear 

regression 

(Sankey et 

al. 2016) 
Time Series Tamarix spp. Phenological 

Color-Infrared 

and LiDAR 
4 bands 20 cm Tasked 

Spectral 

Indexes 

Mahalanobis 

Distance Method 

(Silván-

Cárdenas 

and Wang 

2010) 

Comparative Tamarix spp. Spectral 
Hyperspectral, 

Multispectral 

61 bands 

7 bands 

1 m 

30 m 

Tasked 

16 days 
SMA 
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process. However, the utility of remote sensing as a means for implementing EDRR programs 

can be limited depending on our understanding of novel invasive species, the spatial scale of 

the infestation, and the resolution of the sensor used. 

 Image classification of any plant species from remote sensing imagery requires that 

plant exhibits a spectral, textural, or phenological distinction between surrounding plant 

species. As new species are introduced, local land managers may not have sufficient knowledge 

of these potentially invasive plants to assess whether these distinctions exist. This may be 

especially problematic for cryptic invasive plants, which are misidentified as other species due 

to similar morphological traits (Morais and Reichard 2017). Additionally, closely related plants 

within the same genus in the CAL-IPC inventory were not capable of being differentiated from 

one another. 

 Spatial scale is another factor complicating the use of remote sensing to detect invasive 

plants as part of an EDRR management process. As illustrated by the invasion curve (Figure 1), 

newly introduced invasive plants are most cost-effective to manage early in their invasion 

process when populations occupy a small area and eradication is possible. Training data is 

required to teach image classification methods such as random forest algorithms or supervised 

classification methods to assign spectral properties as belonging to a unique species, and large 

amounts of training data may be necessary to account for intraspecific variation in spectral 

signatures or phenology. 

 The spatial resolution of a sensor is also important in preventing spectral mixing within a 

pixel, which will lead to inaccurate classifications and therefore inaccurate maps of invasive 

species distributions. Similarly, high spatial resolution often comes at the expense of high 

spectral resolution and spatial extent. It is possible to map small populations of invasive species 

using high spatial resolution imagery, but the scale at which mapping occurs is limited by the 

reduced extent of the imagery. 

 While remote sensing may have limited use in the early detection of invasive species, 

remote sensing can play an important role in mapping plants in the containment and long-term 

control phase of the invasion curve. As the occupied area of an invasive species expands 

beyond the point where eradication is possible, remote sensing offers a cost-effective strategy 
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for monitoring invasive plant populations, understanding their spread, and evaluating how they 

respond to different management strategies across a variety of spatial scales. 

4.3.1 Spectral Resolution 

 As previous studies have shown, hyperspectral data has several advantages to 

multispectral or color imagery for classifying plants to the species or genus level for mapping 

invasive plant populations (He et al. 2011), (Bradley 2014). The many narrow spectral bands 

used in hyperspectral imagery allow the unique spectral signature of different plants to be 

identified. For example, Chance et al. (2016) were able to use CASI hyperspectral imagery (72 

bands at 1.0-meter spatial resolution) to distinguish the spectral signature of two species 

(Hedera helix and R. armeniacus) from surrounding vegetation based on higher reflectance of 

H. helix and R. armeniacus between the 749 nm and 1002 nm wavelengths of light (Chance et 

al. 2016). Similarly, Underwood et al. (2007) were able to successfully map three invasive  

species using hyperspectral data in a coastal California setting: iceplant (Carpobrotus edulis), 

jubata grass (Cortaderia jubata), and blue gum eucalyptus (Eucalyptus globulus), the latter of 

which is not on the CAL-IPC high list) These species were able to be distinguished using 

 

Figure 6: Spectral Resolutions of Sensors Used in Studies from the Comparative Analysis 
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hyperspectral imagery by taking advantage of the fact that these species exhibit slight 

differences in reflectance at high spectral resolutions (Underwood et al. 2007). C. edulis for 

example was successfully mapped at high spectral and spatial resolution (AVIRIS imagery with 

174 bands at 4-meter spatial resolution) at high accuracy (92%) when growing within a 

chaparral ecosystem because C. edulis contains high amount of leaf water content, which was 

illustrated in the spectral signature as a strong dip in reflectance at 0.9 µm (Underwood et al. 

2007). Similarly, C. jubata was successfully mapped at high accuracy (82%) with the same 

AVIRIS imagery because of the accumulation of dry, senesced leaves and inflorescences that 

collect on individual plants that strongly absorb at 1.7, 2.1, and 2.3 µm due to the high 

concentration of lignin and cellulose (Underwood et al. 2007). 

 Invasive species that grow in large, dense patches were most appropriate for tracking by 

high-temporal, multispectral sensors such as Landsat, Sentinel-2, and Worldview-2. The dense 

populations of these species were able to overcome the limited spatial resolutions of these 

sensors. For example, Gränzig et al. (2021) were able to map the fractional coverage of Ulex 

europaeus in Chiloé Island, Chile using Sentinel-2 satellite imagery (processed at 20-meter 

resolution, with the 60-meter bands B1, B9, B10 and 10-meter band B8 removed) when training 

data sets were made from high spatial resolution drone imagery. U. europaeus has bright 

yellow flowers that can easily be distinguished from surrounding land cover types via 

unmanned aerial vehicles (UAV) imagery (Gränzig et al. 2021). Older populations of U. 

europaeus grow in dense, large patches that can easily exceed the pixel size of the resampled 

Sentinel-2 imagery, allowing U. europaeus to be mapped across the entire 9,180 km2 study site 

using four Sentinel-2 images (Gränzig et al. 2021). 

 Alternatively, high-temporal, multispectral sensors were capable of detecting some 

widespread species when they displayed significant phenological differences between native 

vegetation. Bradley and Mustard (2005) used Landsat TM and ETM+ imagery (30-meter 

resolution) and AVHRR (1-kilometer resolution) to map the distribution of cheatgrass (Bromus 

tectorum) across the entire Great Basin using phenological methods. B. tectorum, an annual 

grass that is a prevalent invader of sagebrush scrub and bunchgrass ecosystems, adapts to arid 

and drought conditions by responding rapidly to rainfall, using all of its available energy to seed 
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production within a few weeks of germination (Bradley and Mustard 2005). Native bunchgrass 

and sagebrush on the other hand, invest the majority of their energy in belowground root 

growth, only slowly producing photosynthetic leaf material after rainfall (Bradley and Mustard 

2005). After periods of high rainfall, areas of high B. tectorum cover exhibit pronounced 

increases in NDVI compared to areas of sagebrush or perennial grass cover (Bradley and 

Mustard 2005). By performing a change detection of NDVI across low and high rainfall years, 

Bradley and Mustard (2005) were able to use map areas of high change in NDVI, which 

corresponded to areas of B. tectorum cover for the entire Great Basin region, estimating that B. 

tectorum occupied 20,000 km2 and was concentrated in the northern portion of the Great 

Basin. 

 While higher spectral resolution sensors are considered to be superior to multispectral 

or color-RGB sensors, I found nearly as many studies that used color-IR sensors as multispectral 

sensors (13 compared to 14). While color-IR sensors can be considered a subset of multispectral 

sensors, they typically differ from classic multispectral sensors such as Landsat in several ways. 

They typically only have 4 spectral bands (blue, green, red, and near-infrared, though some 

contain an additional band in the red-edge region of the electromagnetic spectrum) compared 

to Landsat, which extends into the shortwave-infrared (SWIR) region. With the exception of two 

sensors (Quickbird and Planetscope), these sensors were all tasked sensors mounted on UAVs 

and had sub-meter spatial resolution. 

 Similarly to Bradley and Mustard (2005), Malmstrom et al. (2017) were able to map two 

invasive annual grass populations, goatgrass (Aegilops triuncialis) and medusa head (Elymus 

caput-medusae), in a 6.8 km2 non-native annual grassland in the Sacramento Valley with color-

IR aerial imagery (Kodak Aerochrome III Infrared Film 1443 with four spectral bands via a fixed 

wing airplane with 0.39 to 0.45-meter resolution) by mapping differences in NDVI (Malmstrom 

et al. 2017). A. triuncialis and E. caput-medusae differ from the desirable non-native annual 

forage grasses present at the site (Avena barbata, A. fatua, Bromus hordaceous, and Lolium 

multiflorum) in that they have an extended growing season that lasts into late spring and early 

summer when the desirable annual grasses typically senesce (Malmstrom et al. 2017). Thus, A. 

triuncialis and E. caput-medusae populations could be mapped when NDVI values in March 
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were subtracted from NDVI values in May (Malmstrom et al. 2017). Dronova et al. (2017) were 

also able to map populations of E. caput-medusae in a 368,000 m2 grassland in the Sacramento 

Valley using color-IR imagery (Canon 5D Mark 2 cameras with four spectral bands at 0.15-meter 

resolution) using spectral, textural, and phenological characteristics. Both of these studies 

demonstrate how sensors with high spatial resolution can compensate for low spectral 

resolution when target species display significant differences in phenology or texture. 

4.3.2 Spatial Resolution and the Role of Active Remote Sensing 

  In accordance with existing literature (He et al. 2011), larger plants such as shrubs were 

more capable of being detected by remote sensing (Figure 7). Within the CAL-IPC inventory 

ranked “high”, these species include Cytisus scoparius (1 study), R. armeniacus (1 study), 

Tamarix spp. (11 studies), and U. europaeus (1 study) (Table 3). Alternatively, perennial vines 

and annual herbs were the least studied life forms within the CAL-IPC inventory ranked “high,” 

with only H. helix (1 study) and Centaurea solstitialis (1 study) having a remote sensing study 

performed on them. 

 

Figure 7: Number of remote sensing studies for high rated species in the CAL-IPC inventory by lifeform. 
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when they exceed the canopy of an individual plant then spectral signatures are mixed and 

averaged within a single pixel, but when pixels are much smaller than an individual plant 

canopy the variability of a spectral signature increases (He et al. 2011). For example, 

Underwood et al. (2007) found that when AVIRIS imagery was degraded from 4-meter spatial 

resolution to 30-meter resolution to mimic Landsat spatial resolution, accuracy results for C. 

edulis classification remained high (from 92% to 97%), but accuracy results for C. jubata 

substantially decreased (from 82% to 58%) when the same imagery was spatially degraded 

(Underwood et al. 2007). This was attributed to the fact that C. edulis would often grow in very 

large patches with dense cover such that even at 30-meter resolution, individual pixels would 

represent pure iceplant (Underwood et al. 2007). C. jubata on the other hand, individuals are 

roughly 4 meters in diameter, matching the spatial resolution of AVIRIS data so that the spectral 

signature of one individual C. jubata would be represented in a single pixel (Underwood et al. 

2007). When the original AVIRIS imagery was resampled to 30-meter resolution, the spectral 

signature of C. jubata could no longer be distinguished from the spectral signatures of 

surrounding vegetation (Underwood et al. 2007). 

 When target plant species are much smaller than the spatial resolution of a remote 

sensor, or when multiple species with different spectral properties are present within a single 

pixel of remote sensing imagery, spectral mixing can occur (Miao et al. 2006). In order to map C. 

solstitialis with hyperspectral CASI-2 imagery (36 bands at 3-meter resolution), Miao et al. 

(2006) used linear spectral mixing models to determine the proportion of C. solstitialis present 

at their study site in the California Central Valley by calculating the contribution of C. solstitialis 

reflectance to the total reflectance of mixed pixels (Miao et al. 2006). While Miao et al. were 

able to map C. solstitialis at relatively high accuracy (r2=0.88), the use of spectral unmixing 

models could have been avoided if higher spatial resolution sensors had been used. 

 Additionally, the lack of representation for vines in the comparative analysis results 

suggests they are poor candidates for detection by remote sensing, particularly if they grow in 

the understory. By recording the reflectance of top of surface materials, remote sensing is 

generally only able to classify vegetation growing with an exposed canopy layer. Images 

captured in deciduous forests during leaf-off conditions can reveal understory layers available 
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for remote sensing analysis, but this requires acquiring imagery at specific time periods which 

can be difficult for hyperspectral imagery that is collected for other purposes (Chance et al. 

2016). 

 Active remote sensors, such as LiDAR are able to penetrate the canopy layer and 

provide an estimation of understory structure that can then be used to model species 

composition (Chance et al. 2016). Chance et al. used hyperspectral CASI imagery (72 bands at 

1.0-meter spatial resolution) to map the distribution of H. helix and R. armeniacus in the open 

canopy of an urban forest in British Columbia, Canada and LiDAR (point density 25 points/m2) 

to map those species in the forest understory. These methods was relatively successful, though 

understory populations of R. armeniacus were slightly less accurately mapped (overall accuracy 

of 77.8% of understory populations compared to 87.8% for open populations) compared to H. 

helix (overall accuracy of 81.9% of understory populations compared to 82.1% for open 

populations) (Chance et al. 2016). 

 

Figure 8: Log transformed spatial resolution of remote sensors used over time 
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 While inclusion of LiDAR with hyperspectral imagery may increase the ability and 

accuracy of mapping understory invasive species, these tools are generally inaccessible to most 

land managers due to their expense and lack of availability. Thus, understory species such as 

vines may be poor candidates for mapping by remote sensing. 

 As mentioned in the previous section, the high spatial resolution of UAV or fixed-wing 

mounted aircraft RGB or Color-IR sensors can often overcome the limitations of their lower 

spectral resolution. This is particularly important for smaller plant lifeforms such as perennial 

herbs and annual grasses. Of the eighteen studies in the comparative analysis that used very 

high spatial resolution sensors (less than one-meter spatial resolution), only four studies used a 

shrub (Tamarix spp.) as their study species. There was also a trend towards the use of higher 

spatial resolution sensors in more recent studies, which is indicative of the improvements in 

sensor technology and the growing availability of drone and UAV based imagery (Figure 8). 

 Coarse resolution sensors were rarely used in remote sensing of invasive species, only 

being used in three studies. These sensors were rarely used to directly map the presence of 

invasive species, instead being used to determine the phenology of widespread or dispersed 

 

Figure 9: Spatial Resolution and Site Scale 
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species. For example, Bradley and Mustard (2005) used an NDVI time series to determine 

appropriate imagery acquisition dates for Landsat scenes across the Great Basin to map B. 

tectorum (Bradley and Mustard 2005). 

 In general, the spatial resolution of the sensor used in a remote sensing study should be 

somewhat correlated to the spatial extent of a study site (Figure 9). Moderate to coarse scale 

sensors are most appropriate for studies that seek to monitor invasive plant populations across 

regional or large watershed scales. These types of sensors are likely to introduce too much 

spectral mixing to adequately classify all vegetation or land cover types present for small sites. 

Conversely, high resolution sensors may be more appropriate for relatively small sites, such as 

sub-watershed or local scale, as the spectral mixing would be reduced. Figure 9 shows a weak 

but consistent relationship between the log transformed site size of studies used in the 

comparative analysis and the spatial resolution of the sensor used in that study. Some 

inconsistencies between site size and sensor resolution can be resolved through the use of 

nested survey design, in which field data is obtained at corresponding spatial scales to the 

spatial resolution of remote sensors (Figure 10). 

 

Figure 10: Example of a nested field sampling design that incorporates MODIS imagery (250 m2 pixels), Landsat 
imagery (30 m2 pixels) and 1 m2 pixels that correspond to a sampling quadrat (Bradley et al. 2009) 

4.3.3 Temporal Resolution 

 The vast majority of studies of California invasive plant species used sensors that were 

tasked (37 studies) (Figure 11). Of these studies, 9 were conducted using UAVs and 28 were 

conducted by aircraft. Of the satellite-based sensors, the majority (7 studies) had a temporal 

resolution of 16 days, all of which were represented by studies using Landsat imagery.  
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 While there was no clear trend between temporal resolution, tasked sensors have 

several advantages over satellite-based sensors despite their inconsistent temporal resolution. 

Because these sensors are typically airborne or mounted on UAVs, they are able to achieve 

much higher spatial resolution than satellite-based sensors. This enables tasked UAV and 

airborne sensors to reduce the amount of spectral mixing within pixels that occurs with 

moderate spatial resolution sensors. Tasked sensors are able to acquire imagery when plants are 

at peak phenological states which can enable their detection via unique spectral attributes. 

Additionally, satellite-based sensors acquire imagery regardless of site-specific meteorological 

conditions such as high cloud cover. However, tasked sensors are generally less accessible than 

high-temporal resolution imagery from sensors such as Landsat, which are freely available 

4.3.4 Potential for Remote Sensing of other California Invasive Plant Species 

 While I did not find remote sensing studies for 17 of the species rated as “high” in the 

CAL-IPC inventory, remote sensing has the potential to help land managers understand their 

impacts and distribution. For example, several remote sensing studies have been conducted in 

California and abroad on invasive Spartina species. S. alterniflora and the hybrid S. alterniflora x 

foliosa have been mapped in San Francisco Bay using LiDAR (Ustin et al. 2006). However, these 

 

Figure 11: Temporal resolution of sensors used in comparative analysis studies 
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mapping projects relied on differences between where these invasive species grow within 

estuarine environments compared to the native S. foliosa instead of unique spectral properties 

(Ustin et al. 2006). While all Spartina spp. will grow within saltmarshes, the invasive Spartina 

spp. are capable of growing in previously unvegetated mudflats, which causes accretion of 

sediment and a rise in elevation (Ustin et al. 2006). By conducting a change detection of 

vegetation height and elevation using LiDAR, Ustin et al. (2006) were able to demonstrate that 

invasive Spartina was expanding at a rate of 2.5 m/year at two sites in San Francisco Bay, even 

though these species can’t be distinguished spectrally (Ustin et al. 2006). 

 Similarly, many species included not included in the analysis were in the same genus as 

plants that were the subject of a remote sensing study. For example, there were no studies 

conducted on Cortaderia selloana or Myriophyllum aquaticum, but two studies conducted on C. 

jubata and M. spicatum each. Because spectral approaches to remote sensing require plant 

species to be spectrally unique, and because plants within the same genus are closely related it 

should generally be assumed that they share similar spectral properties. For example, Khanna 

et al. (2018) do not differentiate between the two Ludwigia spp. (Ludwigia hexapetala and 

Ludwigia peploides) when mapping FAV in the Delta, and Bolch et al. (2021) do not differentiate 

between M. spicatum and other SAV species whether they are invasive, such as Brazilian water 

weed (Egeria densa) or native such as coontail (Ceratophyllum demersum).  

 I hypothesize that other species that were not the subject of a remote sensing mapping 

study may exhibit similar properties that would enable their detection via remote sensing. For 

example, several species rated high on the CAL-IPC inventory (Cytisus scoparius, Genista 

monspessulana, and Spartium junceum) contain similar properties as U. europaeus, which was 

mapped using Sentinel-2 imagery (Gränzig et al. 2021). All species are shrubs capable of 

forming dense stands with bright yellow flowers that may exhibit unique spectral signatures 

similarly to U. europaeus. Stinknet (Oncosiphon pilulifer) is a strong-smelling annual herb native 

to South Africa that can form dense monocultures in dunes, chaparral, and scrub habitats in 

southern California (CAL-IPC 2024b). The strong odor results from the unique sesquiterpene 

lactone chemicals that have medicinal properties that have been identified using spectroscopy 

in a lab setting (Pillay et al. 2007). Because there are native plants in the same genus found in 
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California, it may be possible to detect O. pilulifer based on its unique spectral properties. 

Further research into the spectral properties of these invasive plants could reveal unique 

properties that enable mapping infestations by remote sensing methods, offering land 

managers additional tools to prioritize control efforts.  

4.3.5 Remote Sensing in Early Detection and Rapid Response 

 The resolution of most remote sensors is often inadequate to capture nascent 

populations of invasive plants. Image classification algorithms require training to recognize an 

image and associate a spectral signature as belonging to a particular plant species. This may be 

particularly challenging for new invasive plant species that we know little about. Some of these 

limitations could be solved by changing practices regarding collection of voucher specimens for 

newly discovered invasive species. For example, hyperspectral data could be collected in the 

field using hand-held spectrometers when botanists collect and voucher specimens for 

herbarium records, creating spectral libraries that serve as references for future generations of 

researchers (Davis 2023). People working in the field will still be needed to observe these alien 

plant species before remote sensing can applied to early detection of invasive plants. 

  Choosing the right sensor may enable remote sensing as complementary tool for early 

detection and rapid response. Higher spatial resolution sensors can often overcome the 

limitations of having lower spectral resolution by reducing the amount of spectral mixing that 

occurs within a pixel, thereby enabling classification of invasive plants in an image. These 

sensors, which are typically mounted on drones or airplanes, can also be tasked to acquire 

imagery under ideal circumstances for invasive species identification, such as ideal weather 

conditions or when invasive plants undergo phenological events such as flowering or 

senescence that make them spectrally distinct. 

 While remote sensing may not be an ideal method for detecting small early populations 

of invasive plants, it can be successfully leveraged to monitor plants later in the invasion 

process when containment and long-term control are more realistic goals (Figure 12) 

(Müllerová et al. 2023). For example, products derived from remote sensing can be used to 

create models that predict future expansion of invasive species and reactions to different 

control methods (Müllerová et al. 2023). 
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 Detecting small populations of early infestations may become more feasible in the 

future, as sensor resolution improves, UAV imagery becomes more accessible, and as flights 

become automated (Müllerová et al. 2023). For example, the Landsat Next mission (also known 

as Landsat 10), will significantly increase the spectral and temporal resolution of previous 

Landsat missions (U.S. Geological Survey 2024). Set to launch in 2030, Landsat Next will feature 

a three-satellite array of sensors with a temporal resolution of six days and spectral resolution 

of 26 bands at 10–20-meter spatial resolution for visible, near infrared, and shortwave infrared 

bands (U.S. Geological Survey 2024). 

 

 

Figure 12: Applicability of remote sensing to invasive species control based on invasion stage (Müllerová et al. 
2023) 
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 In the following sections I will demonstrate how remote sensing has contributed to 

management of invasive plant in two case studies: one using saltcedar (Tamarix spp.) as a case 

species, and a second using a site, the Sacramento-San Joaquin Delta, as a case site. 
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5.0 Tamarisk Management Case Study 

 Here I present a case study on the role of remote sensing for EDRR and management of 

the invasive shrub tamarisk. Drawing from the results of my comparative analysis, large plants 

such as trees and shrubs are particularly well suited for detection by remote sensing. While 

remote sensing has been used to understand the distribution of tamarisk throughout the 

western U.S., these studies have rarely been applied to tamarisk management in California. In 

the following sections, I will provide a brief overview of tamarisk biology, its history as an 

introduced species, tamarisk control methods and restoration efforts, and relevant studies 

using remote sensing to better understand tamarisk invasions and management efforts. 

5.1 Tamarisk Background 

 Tamarisk distribution grew from 40 km2 in the 1920s when it was first introduced to 

over 600 km2 by 1987 (Di Tomaso 1998). Tamarisk was first introduced to the U.S. through the 

horticultural industry in 1823, and was widely planted for its ornamental and erosion control 

values throughout the mid 1800s and early 1900s (Brotherson and Field 1987). Tamarisk is 

currently established throughout the western U.S. and continues to spread north into Canada 

and south into Mexico (Di Tomaso 1998). It is estimated that tamarisk costs the economy 

anywhere between 28,000 to 45,000 USD/km2 due to agricultural and municipal water loss, 

decreases in hydropower generation, flood control costs, and impacts on recreation (Zavaleta 

2000) 

 Several factors facilitated the spread of tamarisk throughout the western U.S. (Di 

Tomaso 1998). Harvesting of native trees from riparian forests for building material and fuel 

opened up space for escaped tamarisk to grow (Brotherson and Field 1987). Later, changes to 

riparian hydrology due to dam construction, water extraction for irrigation, and stream 

diversions caused decreases in stream flows that reduced the ability of native riparian species 

to reproduce (Di Tomaso 1998). Intensive grazing of riparian forests by livestock also facilitated 

the spread of tamarisk by reducing competition from native species (Di Tomaso 1998).  
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5.2 Tamarisk Biology 

5.2.1 Tamarisk Taxonomy and Identification 

 Tamarisk, represented by the genus Tamarix, are shrubs and trees that are natively 

distributed across the southern Mediterranean region through Mongolia and China (Di Tomaso 

1998). Of the 54 species included in the Tamarix genus, eight species have been introduced to 

the United States, and five (T. chinensis, T. gallica, T. parviflora, T. ramosissima, and T. aphylla) 

are particularly invasive in the Southwest (Di Tomaso 1998) and are listed on the CAL-IPC 

inventory as having high degree of invasiveness (with the exception of T. aphylla, which is rated 

as limited) (CAL-IPC). 

 Tamarisk is also known as salt-cedar because their leaves, which exude salt, resemble 

the scale-like leaves of cedar trees (Di Tomaso 1998). Tamarisk flowers are small, usually 

pinkish to white and can be present on plants as young as one year old (Di Tomaso 1998). 

5.2.2 Tamarisk Ecology 

 Tamarisk is a facultative phreatophyte, meaning that it typically requires access to 

groundwater in order to survive, but can also grow outside those conditions (Di Tomaso 1998). 

Mature tamarisks are capable of surviving without access to the water table (Brotherson and 

Field 1987). It is typically found in riparian areas with high water tables under 2100 m in 

elevation with silt loams or silty clay loams, but are capable of tolerating a variety of soil 

conditions (Di Tomaso 1998). 

 Adaptations to high soil soluble salt concentrations give tamarisk an important 

competitive advantage over native riparian species in arid environments (Di Tomaso 1998). 

Tamarisk is a facultative halophyte capable of surviving in a range of soil salt conditions 

(between 650 to 36,000 ppm) (Di Tomaso 1998). Salts within soil or groundwater are 

transported through xylem (Di Tomaso 1998) and later into leaf glands that are capable of 

storing and excreting salts (Di Tomaso 1998). These glands are non-selective to the type of salt 

present in the environment, making tamarisk highly adaptable to varying soil conditions (Di 

Tomaso 1998). 
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Figure 13: Tamarisk invaded riparian habitat in the lower Colorado River. Tamarisk is the lighter color shrub in 
the top picture and the understory of the bottom picture (Shafroth. et al. 2005) 
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5.2.3 Tamarisk Reproduction 

 Individual tamarisk seeds germinate readily, but are short-lived and require moist soil in 

order to germinate (Di Tomaso 1998). Mature plants are capable of producing over 500,000 

seeds in one season (Brotherson and Field 1987). Blooms can extend from April through 

October, which gives tamarisk a competitive advantage over other riparian plants (Figure 13) 

(Di Tomaso 1998). Seed production for native riparian trees, such as willows (Salix spp.) and 

cottonwoods (Populus spp.), is synchronized with the typical timing of high flow events that 

produce moist bare ground which their seeds require in order to germinate (Di Tomaso 1998). 

Because tamarisk has a lengthier flowering period compared to native riparian vegetation, it is 

able to take advantage of optimal germination conditions that native riparian species cannot (Di 

Tomaso 1998). Seeds are light and contain hairs that aid them in wind-dispersion, which also 

assists them in invading new areas (Brotherson and Field 1987). Vegetative reproduction is also 

possible for mature tamarisk via adventitious roots (Brotherson and Field 1987). 

5.2.4 Tamarisk Establishment 

 Seedlings require moist soil for the first several weeks of growth, bare sunny soil, and an 

absence of competition (Di Tomaso 1998).Tamarisk seedlings survive by growing deep taproots 

capable of reaching the groundwater table, which can be up to 50 m long upon maturity but are 

usually 5 m long (Di Tomaso 1998). Aboveground growth is rapid, with seedlings capable of 

reaching 3-4 m in their first year (Di Tomaso 1998). 

 Once established, tamarisk is resilient to a number of stressors and disturbances, 

including drought, floods, fires, and manual cutting (Di Tomaso 1998). Resprouting occurs 

rapidly after fire and grazing (Di Tomaso 1998). Tamarisk is drought deciduous and adapts to 

low moisture conditions by dropping its leaves to reduce transpiration rates (Di Tomaso 1998). 

Alternatively, mature tamarisk can survive intense flooding up to 70 days (Brotherson and Field 

1987). 
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5.3 Tamarisk Impacts 

5.3.1 Impacts on Water Resources 

 Because of its ability to tap into deep groundwater resources and its impact on stream 

geomorphology, tamarisk is of unique concern among water resource managers (Brotherson 

and Field 1987). Tamarisk alters stream hydrology through its dense root system that stabilizes 

bank structure, restricting channels from naturally migrating during channel forming events (Di 

Tomaso 1998). Eventually, stream channels incise which leads to higher flow rates and 

increases the potential for flooding (Di Tomaso 1998). These floods can provide suitable 

germinating conditions for tamarisk seedlings outside of the riparian zone, further spreading 

the extent of tamarisk infestations (Di Tomaso 1998). In the absence of flooding, channels 

continue to incise and cut off streams from their floodplains, which can lead to conversion of 

riparian forest to upland plant communities (Reynolds and Cooper 2011).  

 Tamarisk has a significantly higher evapotranspiration rate than native riparian plants in 

the southwest (Di Tomaso 1998). A 1965 study in the Safford and Gila River valleys of Arizona 

demonstrated that tamarisk was capable of consuming 4-to-5-acre feet of water per acre every 

year, the cost of which equaled between $200 to $1,000 per acre every year (Brotherson and 

Field 1987). Individual trees are capable of consuming using 760 L of water a day (Di Tomaso 

1998), though more recent studies indicate this may be a gross exaggeration, and that 

individual trees consume closer to 127 L of water per day (Owens and Moore 2007). 

5.3.2 Impacts on Fire 

 Tamarisk is notably more adapted to fire than native riparian species. It resprouts 

vigorously after fire and is capable of quickly taking advantage of mobilized nutrients and 

responding to reduced soil moisture post-fire (Busch and Smith 1993). Fuels are often higher in 

tamarisk dominated habitats due to the increase in leaf litter and dead woody material (Busch 

and Smith 1993). Fire return intervals are substantially higher in tamarisk invaded riparian 

forests, sometimes burning every 10 to 20 years (Di Tomaso 1998). Riparian forests dominated 

by tamarisk often experience more frequent fire than native riparian forests, which rarely 

experience wildfire, which has contributed to the conversion of willow and cottonwood riparian 

woodland to tamarisk stands (Di Tomaso 1998). 
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3.5.3 Impacts on Vegetation 

 Tamarisk is capable of producing dense, nearly monotypic stands of 70-80% pure 

tamarisk (Di Tomaso 1998). Native willows, cottonwoods, and herbaceous understory species 

struggle to access sufficient light and moisture to reproduce under dense tamarisk canopies (Di 

Tomaso 1998). Dense tamarisk infestations can consume all aboveground water in perennial 

streams and pools (Di Tomaso 1998). Further, tamarisk lower the water table through their 

extensive tap roots, leading to a loss of native riparian vegetation that depend on access to 

groundwater (Di Tomaso 1998). 

 The salts that tamarisk accumulate in their leaves eventually are deposited in the soil 

surface, leading to elevated soil salinity (Di Tomaso 1998). This can lead to declines in native 

riparian vegetation such as cottonwoods and willows, whose growth can be inhibited at 

salinities of 1,500 ppm or greater (Di Tomaso 1998). In communities dominated by tamarisk, 

the only native understory species capable of persisting are halophytic plants such as saltgrass 

(Distichlis spicata) (Di Tomaso 1998). 

5.3.4 Impacts on Wildlife 

 Tamarisk dominated habitats are generally of lower quality than native cottonwood or 

willow dominated habitats (Di Tomaso 1998). Insect diversity is greater on native willow and 

cottonwood riparian forests than tamarisk dominated forests (Di Tomaso 1998). Native 

mammals, such as porcupines and beaver, generally prefer willow or cottonwood dominated 

riparian forests over tamarisk dominated forests (Di Tomaso 1998). 

 Avian communities show mixed responses to tamarisk dominated riparian forests (Di 

Tomaso 1998). Tamarisk can provide roosting and nesting habitat for several species of 

riparian-obligate birds, including Gambell’s Quail (Callipepla gambelii), white-winged doves 

(Zenaida asiatica), and mourning doves (Zenaida macroura) (Di Tomaso 1998), and 49 species 

of native birds have been documented using tamarisk for nesting habitat (Sogge et al. 2008). 

However, all of these species are found in higher densities in native riparian forests, suggesting 

their populations could be even higher if tamarisk dominated forests were replaced with native 

riparian species (Di Tomaso 1998). Even when birds such as doves and quail use tamarisk 

forests for roosting habitat, they still rely on adjacent habitat or agricultural fields for foraging 
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habitat due to the small size of tamarisk seeds and lack of invertebrate prey (Di Tomaso 1998). 

Tamarisk also fails to provide suitable habitat for nest specialists, such as woodpeckers or 

secondary-cavity nesters, as well as raptors (Sogge et al. 2008). 

 Of particular concern to environmental managers is the relationship between tamarisk 

and the federally endangered southwestern willow flycatcher (Empidonax traillii exitmus) 

(Sogge et al. 2008). Southwestern willow flycatcher are riparian obligate birds that were 

historically common throughout southern California (Kus et al. 2003). Southwestern willow 

flycatcher often choose breeding sites based on habitat structure instead of species 

composition, and tamarisk can provide structurally similar habitat as native willow-dominated 

riparian forest (Sogge et al. 2008). Tamarisk-invaded forests provide important breeding habitat 

for southwestern willow flycatcher, as these habitats provide roughly 25% of breeding 

populations are located in tamarisk dominated riparian forests (Sogge et al. 2008). 

5.4 Tamarisk Management and Restoration 

5.4.1 Methods for Controlling Tamarisk 

 Tamarisk can be managed through mechanical, chemical, and biological control 

methods, through the costs and effectiveness of each treatment method varies (Shafroth et al. 

2005). As mentioned previously, cutting back tamarisk is ineffective at killing the plant as it is 

capable of resprouting from its roots (Di Tomaso 1998). However, when cut stumps and root 

balls are mechanically removed from the soil using heavy equipment, success rates can be high, 

as much as 99% (Shafroth et al. 2005). While effective, this technique can be expensive 

($150,000-170,000 per km2) and require follow-up visits to ensure eradication (Shafroth et al. 

2005). 

 Chemical methods of tamarisk control typically involve the use of the herbicide 

glyphosate and imazapyr (Shafroth et al. 2005). The preferred method for herbicide application 

are dependent on the surrounding vegetation (Shafroth et al. 2005). Large-scale, monotypic 

tamarisk infestations can be treated by airborne herbicide application, whereas infestations 

occurring within a native vegetation and tamarisk matrix can be treated by chain sawing 

tamarisk plants and treating with herbicide on the cut stump (Shafroth et al. 2005). Treatment 

of large-scale patches can typically be less expensive ($240-248 per ha) than treating individual 
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plants ($400,000-620,000 per km2) but can result in undesirable side effects such as pesticide 

drift or infiltration into groundwater (Shafroth et al. 2005). As with mechanical control 

methods, follow-up treatments are required for years in order to ensure complete eradication 

(Shafroth et al. 2005). 

 Biological control methods, which involve introducing specialist insects or diseases of 

the target plant species, have been developed for tamarisk, the most notable being the 

Mediterranean tamarisk beetle (Diorhabda elongata) (Shafroth et al. 2005). Tamarisk beetle 

feeds on tamarisk leaves, which can result in tamarisk mortality if plants are completely 

defoliated and are forced to consume the entirety of their stored energy (Sankey et al. 2016). 

The Mediterranean tamarisk beetle was introduced to six western U.S. states in 2001 after 

extensive testing revealed it nearly exclusively targeted tamarisk (Sankey et al. 2016). Initially, it 

was believed that physiological limitations would prevent tamarisk beetles from spreading 

further south than 38 degrees latitude, though they have since been found as far south as the 

Colorado River (Sankey et al. 2016). 

 Results of biocontrol for tamarisk have been mixed, with some previously defoliated 

areas experiencing re-growth, suggesting that biocontrol may not serve as a silver bullet for 

tamarisk eradication (Sankey et al. 2016). Remote sensing has been proposed as a potential 

method for monitoring the effects of tamarisk biocontrol due to its widespread distribution and 

inconsistent results (Sankey et al. 2016). Additionally, defoliation by tamarisk beetle may 

reduce the quality as breeding habitat for southwestern willow flycatcher by decreasing 

vegetative cover (Sogge et al. 2008). 

5.4.2 Restoration of Tamarisk Invaded Areas 

 Riparian systems are highly desirable targets for restoration because of the ecosystem 

services they provide, including biodiversity, water quality, and recreation, all of which are 

threatened by tamarisk infestations (Harms and Hiebert 2006). Understanding existing site 

conditions such as surface and groundwater availability, native propagule sources, and soil 

chemistry is essential for successful restoration of tamarisk-invaded habitats (Shafroth et al. 

2008). 
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 Successful restoration of riparian ecosystems invaded by tamarisk requires establishing 

achievable goals and outcomes, determining existing ecological and social conditions, choosing 

appropriate restoration sites, developing site-specific restoration plans, monitoring post-project 

conditions, and preparing for adaptive management if project outcomes do not match project 

goals (Shafroth et al. 2008). This is particularly important in arid environments where passive 

restoration often fails to reinstate desirable native vegetation (Sogge et al. 2008). Re-invasion 

by species such as Russian thistle (Salsola spp.), perennial pepperweed (Lepidium latifolium), or 

Russian knapweed (Acroptilon repens) can occur if active restoration fails to occur (Shafroth et 

al. 2008). Even where native species passively recruit following tamarisk removal, they are 

more likely to consist of native upland species (Reynolds and Cooper 2011). Tamarisk removal 

projects that fail to re-establish native riparian vegetation risk further jeopardizing 

southwestern willow flycatcher breeding habitat (Sogge et al. 2008). 

5.5 Remote Sensing of Tamarisk 

5.5.1 Spectral Properties of Tamarisk 

 The phenology of tamarisk makes it particularly suitable to detection by remote sensing. 

During the growing season, the reflectance values of tamarisk is highly similar to those of co-

occurring species in the visible wavelengths of light, and near-infrared reflectance values are 

identical to those of mixed herbaceous species (Everitt 1990). However, as tamarisk enters 

winter dormancy its leaves senesce and turn a yellow-orange to orange-brown color before 

dropping, which significantly changes its spectral properties (Everitt 1990). During this time, 

tamarisk leaves become noticeably more reflective at 0.55 µm and 0.65 µm than other riparian 

species (Figure 14) (Everitt 1990). Additional phenological stages, such as flowering, may also 

exhibit a unique spectral signature due to the pink colored flowers (Evangelista et al. 2009). 

 Distinguishing the spectral signatures of living (green), desiccated (yellow to brown), and 

dead tamarisk is necessary to conduct change detection for monitoring the effects of tamarisk 

control efforts (Dennison and Meng 2015). Green and desiccated tamarisk shows a sharp 

increase in reflectance between the visible red and near infrared light (also known as the “red 

edge”), while dead tamarisk shows a gradual shift in reflectance values in this region (Dennison 

and Meng 2015). The decrease in reflectance within the red wavelengths is explained by the 
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loss of chlorophyll absorption of the Shortwave infrared (SWIR) regions of the electromagnetic 

spectra, which is sensitive to leaf water content, is also important for distinguishing between 

living green, desiccated, and dead tamarisk (Dennison and Meng 2015). Reflectance values in 

the SWIR region are highest for dead tamarisk, lowest for living tamarisk, and between these 

values for desiccated tamarisk (Dennison and Meng 2015). These patterns of spectral 

reflectance are important for monitoring the effects of tamarisk beetle biocontrol, as tamarisk 

leaves turn yellow to brown as the beetle consumes the mesophyll cells within tamarisk leaves, 

meaning that remote sensing can detect tamarisk stands that have been defoliated by tamarisk 

beetle (Dennison and Meng 2015). 

 There are several challenges to mapping tamarisk even though it exhibits spectral 

properties that make it highly suitable for detection by remote sensing. Several riparian 

corridors in the arid west grow through deep river canyons, which limits the amount of light  

that can reflect off the surface of tamarisk leaves and causes variable amounts of shadow 

(Bransky et al. 2021). Timing of phenological events such as flowering occurs inconsistently 

along latitudinal gradients due to variations in local climates, so multiple days of imagery 

acquisition may be necessary to map tamarisk across large landscapes (Evangelista et al. 2009). 

While tamarisk often grows in dense, monotypic stands, it can also grow intermixed with other  

species at lower densities which can introduce spectral mixing (Hamada et al. 2007). Moderate 

resolution sensors such as MODIS or Landsat are incapable of detecting Tamarisk at low 

densities because the spatial resolution of these sensors produces pixels that are far larger than 

the crown of a single tamarisk shrub (Silván-Cárdenas and Wang 2010). 

5.5.2 Summary of Tamarisk Remote Sensing 

 Tamarisk is an ideal study species for mapping by remote sensing due to its unique 

spectral properties, large growth form, widespread distribution, and high impacts to water 

resources. Because of these properties, there is a lot of flexibility as to what methods and 

sensors can be used to map tamarisk using remote sensing methods. For example, Carter et al. 

(2007), Evangelista et al. (2009), Ji and Wang (2016), and Silván-Cárdenas and Wang (2010) 

were all able to successful map tamarisk distributions using moderate resolution multispectral 

imagery from Landsat. 
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Figure 14: Photographs (above) and spectral signatures (below) of green (a), brown desiccated (b), yellow 
desiccated (c), and dead tamarisk (d) (Dennison and Meng 2015). 
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 Carter et al. (2007) conducted a comparative analysis mapping tamarisk along the 

Colorado River near DeBeque, Colorado using moderate spatial resolution (30 m) multispectral 

imagery from Landsat TM5, high spatial resolution (2 m) multispectral imagery from Quickbird,  

and moderate spatial resolution (30 m) hyperspectral imagery from Hyperion. In order to 

acquire imagery from the same time period for all three sensors that corresponded with field-

sampling, images from summer were used when tamarisk is actively growing and lacks the 

distinct yellow-orange color that spectrally distinguishes it. The authors used applied a 

maximum likelihood algorithm on several normalized-difference indexes to classify tamarisk 

presence. Even though the Quickbird imagery resulted in the overall highest classification 

accuracy (91%), Hyperion (88%) and Landsat (80%) imagery had high accuracy as well. 

 Evangelista et al. (2009) also mapped tamarisk in a comparative analysis, instead 

comparing the results of a single-scene of Landsat 7 ETM+ imagery with a time-series analysis 

for their study site in the lower Arkansas River in Colorado. The authors used a maximum 

entropy model with six Landsat scenes from April, May, June, August, September, and October 

and a time-series using all scenes. The authors used individual reflectance values for bands 1-5 

and 7 from the Landsat data, as well as three vegetation indexes: NDVI, the Ratio Vegetation 

Index (RVI), and Tasseled Cap transformations, and the soil-adjusted vegetation index (SAVI) as 

their variables for the maximum entropy model. RVI is similar to NDVI in that it is a ratio of the 

reflectance in the red portion and the infrared portion of the electromagnetic spectrum, and is 

calculated by dividing Landsat band 4 by band 3 (Evangelista et al. 2009). Tasseled Cap 

transformations are used to measure soil brightness, vegetation greenness, and moisture in soil 

and vegetation, and is created by weighing composites of six Landsat bands (Evangelista et al. 

2009). Lastly, SAVI is a spectral index that reduces the impacts of soil reflectance on image 

classification, and is calculated by using Landsat bands 3 and 4, as well as a correction factor 

that is based on the amount of vegetation cover (Evangelista et al. 2009). Accuracy was 

assessed through an AUC value, which ranges from 0 to 1, with an AUC score of 0.5 indicating 

that the model predicts tamarisk presence that are no better than a random guess, and scores 

equal to 1 mean that the model perfectly identifies all tamarisk present within a pixel 

(Evangelista et al. 2009). While all individual months of Landsat imagery had AUC scores above 
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0.88, indicating that they all predicting tamarisk distribution with high accuracy, AUC scores 

generally increased in the fall when tamarisk displays the spectrally unique yellow-orange color 

and when co-occurring plants are dormant (Evangelista et al. 2009). The time-series analysis 

had the highest AUC score, with variables from several different months contributing to the 

higher accuracy. This suggests that phenological cues from several months may be better at 

distinguishing tamarisk from co-occurring plants: for example, June tasseled cap wetness was 

the best overall predictor for tamarisk presence, which may be caused by the distinct purple-

pink color of its flowers (Evangelista et al. 2009). 

 Since phenology plays an important role in identifying tamarisk by remote sensing, 

determining when to acquire imagery that corresponds to these phenological states is 

necessary to make accurate maps. As mentioned earlier, this can be difficult when plants 

undergo phenological events at different times due to local conditions. To resolve this issue, Ji 

and Wang (2016) used NDVI values derived from MODIS to determine tamarisk phenology in 

fall across two study sites in the Rio Grande River in Texas. From this data, the authors derived 

a linear model that estimated when tamarisk began to change color based on the timing of leaf 

drop, as previous studies showed that these traits were correlated for other woody tree species 

(Ji and Wang 2016). Landsat scenes that most closely matched the date obtained from the lead 

coloration linear model were selected to create a composite image of peak tamarisk phenology 

across the two Rio Grande River study sites. Hyperspectral reflectance measurements of 

tamarisk were obtained in the field and resampled to the same spectral resolution as the 

Landsat sensor, and the composite Landsat image was classified using the spectral angle 

method (SAM) algorithm. SAM classifies tamarisk as present when the angle formed between 

the training data (in this case the reflectance values obtained in the field) and the spectra from 

the imagery pixels is below a defined threshold (Ji and Wang 2016). The authors found that 

tamarisk does exhibit differences in phenology, with northern populations showing delayed 

onset of leaf coloration compared to southern populations. These phenology variations are 

evident even within a single Landsat image. While some single date Landsat scenes were able to 

achieve similar classification accuracies as the phenology-derived composite, omission errors 

were between two single-date images were very higher (0.75 for an October 31st image 
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compared to 0.53 for a November 9th image), meaning that tamarisk cover was significantly 

underestimated when images were acquired just over a week apart. Thus, mapping widespread 

tamarisk infestations using moderate spatial resolution sensors such as Landsat may be less 

accurate when phenology is not taken into consideration.  

5.5.2 Remote Sensing of Tamarisk Beetle Biocontrol 

 Monitoring the effects of tamarisk beetle defoliation is impractical from the ground due 

to the beetles’ widespread distribution and difficulty in assessing its effects (Sankey et al. 2016). 

Therefore, remote sensing of tamarisk beetle biocontrol has been proposed as an alternative 

method of monitoring its impacts (Sankey et al. 2016). 

 Several of these studies have attempted to quantify the impacts of tamarisk beetle 

defoliation by conducting a change detection analysis of tamarisk cover before and after the 

beetles were first observed at their study site. For example, Bedford et al. (2018) used high 

spatial resolution, airborne color-infrared imagery to map tamarisk populations within a 412 km 

stretch of the Colorado River in the Grand Canyon, Arizona between 2009 when the beetles 

were first discovered in the study area and 2013. Tamarisk distribution for 2009 was 

determined using the Mahalanobis distance method, and the difference between NDVI values 

in 2013 and 2009 was used to determine areas of tamarisk beetle defoliation. The authors 

determined that the beetles defoliated 0.321 km2 of the 2.144 km2 of tamarisk present in the 

study site, leading to a 15% drop in tamarisk cover (Bedford et al. 2018). Sankey et al. (2016) 

performed a similar study within a smaller 24 km section of the same reach of the Colorado 

River, instead combining high spatial resolution color-infrared imagery with LiDAR to quantify 

the effects of tamarisk beetle defoliation on tamarisk biomass. The authors estimated that 

24.7% of the tamarisk within their study site was defoliated, leading to a loss of 25,692 kg 

worth of tamarisk leaf biomass lost (Sankey et al. 2016). 

 Remote sensing studies have also revealed new insights into tamarisk beetle behavior 

that may have implications for future tamarisk control efforts. For example, Bedford et al. 

(2018) found that defoliation by tamarisk beetle was more likely to occur where tamarisk 

populations were large and dense. They also found that tamarisk beetle activity was more likely 

to occur within certain geomorphic sections of riparian areas, such as large confluences, 
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sandbars, and debris fans. Through this finding, the authors speculate that tributaries may 

serve as migratory corridors to the Colorado River for the tamarisk beetles (Bedford et al. 

2018). Identifying areas of tamarisk defoliation can also help land managers prioritize areas for 

restoration and replanting of native vegetation, as native birds are often impacted by the loss 

of nesting habitat that tamarisk provides and defoliated tamarisk stands may pose a fire risk 

(Sankey et al. 2016). 
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6.0 Sacramento-San Joaquin River Delta Case Study 

 Here I present my second case study the use of remote sensing in one of the most 

heavily invaded estuaries in the world, the Sacramento-San Joaquin River Delta (hereto referred 

to as the Delta). The Delta ecosystems’ large area, array of hydrologic and environmental 

conditions, extensive history of biological invasions, and complex administrative landscape 

exemplify how remote sensing can overcome some the challenges of invasive species 

management in such as challenging setting. In the following section, I will provide a brief 

overview of the Deltas’ biological setting, discuss relevant remote sensing studies of invasive 

species in the Delta, and how they have contributed to invasive species management and 

control efforts. 

6.1 Delta Background 

 The Delta is located in Northern California at the confluences of the Sacramento and San 

Joaquin rivers and is roughly 3,237 km2 large (Figure 15) (Whipple et al. 2012). Situated at the 

top of the San Francisco Bay Estuary, which drains 40% of the land surface of California, the 

Delta also experiences significant tidal and salinity gradients from east to west, with higher 

salinities and tidal influence in the west (Whipple et al. 2012). The climate is characterized as 

Mediterranean, with hot, dry summers and cool, wet winters, with precipitation gradients 

increasing from south (13-14 inches annual average precipitation) to north (19-20 inches annual 

average precipitation) and temperature gradients generally increasing from west to east 

(Whipple et al. 2012). These abiotic conditions have created a suite of different habitats, 

including open water, tidal wetlands, seasonal wetlands, perennial wetlands, riparian forests, 

grasslands, oak woodlands and savannas (Whipple et al. 2012). 

 Anthropogenic changes to the Delta landscape have significantly altered its ecosystem 

functions and processes (Whipple et al. 2012). Levees were first constructed in the Delta in the 

1850s, both to protect the city of Sacramento from flooding and later to reclaim land for 

agriculture (Whipple et al. 2012). These alterations decreased the tidal prism of streams, 

disconnected rivers from their floodplains, and led to the loss of wetlands in the Delta (Whipple 

et al. 2012). Additionally, intensive farming in these former wetlands causes peat trapped 

within the soil to oxidize, leading to land subsidence of up to 26 feet (Whipple et al. 2012). 
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Channel straightening and dredging of the Stockton Deep Water Ship Channel in 1933 and the 

Sacramento Deep Water Shipping Channel would help facilitate transportation through the 

Delta led to channel morphology becoming deeper and more linear (Whipple et al. 2012). The 

construction of dams across most of the major rivers flowing into the Delta, combined with the 

transfer of water from the relatively wetter north to the drier south through the State Water 

Plan and Central Valley Project, significantly altered the seasonality, magnitude, and direction 

of freshwater flows into the Delta (Whipple et al. 2012). As result, salinity levels have increased 

in the western Delta leading to declining drinking water quality (Whipple et al. 2012). 

 

Figure 15: The Sacramento-San Joaquin Delta (Moran et al. 2021) 

 The Delta is currently targeted for large scale ecological restoration. The spread of 

invasive plants threatens the success of these projects maintaining ecological services, water 
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infrastructure, and recreation opportunities (Conrad et al. 2023). In the Delta, SAV and FAV also 

threaten fish and wildlife habitat by outcompeting native plant species, and altering water 

velocity, sedimentation, temperature, and dissolved oxygen (Moran et al. 2021). Managing 

invasive species in the Delta has the potential to help recover endangered plant populations. 

For example, removal experiments of L. latifolium in Suisun Marsh was shown to increase 

populations of the federally endangered Suisun Marsh Thistle (Cirsium hydrophilium) (Schneider 

et al. 2024). 

 The regulatory landscape of the Delta is a complex mosaic of federal and state agencies 

with non-profit and academic partnerships playing a vital role (Ta et al. 2017). The California 

Department of Boating and Waterways (CDBW) is the lead agency for managing invasive 

aquatic plants in the Delta (Ta et al. 2017). CDBW has had jurisdiction to control FAV since the 

establishment of the Water Hyacinth Control Program in 1982, and received jurisdiction to 

control SAV since 2001 after the passing of a 1996 law that established the E. densa Control 

Program (Conrad et al. 2023). However, treating emergent species such as Arundo donax or 

Phragmites australis requires permitting for individual projects (Conrad et al. 2023). Each 

species needed to receive authorization every year from agencies such as USFWS and NIMS 

through a Biological Opinion or Letter of Concurrence, which often led to delays in treatment 

(Moran et al. 2021). Further, CDBW is required to coordinate with partner agencies such as 

California Department of Fish and Wildlife (CDFW) and CDFA in order to update the list of 

aquatic weeds managed under their programs as per AB 763 [2013] (Ta et al. 2017). 

Additionally, restrictions exist on the timing of herbicide application, which prevents treatment 

of early growth that is more effective (Khanna et al. 2023). 

 Funded between 2014 and 2018, the Delta Region Areawide Aquatic Weed Project 

(DRAAWP) was established to improve methods for weed control, improve understanding of 

weed growth using new methods, and streamline permitting and regulatory processes for 

invasive plant treatment (Moran et al. 2021). Remote sensing studies on invasive aquatic plant 

growth had a significant impact on the ability of DRAAWP member agencies to make informed 

decisions on where and when to treat invasive aquatic plants (Moran et al. 2021). For example, 

CDBW was able to use remotely sensed data to implement an adaptive control program for SAV 
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and FAV, which has led to reductions in cover of invasive aquatic plants and higher native 

species diversity using less herbicide per unit area (Moran et al. 2021). 

6.1.1 Invasive Plant Management in the Delta 

 Managing invasive species in the Delta is difficult due to logistical and regulatory 

challenges. The estuarine and riverine nature of the Delta makes accessing sites difficult due to 

the influence of tidal flows, and invasive plants can readily reinvade treated sites as they are 

transported downstream or through tidal action (Conrad et al. 2023). Chemical control 

methods, such as herbicides, can have limited effectiveness in tidal or riverine systems where 

untreated water can dilute herbicide concentrations below the level necessary to achieve 

desired results (Conrad et al. 2023). Herbicides require contact with plants for a minimum 

amount of time in order to kill plant tissue, making SAV particularly challenging to treat because 

they grow underwater (Conrad et al. 2023). FAV can escape chemical control when fragments 

break off and re-establish elsewhere (Conrad et al. 2023). 

 The development of slow-acting herbicides such as fluridone can be effective at 

controlling SAV when applied repeatedly at low-concentration, but require prolonged contact 

and need to be applied for several months in order to achieve plant mortality (Conrad et al. 

2023). Effective herbicides for FAV, such as Alternanthera philoxeroides and Eichhornia 

crassipes, include the broadleaf specific 2,4-Dichlorophenoxyacetic acid dimethylamine salt 

(2,4-D), but due to its potential to damage agricultural crops it has been replaced by the non-

selective herbicide glyphosate (Conrad et al. 2023). As our understanding of the risks that 

glyphosate poses to non-target vegetation, wildlife, and human health increases, alternative to 

glyphosate application will be necessary to control invasive plant in the Delta (Conrad et al. 

2023). 

 Mechanical and physical approaches to invasive species control in the Delta have also 

been considered, but come with their own set of challenges. Hand removal, mechanical 

harvesters, disking, mowing, and suction devices have all been used to manage species such in 

the Delta, but can be expensive, labor intensive, and impractical at the spatial scales necessary 

to achieve long term control and risk spreading propagules (Conrad et al. 2023). Physical 

screens or barriers placed around FAV or SAV can prevent dispersal and limit light availability, 
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but are only feasible for small populations (Conrad et al. 2023). Additionally, barriers can 

prevent oxygen and nutrient exchange for invertebrates and are susceptible to reinvasion once 

removed (Conrad et al. 2023). 

 Several herbaceous insects have been released as biocontrol agents to manage SAV and 

FAV in the Delta, though these results have not resulted in successful reductions of target 

invasive species (Conrad et al. 2023). Biological control of aquatic vegetation is often limited in 

California due to the region having an unsuitable climate for the known biocontrol agents for 

our species of interest, and few insects exclusively feed on SAV (Conrad et al. 2023). Sterile, 

triploid grass carp (Ctenopharyngodon idella) have been used as biocontrol agents in 

agricultural canals in the California Imperial Valley to manage Hydrilla verticillata, but these fish 

will consume any SAV and can consume non-target SAV as well (Conrad et al. 2023). Two 

species of insects have been released in California for biocontrol of A. donax: the shoot-tip 

galling wasp (Tetramesa romana) and the shoot-feeding armored scale (Rhizaspidiotus donacis) 

(Conrad et al. 2023). A third species, the leaf-mining fly (Lasioptera donacis), is under 

consideration for release (Conrad et al. 2023). While the first two insects have shown favorable 

results on A. donax control, their effectiveness in California has yet to be demonstrated (Conrad 

et al. 2023). 

6.2 Remote Sensing of Invasive Plant Species in the Delta 

 From the studies used in my comparative analysis, six species were the focus of remote 

sensing in the Delta ) E. densa, E. crassipes, H. verticillata, L. latifolium, Ludwigia spp., and 

Myriophyllum spp.). All were aquatic invasive plants (FAV or SAV) or perennial herbs that grow 

in wetland habitats. 

 Remote sensing of SAV and FAV is particularly challenging in the environmental context 

of the Delta. In order for a remote sensor to detect SAV, light must be able to pass through the 

water column and reflect off the surface of plant material (Hestir et al. 2008). Water is strongly 

absorbent of most spectral wavelengths, reflects light off the surface, and attenuates light that 

passes through, all of which can affect the magnitude and quality of the reflected spectral signal 

(Hestir et al. 2008). Tides and runoff can affect the amount of water present and the amount of 

suspended sediment can vary across the landscape, which affects the amount of light that can 
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pass through the water column (Hestir et al. 2008). Errors between flightlines can also be 

introduced through the effects of weather and sun angles (Hestir et al. 2008). Additionally, 

imagery acquisition must occur when plants display unique phenological life stages, such as 

flowering or senescence, which can vary across the heterogenous Delta landscape (Hestir et al. 

2008). 

 Other remote sensing studies in the Delta demonstrate how environmental 

heterogeneity complicates the detection of invasive plants species. Andrew and Ustin (2009) 

used HyMap hyperspectral imagery (3-meter spatial resolution) to map L. latifolium at three 

sites in the Delta that demonstrate the variety of ecological conditions and habitats present in 

the Delta:  

1. 55 km2 at Rush Ranch, a brackish tidal marsh in Suisun Bay dominated by tule 

(Schoenoplectus californicus), bulrush (Schoenoplectus acutus), pickleweed (Salicornia 

virginica), saltgrass (D. spicata), common reed (Phragmities australis), and cattail (Typha 

spp.). 

2. 63 km2 at The Greater Jepson Prairie Ecosystem: a vernal pool system within an annual 

grassland, riparian, and freshwater marsh wetland complex. 

3. 40 km2 at Consumes River Preserve: a mix of riparian forests, uplands, freshwater 

marshes, and agricultural fields. 

While the authors were able to successfully map L. latifolium at both Rush Ranch and Jepson 

Prairie with high accuracies, omission and commission errors were very high at Consumes River 

Preserve. This means that a significant portion of pixels were excluded from classification, and a 

significant portion of pixels were misclassified. Several factors were attributed to the large 

discrepancy in accurate classification between the sites. The bright white flowers present on L. 

latifolium produced spectral signatures that were substantially different from those of other 

plants occurring at Rush Ranch. L. latifolium at Jepson Prairie, however, produced mixed 

spectral signatures because the spatial resolution of the imagery was coarse enough that pixels 

included other highly spectrally distinct species such as C. solstitialis. Plants were also in various 

stages of phenology at Jepson Prairie, which slightly decreased the spectral uniqueness of L. 

latifolium, but at the time of imagery acquisition it was the only green vegetation present which 
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raised the accuracy of the image classification. Similarly, at Consumes River Preserve L. 

latifolium was present in all state of phenology due to variations in hydrology. Consumes River 

Preserve was also the most biodiverse of the three sites, which increased the likelihood that at 

least one other plant present at the site would be spectrally similar to L. latifolium. Dense 

patches of L. latifolium were also more likely to be accurately classified than sparsely populated 

patches. Small populations of invasive plants may be missed, particularly when spatial 

resolution does not match. While L. latifolium was successfully mapped in some contexts, this 

study also revealed some limitations of a remote sensing approach to invasive species mapping. 

 Remote sensing studies performed in the Delta in 2014 have been able to determine the 

extent of SAV (dominated by E. densa) and FAV cover (co-dominated by water primrose and 

water hyacinth) to be 7,550 acres and 3,180 acres, respectively (Ta et al. 2017). For example, 

Khanna et al. (2018) used AVIRIS-ng (3m spatial resolution) and HyMap (2.5m resolution) 

hyperspectral airborne imagery to map Ludwigia spp. across a 2500 km2 swath of the Delta 

using imagery acquired in 2004, 2008, 2014, and 2016 (Figure 16). Training data was acquired 

by field crews who recorded the locations of 3 m2 patches using GPS units that were dominated 

by a single species, which corresponded to the spatial resolution of the imagery. A random 

forest algorithm was applied to various outputs from the imagery to classify water, SAV, 

 

Figure 16: Spread of water primrose (Ludwigia spp.) into open water and SAV habitat in the Delta between 2008 
and 2014 and into emergent marsh in 2016 (Khanna et al. 2018) 
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Ludwigia spp., E. densa, emergent vegetation, and non-photosynthetic vegetation. The authors 

then conducted a change analysis between different years of imagery by subtracting the 

percentage of pixels belonging to one class from another year. The authors found that between 

2004 and 2016, Ludwigia spp. cover in their study area increased by 400%, from 121,800 m2 to 

471,300 m2, and that this change accelerated the most between 2014 and 2016. Importantly, 

the authors note that this imagery was incapable of differentiating the two species of Ludwigia 

present at the site, indicating one potential shortfall of remote sensing as a means of EDRR. 

However, studies like this demonstrate how remote sensing may be useful in determining the 

spread of invasive plant species over very large spatial scales, in settings that are otherwise 

logistically challenging to access. 

6.3 Management Implications for the Delta 

 Remote sensing studies have revealed important changes in invasion patterns for many 

high impact invasive species in California. These studies have demonstrated how Ludwigia for 

example, have caused significant changes to the ecology of the Delta. Khanna et al. 2018 

showed that Ludwigia had begun invading emergent marshes, likely because it had completely 

filled all available niches within open water habitats. As Ludwigia cover expands across these 

open water habitats, its dense root system traps sediment. This increased rate of 

sedimentation has led to an expansion of emergent marshes within in the Delta at the expense 

of open water, as well as decreasing the turbidity of remaining aquatic habitat. The spread of 

Ludwigia across the Delta has likely occurred due to decreases in another co-occurring invasive 

plant, E. crassipes, which was a covered species under CDBW Water Hyacinth Control Program 

(Khanna et al. 2018). Ludwigia, which was not an authorized species under CDBWs invasive 

species control program, was likely able to exploit the available niches that were available as E. 

crassipes cover decreased due to management efforts. 

 Studies that determine the outcome of invasive species control programs across a large 

and heterogenous landscape like the Delta illustrate a particular strength of remote sensing 

approaches to invasive species mapping. Khanna et al. (2023) used AVIRIS-NG and HyMap 

hyperspectral airborne imagery to determine the effects of herbicide treatment of SAV, 

including but not limited to E. densa and M. spicatum, across a 2200 km2 section of the Delta 
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between 2014 and 2018. The authors found that several factors make SAV treatment the Delta 

unsuccessful due to several environmental and management factors. Wind speed and currents 

in a given location were likely to reduce the likelihood that pixels classified as SAV in 2014 

would change to a different classification in 2018, indicating that these factors reduced the 

impact of the herbicide application, likely by diluting the effective dose required to kill the 

target plant species. This remote sensing approach to a landscape scale invasive plant 

treatment monitoring is useful, in that untreated reference sites could easily be included to 

determine if declines in SAV were due to treatment effects or other factors. 

 Additionally, advances in drone technology are facilitating the use of remote sensing to 

not only map the distribution of invasive species, but also to directly treat them. Takekawa et 

al. (2023) used an RGB color camera attached to a drone to collect aerial imagery of L. 

latifolium in Suisun Marsh at 5 cm2 spatial resolution. The authors combined a red-green 

spectral index with a 1 m resolution Digital Elevation Model (DEM) to map locations of L. 

latifolium across 8 sites totaling 14.29 km2. A spray drone was then used to treat L. latifolium at 

each site using transects that were mapped using the classification maps produced by the RGB 

imagery. After several weeks, a field crew manually surveyed each treatment site to determine 

the effects by measuring the percent cover of L. latifolium within a 1 m2 quadrat and note if 

there appeared to be any evidence the area was sprayed and whether any L. latifolium present 

was experiencing dieback. The authors found that 49800 m2 of L. latifolium that were mapped 

across the eight study sites, and there was an 87% success rate in L. latifolium mortality. Drone-

delivered herbicide application had several benefits over traditional backpack or tractor-

spraying methods. Drift rates were relatively low when herbicide was applied by drone due to 

the low altitude flight path and large droplet size used. Excluding the up-front costs of 

equipment, this method may be relatively cost-effective compared to contracting a field crew 

to backpack spray, costing an estimated 367,900 USD/km2 compared to 4,569,500 USD/km2. 

While there are concerns regarding the impact operating drones have on disturbing wildlife, 

this method also has the benefit of reducing herbicide contact with human applicators and 

associated health impacts. 
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  Lastly, remote sensing has been proposed as a useful tool for wetland monitoring 

programs in the adjacent San Francisco Bay, where numerous restoration projects are taking 

place or are planned. The Wetland Regional Monitoring Program (WRMP) for San Francisco Bay 

was created to inform practitioners, scientists, and decision makers on how the San Francisco 

Bay estuary is changing over time and responding to restoration efforts (WRMP 2020). In order 

to do so, regular monitoring of environmental indicators is required from the site-specific to 

regional spatial scale (WRMP 2020). Many of these indicators, such as vegetation parameters, 

marsh elevation, and marsh extent, are capable of being measured by remote sensing 

techniques (WRMP 2020). Remote sensing across benchmark, reference, and project sites 

across the San Francisco Bay estuary can enable land managers to monitor invasive species 

establishment using a consistent method and to compare the effects of local influences or 

project design on invasive species establishment. 
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7.0 Conclusion and Recommendations 

 Invasive plants are a major contributor to environmental degradation and biodiversity 

loss in California. Introductions of novel plant species are likely to increase in the future due to 

human activity, some of which are likely to become invasive. Detecting invasive species early in 

their establishment and swiftly enacting control methods are the most effective methods for 

controlling invasive plants and preventing them from causing further ecological harm. The 

emerging science and practice of remote sensing offers a powerful tool for land managers to 

understand the spread of invasive plant species across spatial scales. High spectral resolution 

sensors are capable of distinguishing between several groups of vegetation by relying on 

unique spectral properties of plants. High spatial resolution sensors are capable of detecting 

very small patches of invasive plants. UAVs, drones, and aircraft can be deployed to obtain 

imagery at the precise temporal resolution necessary to capture plants at phenological life 

stages that enable their detection via remote sensing. 

 While significant limitations exist that limit the use of remote sensing for early 

detection, it has been demonstrated to be an effective means to monitor a variety of invasive 

plants in the containment and long-term management of invasive plants and understanding the 

impacts of large-scale treatment efforts. Our capacity to utilize remote sensing within the EDRR 

management framework will improve as new sensors are developed with better spatial and 

spectral resolution, and as UAV use becomes more widespread. 

7.1 Management Recommendations 

1. Use high spatial resolution multispectral, color-infrared, or color imagery when 

hyperspectral imagery is not available or practical. Several remote sensing studies have 

demonstrated that high spatial resolution imagery can often overcome the challenges imposed 

by lower spectral resolution. Higher spatial resolution may be better suited to detecting smaller, 

nascent and satellite populations of invasive plants known to occur in an area. This type of 

imagery, which is typically acquired through drone imagery or aircraft, can also be collected at 

precise times when target plants exhibit their unique spectral attributes or exhibit specific 

phenological life stages. 
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2. Develop partnerships for acquiring hyperspectral imagery. The power of remote 

sensing for invasive plant management lies in its ability to monitor at scale, across many political 

boundaries and jurisdictions. When more expensive hyperspectral imagery is necessary to map 

invasive plant populations, organizations within the same region that may find uses for this data 

should pool financial resources and expertise to obtain it. Such examples can be found between 

CDFW and CDBW use of hyperspectral imagery for invasive species mapping in the Delta. 

3. Collect field data that corresponds to remote sensing data. At the present moment, 

remote sensing methods for invasive plant monitoring are too inadequate for fully replacing 

field surveys, and should instead be seen as a complementary tool. Combing remotely sensed 

data with field-collected date can be enhanced when field data is attained in way that facilitates 

its use with remote sensing data. For example, nested survey plots that match the spatial 

resolution of several remote sensors could be used to gather training data and extrapolate field 

monitoring to entire sites or adjacent landscapes. 

4. Spectral data for new invasive plant species should be collected in the field along with 

herbarium voucher specimens. Herbariums play an important role as warehouses of botanical 

information. Voucher specimens stored in herbariums already play an important role in 

uncovering patterns of invasive plant spread and biotic homogenization. Recent advances have 

been made in utilizing the DNA within herbarium specimens to better understand phylogenetic 

relationships. Herbariums could also play a unique role as warehouses of spectral data, both 

from data collected from stored specimens and from in situ plants before collection. Processes 

for collecting spectral information from plants at the time of their collection should be 

developed and standardized so that herbariums can also serve as spectral libraries. 

5. Continue research and development into high resolution sensors.  

 Sensor resolution is often the limiting factor in successfully identifying invasive plants 

through remote imagery. For example, high spectral resolution is necessary to distinguish 

similar plant species from one another and high spectral resolution is needed to separate 

nearby plants from one another. However, all sensors must make tradeoffs in design that limit 

their spatial, spectral, or temporal resolution. Newer, higher resolution sensors (e.g. Landsat 

Next) will become increasingly relevant to the application of remote sensing to invasive plant 
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management as their higher spectral, spatial, and temporal resolution will increase the 

availability of high-quality data for making accurate assessments of invasive species cover. 

Continued development of higher resolution sensors should be a high priority for research 

agencies such as the U.S. Geological Service and private industry. 
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