
University of Florida Levin College of Law University of Florida Levin College of Law

UF Law Scholarship Repository UF Law Scholarship Repository

UF Law Faculty Publications Faculty Scholarship

12-19-2023

Shields Up For Software Shields Up For Software

Derek E. Bambauer
University of Florida Levin College of Law, bambauer@law.ufl.edu

Melanie J. Teplinsky
American University Washington College of Law, teplinsk@american.edu

Follow this and additional works at: https://scholarship.law.ufl.edu/facultypub

 Part of the Legislation Commons, Privacy Law Commons, and the Torts Commons

Recommended Citation Recommended Citation
Derek E. Bambauer & Melanie J. Teplinsky, Shields Up For Software, Lawfare (Dec. 19, 2023, 2:07 PM),
https://www.lawfaremedia.org/article/shields-up-for-software

This Article is brought to you for free and open access by the Faculty Scholarship at UF Law Scholarship
Repository. It has been accepted for inclusion in UF Law Faculty Publications by an authorized administrator of UF
Law Scholarship Repository. For more information, please contact jessicaejoseph@law.ufl.edu.

https://scholarship.law.ufl.edu/
https://scholarship.law.ufl.edu/facultypub
https://scholarship.law.ufl.edu/faculty
https://scholarship.law.ufl.edu/facultypub?utm_source=scholarship.law.ufl.edu%2Ffacultypub%2F1248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/859?utm_source=scholarship.law.ufl.edu%2Ffacultypub%2F1248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1234?utm_source=scholarship.law.ufl.edu%2Ffacultypub%2F1248&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/913?utm_source=scholarship.law.ufl.edu%2Ffacultypub%2F1248&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:jessicaejoseph@law.ufl.edu

SHIELDS UP FOR SOFTWARE

LAWFARE (Dec. 19, 2023)
https://www.lawfaremedia.org/article/shields-up-for-software

Derek E. Bambauer & Melanie J. Teplinsky*

Table of Contents

INTRODUCTION ... 2

I. POLICY RATIONALES ... 2

II. SAFE HARBORS: AUTOMATIC IMMUNITY, AUTOMATIC LIABILITY................................ 3
A. THE SWORD: AUTOMATIC LIABILITY .. 3
B. THE SHIELD: AUTOMATIC IMMUNITY ... 4

III. UPDATES ... 6

IV. RISKS .. 7

V. KEY DESIGN CHOICES ... 7
A. DETERRENCE ... 7
B. LEGACY CODE .. 8
C. CRITICAL INFRASTRUCTURE .. 8
D. TESTING ... 9
E. TRANSITIONAL AND OTHER SUPPORT ... 10
F. MECHANISM ... 12

CONCLUSION ... 13

* Irving Cypen Professor of Law, University of Florida Levin College of Law,
bambauer@law.ufl.edu, and Senior Fellow, Tech, Law, and Security Program, American
University Washington College of Law, teplinsk@american.edu. Authors are listed
alphabetically. We thank Saumya Debray, Jim Dempsey, James Halpert, Paul Rozensweig,
Paul Tiao; the Lawfare editors; and the participants in a series of working group sessions
on software security for helpful feedback.

2 Shields Up for Software

INTRODUCTION

As part of the National Cybersecurity Strategy,1 the Biden
administration seeks to “develop legislation establishing liability for software
products and services,”2 which would include “an adaptable safe harbor
framework to shield from liability companies that securely develop and
maintain their software products and services.”3 We propose that this
software liability regime incorporate one safe harbor and one “inverse safe
harbor.” The first would shield software creators and vendors from liability
if they follow enumerated best practices in design, development, and
implementation. The second—the inverse safe harbor, or sword—would
automatically impose liability on developers who engage in defined worst
practices.4 The safe and inverse safe harbors will provide certainty to
regulated entities, reduce administrative costs, and create incentives for
improving security. This article describes the twin safe harbors, their policy
goals, and the key design criteria for their success.

I. POLICY RATIONALES

At present, software is almost entirely exempt from the usual liability

regimes that apply to products and services. Tort law excludes software for
fear that imposing liability would cripple innovation.5 In addition, tort’s
economic loss doctrine prevents recovery for pecuniary harm not linked to
physical damage or injury, creating a major obstacle to recovery for harms
caused by flawed software.6 Contract law enables software vendors to
disclaim warranties and bar users from litigation even if they suffer harm
caused by code.

The administration’s cybersecurity strategy—as applied to software
liability—would alter this status quo. A well-constructed liability regime
would improve cybersecurity and penalize shoddy code while protecting
software producers who follow reasonable practices. However, the new
system will create risk, especially from uncertainty, for those who create and
distribute code.

1 NATIONAL CYBERSECURITY STRATEGY (March 2023).
2 Id. at 21.
3 Id.
4 See Derek E. Bambauer, Cybersecurity for Idiots, 106 MINN. L. REV. HEADNOTES 172
(2021).
5 See Michael D. Scott, Tort Liability for Vendors of Insecure Software: Has the Time
Finally Come?, 62 MD. L. REV. 425 (2008).
6 See Danielle K. Citron, Reservoirs of Danger: The Evolution of Public and Private Law
at the Dawn of the Information Age, 80 S. CAL. L. REV. 241 (2007).

https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://minnesotalawreview.org/wp-content/uploads/2021/11/Bambauer_Final.pdf
https://digitalcommons.law.umaryland.edu/mlr/vol67/iss2/5/
https://digitalcommons.law.umaryland.edu/mlr/vol67/iss2/5/
https://scholarship.law.bu.edu/cgi/viewcontent.cgi?article=1622&context=faculty_scholarship
https://scholarship.law.bu.edu/cgi/viewcontent.cgi?article=1622&context=faculty_scholarship

 Shields Up For Software 3

The proposed software liability regime rests on a standard of
reasonable care for design, development, and maintenance of code. Failure to
meet the standard of care is negligence. This standard-of-care approach is
widely used and often framed as a reasonableness inquiry. For example, in
medical malpractice cases, the criterion is typically how a reasonable
physician would have treated the patient. Standards of care are helpfully
flexible and usually consider each case’s individual circumstances. However,
this fact-specific analysis requires gathering considerable information and is
thus costly. Decision-makers also inevitably make mistakes. Some actors
who fail to meet the standard of care will escape liability, and some who
conform to it will be punished. Safe harbors can improve this design. They
provide certainty to regulated entities: immunity for following defined best
practices, and clear liability for engaging in terrible ones. And safe harbors
shape incentives: Coders and vendors that cannot or will not improve their
code and business practices will be pushed out of the market.

II. SAFE HARBORS: AUTOMATIC IMMUNITY, AUTOMATIC LIABILITY

We propose augmenting the standard of care for secure software with

two safe harbor provisions: one that automatically imposes liability for
defined worst practices, and one that automatically confers immunity for
following enumerated best practices.

A. The Sword: Automatic Liability

First, the liability regime should include minimum requirements for

software development by defining a set of worst practices that automatically
create liability (the “inverse safe harbor,” or sword). For example, including
a hard-coded account with administrative privileges and a password that
cannot be changed is clearly an unacceptable decision.7 When hard-coded
credentials8 are used in operational technology products9 in critical industries
such as power, for example, an adversary who discovers the password could
change how the installed products operate. Developers who are careless or
indifferent to security should face significant penalties. Risks of

7 See, e.g., D-Link Agrees to Make Security Enhancements to Settle FTC Litigation, FED.
TRADE COMM’N (July 2, 2019) (announcing settlement with smart home products
manufacturer that distributed software “using hard-coded login credentials… with the
easily guessed username and password, ‘guest’”).
8 See CWE-798: Use of Hard-coded Credentials, COMMON WEAKNESS ENUMERATION (last
updated Oct. 26, 2023).
9 See Christian Vasquez, CISA urges vendors to get rid of default passwords, CYBERSCOOP
(Dec. 15, 2023).

https://www.ftc.gov/news-events/news/press-releases/2019/07/d-link-agrees-make-security-enhancements-settle-ftc-litigation
https://cwe.mitre.org/data/definitions/798.html
https://cyberscoop.com/cisa-urges-vendors-to-get-rid-of-default-passwords/

4 Shields Up for Software

overdeterrence are minimal: There is no reasonable basis for engaging in
worst practices.

The inverse safe harbor should begin by including practices for which
there is widespread consensus that they are dangerous. We suggest starting
with the bad coding practices from the Common Weakness Enumeration10
list managed by the Cybersecurity and Infrastructure Security Agency
(CISA).11 These are programming or design choices that are indefensible,
albeit at differing levels of severity. Over time, the list of worst practices
should grow. Indeed, decisions about compliance with the standard of care
will likely identify conduct sufficiently far below the standard that it merits
inclusion as a worst practice. Security-related litigation and settlements by
the Federal Trade Commission (FTC)12 pursuant to its Section 5 authority13
could also provide examples14 of sufficiently bad practices15—since the FTC
must often make determinations about16 the adequacy of organizations’
security practices17.

B. The Shield: Automatic Immunity

Second, the affirmative safe harbor defines conduct that makes

developers immune from liability for particular features and design choices.
The immunity safe harbor includes best practices: coding and design choices
that maximize security and minimize risk. Immunity should be issue specific;
software might comply with some best practices but not others, and the
liability shield would apply only to compliant aspects. Developers will seek
to incorporate these best practices because doing so guarantees freedom from
liability—if not for other, more laudable reasons. Safe harbor provisions are
common in regulatory regimes. For example, the safe harbors for online
service providers18 created by the Digital Millennium Copyright Act
(DMCA) ensure these entities cannot be held liable for transporting or storing
content that infringes copyright if they follow prescribed rules, such as

10 See Common Weakness Enumeration.
11 We thank Professor Saumya Debray of the University of Arizona Department of
Computer Science for discussion of this example.
12 See Daniel J. Solove & Woodrow Hartzog, The FTC and the New Common Law of
Privacy, 114 COLUM. L. REV. 583 (2014).
13 See Justin (Gus) Hurwitz, Data Security and the FTC’s UnCommon Law, 101 IOWA L.
REV. 955 (2016).
14 See Cory Bennett, Software firm settles FTC charges it misled on encryption, THE HILL
(Jan. 6, 2016).
15 See Cory Bennett, Oracle settles FTC charges that it deceived with security updates, THE
HILL (Dec. 22, 2015).
16 See LabMD v.FTC, 894 F.3d 1221 (11th Cir. 2018).
17 See FTC v. Wyndham Worldwide Corp., 799 F.3d 236 (3d. Cir. 2015).
18 Codified at 17 U.S.C. § 512.

https://cwe.mitre.org/index.html
https://columbialawreview.org/wp-content/uploads/2016/04/Solove-Hartzog.pdf
https://columbialawreview.org/wp-content/uploads/2016/04/Solove-Hartzog.pdf
https://ilr.law.uiowa.edu/sites/ilr.law.uiowa.edu/files/2023-02/ILR-101-3-Hurwitz.pdf
https://thehill.com/policy/cybersecurity/264910-software-firm-settles-ftc-charges-it-misled-on-encryption/
https://thehill.com/policy/cybersecurity/264000-oracle-settles-ftc-charges-it-deceived-with-security-updates/

 Shields Up For Software 5

removing access to infringing material on notification. Nearly all service
providers comply19 with the DMCA safe harbor requirements because they
value the legal certainty immunity provides.

The immunity safe harbor should contain two types of requirements.
The first are process-based mandates,20 which require organizations to follow
defined steps or protocols as part of developing and maintaining software
code. For example, organizations might be required to implement a
vulnerability-reporting mechanism and to document how they respond to
“bug reports”21 they receive. The second are substantive provisions,22 which
are specific requirements for features, design decisions, and the like. For
example, developers might have to create programs that automatically
encrypt sensitive data using a cipher or system with defined minimum
strength23 (for example, quantum-resistant encryption24). American
cybersecurity regulation tends to concentrate on process to the exclusion of
substance, to the detriment of software security and cybersecurity more
generally.25 Process-based approaches can help ensure consistency across an
organization and help avoid inadvertent errors that compromise security.
However, they are less effective in ensuring that the process’s outcome is
sufficiently secure. Some security issues are amenable to substantive rules.26
Data should be encrypted. Memory-safe languages should be used. Data
inputs should be checked for their type and length27 to prevent buffer
overflow attacks28. Other issues are highly contextual and better managed by
standards or by process obligations.

Enumerating best practices for the safe harbor will take time and may
be context dependent. William McGeveran, professor of information law and
data privacy at the University of Minnesota Law School, offers an analogous
approach in the cybersecurity context, suggesting that an initial set of best
practices could be drawn from the requirements included in most or all extant

19 See Jennifer M. Urban, Joe Karaganis, & Brianna Schofield, Notice and Takedown in
Everyday Practice, UC BERK. PUB. L. RES. PAPER NO. 2755628 (Mar. 24, 2017).
20 See Information security, cybersecurity and privacy protection, ISO/IEC 27001:2022.
21 See Shreya Bose, How to write an Effective Bug Report, BROWSERSTACK (Dec. 21,
2022).
22 See, e.g., 45 C.F.R. § 164.312.
23 See FIPS PUB 140-3: Security Requirements for Cryptographic Modules, Nat’l Inst.
Standards & Tech., Dep’t of Commerce (Mar. 22, 2019).
24 See NIST Announces First Four Quantum-Resistant Cryptographic Algorithms, Nat’l
Inst. Standards & Tech., Dep’t of Commerce (July 5, 2022).
25 See Derek E. Bambauer, Ghost in the Network, 162 U. PA. L. REV. 1011 (2014).
26 See Derek E. Bambauer, Rules, Standards, and Geeks, 5 BROOK. J. CORP. FIN. &
COMM’L L. 49 (2010).
27 See Buffer Overflow, OWASP.
28 See CWE-120: Buffer Copy without Checking Size of Input ('Classic Buffer Overflow'),
COMMON WEAKNESS ENUMERATION (last updated Oct. 26, 2023).

https://dx.doi.org/10.2139/ssrn.2755628
https://dx.doi.org/10.2139/ssrn.2755628
https://www.iso.org/standard/27001
https://www.browserstack.com/guide/how-to-write-a-bug-report
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-3.pdf
https://www.nist.gov/news-events/news/2022/07/nist-announces-first-four-quantum-resistant-cryptographic-algorithms
https://scholarship.law.upenn.edu/cgi/viewcontent.cgi?article=9439&context=penn_law_review
https://brooklynworks.brooklaw.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1112&context=bjcfcl
https://owasp.org/www-community/vulnerabilities/Buffer_Overflow

6 Shields Up for Software

certification frameworks for cybersecurity.29 Software security best practices
could be mapped in similar fashion. Guidance from industry leaders, such as
Microsoft with its Security Development Lifecycle30 and Google with its
Cloud security best practices,31 can offer candidates for inclusion. Finally,
we believe that the immunity safe harbor should begin with requirements that
apply to all software code; though as the safe harbor develops, it may be
appropriate for certain mandates to be sector specific.

III. UPDATES

The lists for both safe harbors will require frequent revision. We

suggest that the CISA be tasked with ongoing, regular information-gathering
and rulemaking to update the twin safe harbors. The agency should draw on
industry-specific knowledge from expert sources, ranging from federal
agencies to private trade organizations. The Business Software Alliance32 can
offer input about general software development best practices, while the
sector risk management agencies and information sharing and analysis
centers33 will have industry-specific insights. With respect to agencies, the
Department of Health and Human Services34 (in its role enforcing the
Security Rule35 established by the Health Insurance Portability and
Accountability Act of 1996) and the Federal Aviation Administration36 (in
its role ensuring safe air travel37) will have invaluable domain-level expertise
and networks.

Ideally, the CISA would be authorized to conduct both public and
private consultations, followed by an abbreviated notice-and-comment
period, to issue annual updates. This design employs a co-regulatory model,38
in which industry expertise undergirds and strengthens regulatory oversight.
In addition, the CISA should have an emergency capacity to add to the

29 See William McGeveran, The Duty of Data Security, 103 MINN. L. REV. 1135, 1141-93
(2019).
30 See MICROSOFT SECURITY DEVELOPMENT LIFECYCLE (SDL).
31 See Google Cloud security best practices center, GOOGLE.
32 See https://www.bsa.org/reports/updated-bsa-framework-for-secure-software, BSA.
33 See Nat’l Council of ISACS (last visited Feb. 17, 2024).
34 See Security Rule Guidance Material, Dep’t of Health & Human Servs. (last updated
Feb. 16, 2024).
35 See The Security Rule, Dep’t of Health & Human Servs. (last updated Oct. 20, 2022).
36 See LOOKING AHEAD AT THE CYBERSECURITY WORKFORCE AT THE FEDERAL AVIATION
ADMINISTRATION, NAT’L ACADS. OF SCI., ENG’G, AND MED. (2021).
37 See AVIATION CYBERSECURITY: FAA SHOULD FULLY IMPLEMENT KEY PRACTICES TO
STRENGTHEN ITS OVERSIGHT OF AVIONICS RISKS, GOV’T ACCOUNTABILITY OFF. (Oct. 9,
2020).
38 See David Thaw, The Efficacy of Cybersecurity Regulation, 30 GA. ST. U. L. REV. 287
(2014).

https://www.minnesotalawreview.org/wp-content/uploads/2019/02/1McGeveran_FINAL.pdf
https://www.microsoft.com/en-us/securityengineering/sdl
https://cloud.google.com/security/best-practices
https://www.bsa.org/reports/updated-bsa-framework-for-secure-software
https://www.nationalisacs.org/
https://www.hhs.gov/hipaa/for-professionals/security/guidance/index.html?language=es
https://www.hhs.gov/hipaa/for-professionals/security/index.html
https://doi.org/10.17226/26105
https://doi.org/10.17226/26105
https://www.gao.gov/products/gao-21-86
https://www.gao.gov/products/gao-21-86
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2241838

 Shields Up For Software 7

inverse safe harbor when new information about highly risky practices
emerges. Last, the CISA should be empowered with a confidential reporting
function39 so that software developers, testers, and other experts could report
risks and vulnerabilities without fear40 this material could be disclosed in
litigation or used for regulatory enforcement action. The Cybersecurity
Information Sharing Act of 2015 could serve as a useful model in this
regard.41 Its provisions prohibit cybersecurity threat information shared with
the government pursuant to the act from being used by the government as the
basis for a regulatory or enforcement action against the entity that shared the
information. Reporting could be made mandatory in some circumstances, as
it already is for data breaches in many instances.42

IV. RISKS

The safe harbors’ certainty could have undesirable consequences. For

example, software developers may have little incentive to take security
precautions greater than the immunity safe harbor’s requirements, which
could effectively convert those mandates into a ceiling. The liability regime
can mitigate this risk by establishing safe harbor requirements that are
sufficiently rigorous to ensure strong security even if developers treat them
as sufficient rather than necessary.

V. KEY DESIGN CHOICES

Here we highlight six key system design choices for the safe harbors.

A. Deterrence

Selecting requirements for the immunity safe harbor (the shield) is

critical for at least two related reasons. First, if a developer follows a given
requirement, the threat of legal liability for that aspect of the code disappears.
Choosing the correct level of precautions is vital to setting incentives
correctly: If the standard is too demanding, providers may overinvest in it to
the detriment of other security measures; if it is too lax, providers can
immunize themselves despite supplying code with subpar security. Second,
for many software providers, the safe harbor will function as the de facto

39 See Derek E. Bambauer, Ghost in the Network, 162 U. PA. L. REV. 1011, 1086-87 (2014)
(describing similar confidential reporting systems).
40 See Derek E. Bambauer & Oliver Day, The Hacker’s Aegis, 60 EMORY L.J. 1051 (2010).
41 See Brad S. Karp, Federal Guidance on the Cybersecurity Information Sharing Act of
2015, HARV. L. SCHOOL FORUM ON CORP. GOVERNANCE (Mar. 3, 2016).
42 See Data Breaches, PRIVACYRIGHTS.ORG (Jan. 27, 2023).

https://scholarship.law.upenn.edu/cgi/viewcontent.cgi?article=9439&context=penn_law_review
https://scholarlycommons.law.emory.edu/cgi/viewcontent.cgi?article=1330&context=elj
https://corpgov.law.harvard.edu/2016/03/03/federal-guidance-on-the-cybersecurity-information-sharing-act-of-2015/
https://corpgov.law.harvard.edu/2016/03/03/federal-guidance-on-the-cybersecurity-information-sharing-act-of-2015/
https://privacyrights.org/resources/data-breach-notification-2022

8 Shields Up for Software

practical standard of care, because these entities will not want to expose
themselves to legal risk through noncompliance. Practically speaking, the
demands of the immunity safe harbor will be the rules of the road for major
software developers.

B. Legacy Code

Both safe harbors must address legacy code. Software standards and

coding practices change over time, hopefully for the better. We suggest a
bifurcated approach to legacy code. The immunity safe harbor should apply
immediately on adoption to any code, of any age—compliance creates
immunity.

By contrast, the penalties of the inverse safe harbor (sword) should be
implemented with a time lag. Developers did not have notice of these
requirements and their legal effect when designing older code, and they will
need time to bring it up to compliance. Computer science studies43 suggest
the average software life cycle is six to eight years44. We suggest a time lag
for implementation of the inverse safe harbor half as long: three years.
Microsoft, for example, supports a given Service Pack of major fixes to its
Windows operating system versions for 12-24 months, with a standard
support cycle of five years.45 The CISA, or industry-specific security
regulators, should be empowered to grant waivers for up to two additional
years on showing of significant need or hardship. For example, the software
that runs most ATMs in the United States is written in COBOL because that
language runs efficiently on mainframe computers and is optimized for
business functions. However, there are very few remaining COBOL
programmers, making replacing that code difficult; in fact, IBM has begun to
use artificial intelligence capabilities to convert COBOL to Java.46

C. Critical Infrastructure

Software in critical infrastructure might be held to a more demanding

set of best practices to obtain immunity. Specialized treatment for critical
infrastructure systems could drive progress toward greater security in a
context where harm from insecurity would be particularly severe. One
challenge is that the definition of “critical infrastructure” has expanded

43 See M.M. Lehman, Programs, life cycles, and laws of software evolution, 68 PROC. OF
IEEE 1060 (1980).
44 See Sam Williams, A unified theory of software evolution, SALON (Apr. 8, 2002).
45 See Fixed Lifecycle Policy, MICROSOFT (Feb. 21, 2023).
46 See JD Sartrain, The World Depends on 60-Year-Old Code No One Knows Anymore, PC
MAG. (Dec. 1, 2023).

https://doi.org/10.1109/PROC.1980.11805
https://www.salon.com/2002/04/08/lehman_2/
https://learn.microsoft.com/en-us/lifecycle/policies/fixed
https://www.pcmag.com/articles/ibms-plan-to-update-cobol-with-watson

 Shields Up For Software 9

significantly over time:47 A 2003 presidential directive on the subject
included national monuments and icons within its ambit, where they remain
today48. When critical infrastructure is everything, it is nothing.49 It is
possible, if not likely, these more rigorous standards will generate industry
resistance. The more focused definition of a “covered entity” (that is, ones of
higher criticality) under the Cyber Incident Reporting for Critical
Infrastructure Act of 2022 (CIRCIA),50 as currently contemplated by the
CISA pending its final rulemaking,51 could be an appropriate starting point
for specialized best practices if they are deemed necessary. Another possible
starting point would be the “National Critical Functions” as defined by the
CISA.52 These are the functions deemed so vital to the country that their
disruption would have a “debilitating effect” on national security, national
economic security, national public health or safety, or any combination
thereof. However, regulators should evaluate the progress made under the
new software liability regime generally before deciding whether a bespoke
subsystem for critical infrastructure is necessary. If it is, the tailored
immunity safe harbor regime should apply only to the most vital
infrastructure contexts, such as those defined under the CIRCIA.

D. Testing

Determining compliance with the immunity safe harbor is

challenging, but critical. There are essentially three options: evaluation after
the fact (such as post-breach), self-certification, or external testing.

Liability based on ex-post analysis is a core feature of the standard-
of-care approach, so we do not discuss it further here. Self-certification risks
inadequate investigation and concealment, although there are examples of
mechanisms that could reduce these inherent problems (such as the required
certification of a firm’s internal controls53 under Section 404 of the Sarbanes-
Oxley Act,54 backed by potential civil and criminal penalties, or the

47 See Derek E. Bambauer, Conundrum, 96 MINN. L. REV. 584, 643 (2011).
48 See John Moteff & Paul Parfomak, Critical Infrastructure and Key Assets: Definition
and Identification, CRS REPORT FOR CONG. (Oct. 1, 2004).
49 See Will Loomis, Modernizing critical infrastructure protection policy: Seven
perspectives on rewriting PPD21, ATL. COUNCIL (Mar. 22, 2023).
50 Pub. L. No. 117-103, Div. Y, 135 STAT. 49, 1038 (117th Cong. 2022) (to be codified at 6
U.S.C. § 681 et seq.).
51 See Request for Information on the Cyber Incident Reporting for Critical Infrastructure
Act of 2022, 87 FED. REG. 55833 (Sept. 12, 2022).
52 See National Critical Functions Set, CISA (Apr. 2019).
53 See Study of the Sarbanes-Oxley Act of 2002 Section 404 Internal Control over Financial
Reporting Requirements, U.S. SECURITIES & EXCH. COMM’N (Sept. 2009).
54 See Katie Terrell Hanna, Sarbanes-Oxley Act (SOX) Section 404, TECHTARGET (Mar.
2022).

https://www.minnesotalawreview.org/wp-content/uploads/2012/02/Bambauer_MLR.pdf
https://sgp.fas.org/crs/RL32631.pdf
https://sgp.fas.org/crs/RL32631.pdf
https://www.atlanticcouncil.org/content-series/tech-at-the-leading-edge/modernizing-critical-infrastructure-protection-policy-seven-perspectives-on-rewriting-ppd21/
https://www.atlanticcouncil.org/content-series/tech-at-the-leading-edge/modernizing-critical-infrastructure-protection-policy-seven-perspectives-on-rewriting-ppd21/
https://www.federalregister.gov/documents/2022/09/12/2022-19551/request-for-information-on-the-cyber-incident-reporting-for-critical-infrastructure-act-of-2022
https://www.federalregister.gov/documents/2022/09/12/2022-19551/request-for-information-on-the-cyber-incident-reporting-for-critical-infrastructure-act-of-2022
https://www.cisa.gov/sites/default/files/publications/national-critical-functions-set-508.pdf
https://www.sec.gov/news/studies/2009/sox-404_study.pdf
https://www.sec.gov/news/studies/2009/sox-404_study.pdf
https://www.techtarget.com/searchcio/definition/Sarbanes-Oxley-Act-SOX-Section-404

10 Shields Up for Software

Department of Justice’s Civil Cyber-Fraud Initiative55). External testing is
undoubtedly the most effective option, although also likely the most
expensive. However, establishing effective external verification, especially
regarding the independence of auditors, is a significant challenge.

We suggest that developers initially be allowed to choose a
mechanism for compliance determinations. This could generate a market:
from less rigorous and costly self-certification to more searching but
authoritative inspection by an expert private organization, such as
cybersecurity firms or the consulting arms of accounting firms, or a
government entity, such as the CISA or an industry-specific regulator. This
choice itself could create incentives, since the selection of compliance
certification mechanism could provide an honest signal to software
consumers and to regulators about the security of a particular piece of code.
Furthermore, auditing of publicly traded firms, supervised by the Securities
and Exchange Commission, provides a well-working model for this testing
requirement.

If accumulated experience shows that this menu of certification
mechanisms does not provide sufficiently reliable information, government
auditors could step in as the permanent testing body. The CISA might
establish an auditing function, much as the Federal Reserve does for the
banking system.56 In any case, we believe that testing and auditing of code
that seeks immunity is critical to the safe harbor and to the liability regime
itself.

E. Transitional and Other Support

Compliance with the proposed software liability regime will impose

costs on developers, who will not be able to fully capture the benefits of the
resulting improved security. Software security is thus a classic example of a
positive externality.57 This raises two concerns: transition costs, and effects
on small and medium-sized businesses (SMBs), including many open-source
software (OSS) organizations and academic institutions. We propose two
complementary interventions: providing carrots and reducing the size of the
stick.

Greater software security achieved through the proposed legal
liability system will benefit society generally. The software entities that

55 See Cynthia Brumfield, Cyber-related False Claims actions are on the uptick, CSO
(Sept. 18, 2023).
56 See Understanding Federal Reserve Supervision, BD. OF GOVERNORS OF FED. RESERVE
BANK. SYS. (Apr. 27, 2023).
57 See Externalities - The Economic Lowdown Podcast Series, FED. RESERVE BANK OF ST.
LOUIS.

https://www.csoonline.com/article/652720/cyber-related-false-claims-actions-are-on-the-uptick.html
https://www.federalreserve.gov/supervisionreg/understanding-federal-reserve-supervision.htm
https://www.stlouisfed.org/education/economic-lowdown-podcast-series/episode-11-externalities

 Shields Up For Software 11

provide this benefit, potentially at significant cost, will not earn enough
revenues to offset those expenditures. Government intervention is one classic
answer to externality problems. If we want software providers to undertake
costly action that provides broadly shared benefits, government should
subsidize their efforts. We suggest either direct subsidies to software
developers or tax credits for expenses linked to compliance. However, these
costs will diminish with time and may well diminish rapidly as developers
learn to implement best practices (and avoid worst ones) more efficiently. We
propose that transitional financial support from government last for the same
period of time as the exemption for legacy code: three years, with up to two
additional years for cause on an individual basis. The federal government
might also speed replacement of less secure legacy code by expanding
financial support if a software entity moves more quickly to remediate its
existing products. For example, a firm that replaces older, substandard code
in two years rather than the allotted three might be granted funding equal to
the time saved—here, an additional year of support (four years rather than
three).

Similarly, if concerns that the immunity safe harbor creates a ceiling
for security materialize in practice, funding could create incentives for
developers to follow preferred best practices that implement additional
safeguards.58 For example, if the immunity safe harbor did not mandate that
developers use memory-safe languages, additional government funding
could be conditioned on utilizing them.59 Such support also creates incentives
for software developers to implement precautions efficiently based on private
information and expertise.60

Reducing the size of the stick could also help SMBs, including OSS
organizations that are essentially volunteer collectives, by ensuring that they
do not cease development due to liability risks. One mechanism for limiting
disincentives would be to set a liability cap: a maximum amount of damages
for which an SMB could be held responsible, either as a flat ceiling (based
on the size or revenues of the entity) or as a multiple of profits, revenues, or
the like. This creates a risk of under-deterrence, since organizations may not
face liability equal to the potential or expected harm they generate. Thus, we
believe if a liability cap is implemented, it should not apply to software used
exclusively or primarily in critical infrastructure. (We include the limiting
language “exclusively or primarily” because otherwise most significant
software programs, including staples such as operating systems and web

58 See Franklin D. Kramer, Melanie J. Teplinsky, & Robert J. Butler, Cybersecurity for
innovative small and medium enterprises and academia, ATL. COUNCIL (Jan. 25, 2022).
59 See Software Memory Safety, NAT’L SEC’Y AGENCY (Nov. 2022).
60 See Franklin D. Kramer, Melanie J. Teplinsky, & Robert J. Butler, We need a
cybersecurity paradigm change, THE HILL (Feb. 15, 2022).

https://www.atlanticcouncil.org/in-depth-research-reports/report/cybersecurity-for-innovative-small-and-medium-enterprises-and-academia/
https://www.atlanticcouncil.org/in-depth-research-reports/report/cybersecurity-for-innovative-small-and-medium-enterprises-and-academia/
https://media.defense.gov/2022/Nov/10/2003112742/-1/-1/0/CSI_SOFTWARE_MEMORY_SAFETY.PDF
https://thehill.com/opinion/cybersecurity/594296-we-need-a-cybersecurity-paradigm-change/
https://thehill.com/opinion/cybersecurity/594296-we-need-a-cybersecurity-paradigm-change/

12 Shields Up for Software

browsers, would be drawn within this exception, thereby vitiating it.)
However, developers need not face the full social cost of insecurity to have
adequate incentives—a level of potential damages that forces market exit or
bankruptcy is likely to suffice. Liability caps may also be necessary to ensure
the survival of many software SMBs, including startups. Small businesses,
open-source organizations, and academic institutions tend to be wellsprings
of innovation61 and receive support based on that generativity under other
government programs, such as patent policy62.

F. Mechanism

The optimal mechanism to implement the safe harbors, and the

software liability regime more generally, is comprehensive federal
legislation. However, aspects of our proposal could be partially implemented
through alternative means. For example, compliance with the safe harbor
requirements could be a condition of eligibility for certain software and
information technology purchases by the federal government, such as those
imposed via the Federal Acquisition Regulation (FAR)63 and Defense
Federal Acquisition Regulation Supplement (DFARS)64. Or compliance
could be encouraged, yet formally made optional, by use of federal subsidies
or tax credits without implementation of the liability regime. State and local
governments could undertake similar actions. While piecemeal measures are
second best, they would nonetheless improve on the current situation.

61 See Franklin D. Kramer, Melanie J. Teplinsky, & Robert J. Butler, Cybersecurity for
Innovative Small and Medium Enterprises and Academia, ATL. COUNCIL (Jan. 2022).
62 See Reducing Patent Fees for Small Entities and Micro Entities Under the Unleashing
American Innovators Act of 2022, 88 FED. REG. 17147 (Mar. 22, 2023).
63 See Federal Acquisition Regulation: Standardizing Cybersecurity Requirements for
Unclassified Federal Information Systems, 88 FED. REG. 68402 (Oct. 3, 2023).
64 See 48 C.F.R. § 252.204-7012.

https://www.atlanticcouncil.org/wp-content/uploads/2022/01/Cybersecurity-for-Innovative-Small-and-Medium-Enterprises-and-Academia.pdf
https://www.atlanticcouncil.org/wp-content/uploads/2022/01/Cybersecurity-for-Innovative-Small-and-Medium-Enterprises-and-Academia.pdf
https://www.federalregister.gov/documents/2023/03/22/2023-05382/reducing-patent-fees-for-small-entities-and-micro-entities-under-the-unleashing-american-innovators
https://www.federalregister.gov/documents/2023/03/22/2023-05382/reducing-patent-fees-for-small-entities-and-micro-entities-under-the-unleashing-american-innovators
https://www.federalregister.gov/documents/2023/10/03/2023-21327/federal-acquisition-regulation-standardizing-cybersecurity-requirements-for-unclassified-federal
https://www.federalregister.gov/documents/2023/10/03/2023-21327/federal-acquisition-regulation-standardizing-cybersecurity-requirements-for-unclassified-federal

 Shields Up For Software 13

CONCLUSION

Including both an immunity safe harbor (the shield) and an inverse

safe harbor (the sword) in the proposed software liability regime will make
the system more predictable, effective, and efficient. These zones of
immunity and absolute liability complement the standard of care and draw on
distributed information about software design and implementation. Since
under our proposal software entities that comply with the safe harbors would
obtain significant reductions in costs, including expected liability risk, the
requirements imposed would likely shape conduct in a direction that
advances the goals of the National Cybersecurity Strategy.

* * *

	Shields Up For Software
	Recommended Citation

	Introduction
	I. Policy Rationales
	II. Safe Harbors: Automatic Immunity, Automatic Liability
	A. The Sword: Automatic Liability
	B. The Shield: Automatic Immunity

	III. Updates
	IV. Risks
	V. Key Design Choices
	A. Deterrence
	B. Legacy Code
	C. Critical Infrastructure
	D. Testing
	E. Transitional and Other Support
	F. Mechanism

	Conclusion

