
Bucknell University Bucknell University 

Bucknell Digital Commons Bucknell Digital Commons 

Faculty Journal Articles Faculty Scholarship 

2-2024 

Mathematical Model of Oxygen, Nutrient, and Drug Transport in Mathematical Model of Oxygen, Nutrient, and Drug Transport in 

Tuberculosis Granulomas Tuberculosis Granulomas 

Meenal Datta 
Massachusetts General Hospital, mdatta@nd.edu 

McCarthy Kennedy 
University of Notre Dame 

Saeed Siri 
University of Notre Dame 

Laura Via 
National Institutes of Health 

James W. Baish 
Bucknell University, baish@bucknell.edu 

See next page for additional authors 

Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_journ 

 Part of the Biomechanics and Biotransport Commons 

Recommended Citation Recommended Citation 
Datta M, Kennedy M, Siri S, Via LE, Baish JW, Xu L, et al. (2024) Mathematical model of oxygen, nutrient, 
and drug transport in tuberculosis granulomas. PLoS Comput Biol 20(2): e1011847. https://doi.org/
10.1371/journal.pcbi.1011847 

This Article is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It 
has been accepted for inclusion in Faculty Journal Articles by an authorized administrator of Bucknell Digital 
Commons. For more information, please contact dcadmin@bucknell.edu. 

https://digitalcommons.bucknell.edu/
https://digitalcommons.bucknell.edu/fac_journ
https://digitalcommons.bucknell.edu/faculty-scholarship
https://digitalcommons.bucknell.edu/fac_journ?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F2090&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/234?utm_source=digitalcommons.bucknell.edu%2Ffac_journ%2F2090&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcadmin@bucknell.edu


Authors Authors 
Meenal Datta, McCarthy Kennedy, Saeed Siri, Laura Via, James W. Baish, Lei Xu, Veronique Dartois, Clifton 
Barry, and Rakesh Jain 

This article is available at Bucknell Digital Commons: https://digitalcommons.bucknell.edu/fac_journ/2090 

https://digitalcommons.bucknell.edu/fac_journ/2090


RESEARCH ARTICLE
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Abstract

Physiological abnormalities in pulmonary granulomas–pathological hallmarks of tuberculo-

sis (TB)–compromise the transport of oxygen, nutrients, and drugs. In prior studies, we

demonstrated mathematically and experimentally that hypoxia and necrosis emerge in the

granuloma microenvironment (GME) as a direct result of limited oxygen availability. Building

on our initial model of avascular oxygen diffusion, here we explore additional aspects of oxy-

gen transport, including the roles of granuloma vasculature, transcapillary transport, plasma

dilution, and interstitial convection, followed by cellular metabolism. Approximate analytical

solutions are provided for oxygen and glucose concentration, interstitial fluid velocity, inter-

stitial fluid pressure, and the thickness of the convective zone. These predictions are in

agreement with prior experimental results from rabbit TB granulomas and from rat carci-

noma models, which share similar transport limitations. Additional drug delivery predictions

for anti-TB-agents (rifampicin and clofazimine) strikingly match recent spatially-resolved

experimental results from a mouse model of TB. Finally, an approach to improve molecular

transport in granulomas by modulating interstitial hydraulic conductivity is tested in silico.

Author summary

Treatment failure in infectious diseases such as tuberculosis is often the result of inade-

quate drug delivery to the site of infection. In the case of tuberculosis, that site is most

commonly a pulmonary granuloma–an abnormal mass of immune cells that forms in the

lung in response to the body’s attempt to confine and constrain the infection-causing bac-

teria. Within the granuloma interior, blood vessels are non-functional or absent, and the

tissue is dense and fibrous. These physiological abnormalities hinder not only drug deliv-

ery, but also oxygen and nutrient availability to the immune cells fighting off the infection.
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Here, we mathematically examine the basis and scope of the poor delivery of oxygen, glu-

cose, and tuberculosis-fighting drugs in granulomas. Our simulations agree with experi-

mental results from animal models of this disease and reveal potential strategies to

overcome physiological barriers to drug delivery in granulomas.

Introduction

Tuberculosis (TB) afflicts roughly one-third of the global population and causes approximately

1.5 million deaths annually [1]. Its treatment often requires a lengthy drug therapy, in part

because the dormant Mycobacterium tuberculosis bacilli hide within the core of hardened cel-

lular masses in lungs called granulomas that offer a significant barrier to the transport of nutri-

ents and therapeutic drugs. It is, thus, important to understand the flux of small molecules

within granulomas, so that strategies might be devised to overcome transport limitations and

hence improve treatment outcomes.

In order to reach the granuloma-contained bacilli, drugs must travel via the circulatory sys-

tem to the lesion site, exit the granuloma vasculature (i.e., transvascular transport), and tra-

verse the granuloma interior (i.e., interstitial transport) before encountering its target (i.e.,

cellular metabolism) [2]. A related area of study wherein the path of circulating agents to and

through abnormal masses has been thoroughly explored is the field of tumor transport [3,4].

Indeed, TB granulomas and cancerous solid tumors are morphologically similar, resulting in

similar transport limitations that have implications for therapeutic delivery and efficacy. As we

have previously reported, a shared characteristic of these two cellular structures is an abnormal

vasculature that is non-uniformly distributed within the tissue, resulting in avascular, diffu-

sion-dominated regions, and thus, poor oxygen and drug delivery [5].

Within tumors, transvascular transport is compromised by the poorly formed and leaky

tumor vasculature [6]. This negatively impacts interstitial transport, exacerbated further by a

lack of functional lymphatics, which in normal physiological settings serve a crucial role in

homeostatic fluid balance within tissues [7]. Impaired drainage by non-functional lymph ves-

sels combined with abnormal, hyper-permeable blood vessels, results in an overall reduced

pressure difference between the blood vessel and the interstitium [7], which is the driving

force for transcapillary plasma exchange. This increases the interstitial fluid pressure (IFP),

thereby reducing the effectiveness of the convective delivery of oxygen, nutrients, and drugs

from the blood vessels within the core of the tumors, and hence providing a considerable bar-

rier to effective delivery of anti-tumor agents. Although an absence of lymph vessels has not

been confirmed within TB granuloma masses, we posit here that a similar IFP rise occurs

within TB granulomas, as we have previously shown that granuloma blood vessels are structur-

ally and functionally abnormal in the same manner as tumor blood vessels–and can even be

“normalized” using the same targeted pharmacological approaches as for cancer [5].

The rise in IFP toward the core causes a radially outward convective flow of interstitial fluid

velocity (IFV) oozing out at the periphery, thwarting the inward diffusion of drugs and nutri-

ents [8,9]. Interstitial diffusion, particularly of macromolecules, is further impeded by a dense

cellular matrix. This has motivated many studies of tumor transport so that impediments to

anti-cancer therapies can be understood and strategies developed to overcome them [10–14].

Although IFP and IFV have not yet been directly measured within granulomas as they have

been in tumors, we posit that a similar phenomenon occurs in TB, as we have found that other

aspects including vasculature and hypoxia have been found to be analogous between the two

lesion types in our prior experimental work [5].
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The observable physiological abnormalities motivate a better understanding of the disease

etiology and the underlying physicochemical properties that result in granuloma transport

limitations. We first addressed this via a mathematical analysis of interstitial diffusion to quan-

titatively describe the emergence of hypoxic and necrotic granuloma regions as a direct result

of limited oxygen availability [15]. We now build upon these findings to include both convec-
tion and diffusion in the variably perfused regions in the granuloma microenvironment

(GME). Because of the morphological similarities between tumors and granulomas, the sub-

stantial tumor transport modeling and experimental literature was leveraged to guide this

approach; thus, results are shown for both abnormal masses.

Materials and methods

The description here is limited to the physiological basis (Fig 1) and main equations. The com-

plete model derivation, assumptions, boundary conditions, parameter values, analytical solu-

tions, and additional findings are provided in S1 Text. Results were plotted in Figs 2–7 for IFP

(from Eq S30), IFV (from Eq S33), and chemical species concentrations (from Eq S14) from the

main equations described below in Model Formulation and Assumptions and in S1 Text, using

the built-in function “NDSolve” in Mathematica (Wolfram Research Inc., Champaign, IL).

Model formulation and assumptions

We assume here that the transcapillary exchange of oxygen is limited to an outer thoroughly

vascularized shell [5,15]. The rest of the GME is considered as completely avascular, thus

allowing the assumptions of: 1) no extravasation, and 2) only diffusive (and no convective)

transport therein (Fig 1). (In reality, the blood microvessel density declines more gradually

[5], instead of an abrupt transition between well-perfused and inner regions assumed in our

shell-core model; see S1 Fig). The main equations governing the figures shown in the Results

are as follows (see S1 Text for the governing equations and derivation).

Transport of oxygen and other small molecules in an idealized, spherical, vascularized gran-

uloma can be written as a one-dimensional (radial) mass balance in the interstitial space

(equivalent to Eq S11 in S1 Text)
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Extravasation and Dilution

ðEqIÞ

Where, for any chemical species j (e.g., oxygen, a nutrient, or a drug), its concentration is Cj,
which varies with respect to time (t) and radial location (r) within the idealized granuloma

(Fig 1). Compared to our prior computational model (which only considered diffusion and

reaction), we now include convection, extravasation, and dilution terms which we describe in

detail here. On the left-hand side: 1) the accumulation term becomes 0 assuming steady-state

(i.e., no accumulation of oxygen in the GME), and 2) the convection (second term on the left;

vr is the radial interstitial fluid velocity) and diffusion (third term on the left; Dj
e is the effective

diffusion coefficient of species j in the interstitial fluid) terms account for interstitial transport

of species j. On the right-hand side: 3) the reaction term is assumed to follow Michaelis-Men-

ten kinetics of cellular consumption (e.g., of oxygen, where k is the first-order rate constant for

species consumption and K is the inverse of the half-saturation Michaelis-Menten constant)

[15], while 4) the last term includes transvascular transport (i.e., extravasation) and plasma

dilution (where Lp is the hydraulic conductivity of the membrane-like blood vessel wall, av is

the volumetric vessel surface area in the tissue, pve is the effective vessel pressure, pi is the
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interstitial fluid pressure, and Cj,b is the bulk concentration of the species j in plasma). In

dimensionless form (dimensionless terms defined in Eq S12 in S1 Text), the steady-state mass

balance (in terms of dimensionless species concentration f over dimensionless radial distance

ξ) reduces to (equivalent to Eq S14 in S1 Text)

d2f
dx2
� ðPeR0

Þn �
2

x

� �
df
dx
� �

2 f
1þ wf

� �

þ a2oð Þ% 1 � fð Þ ¼ 0 ðEqIIÞ

Fig 1. Physiological basis for compartmentalized transport models in TB granulomas. Schematic depicting regions

and consequences of compromised oxygen transport in idealized spherical granulomas, including 1) a vascularized

region where convection dominates and plasma filtration from blood vessels occurs, and 2) an inner region lacking

blood vessels where diffusion dominates, and hypoxia and necrosis result. (Adapted from [15]).

https://doi.org/10.1371/journal.pcbi.1011847.g001
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where Pe is the Péclet number, i.e., the ratio of convective to diffusive transport, ν is the dimen-

sionless radial interstitial velocity, ϕ2 is the Thiele modulus, i.e., the ratio of reaction to diffu-

sion rates, χ is the dimensionless Michaelis-Menten kinetic factor, α is the dimensionless

modulus (i.e., granuloma size), ω is the dimensionless diffusion rate, and % is the relative

extravasation/dilution rate.

Fig 2. Granuloma IFP estimates and comparisons to tumor data. (A) Predicted dimensionless IFP profiles within

granulomas from the uniform perfusion case for varying values of dimensionless granuloma size, α0 = 1–15. (B) Fitting

the theoretical IFP estimates (Eq III with a fitted modulus a2
0
¼ 24:4 [9], see S1 Text) to experimentally measured

tumor IFP data (from human neuroblastoma tumor models grown in immunosuppressed rats, ~2 cm in diameter [9])

demonstrates the applicability of the uniform perfusion model to physiological IFP levels with a single fitted

parameter.

https://doi.org/10.1371/journal.pcbi.1011847.g002
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Explicit expressions for interstitial fluid pressure and velocity derive from the steady-state

continuity equation, subject to suitable assumptions and boundary conditions (Eq S14 and

S21) as described in the S1 Text. Upon testing multiple perfusion distribution scenarios (S1–

S3 Figs), the idealized case of uniform perfusion was selected as the final form used here, given

the striking similarity of its analytical solutions to the physiological reality of non-uniform per-

fusion (S3 Fig). In dimensionless forms, the radial IFP and IFV are, respectively (equivalent to

Fig 3. Granuloma IFV estimates and comparisons to tumor data. (A) Predicted dimensionless IFV profiles within

granulomas from the uniform perfusion case for varying values of dimensionless granuloma size, α0 = 1–15. (B) Fitting

the theoretical IFV estimates (Eq IV with a fitted modulus a2
0
¼ 24:4 [9], see S1 Text) to experimentally measured

tumor IFV data [9] demonstrates the applicability of the uniform perfusion model to physiological IFV levels with a

single fitted parameter.

https://doi.org/10.1371/journal.pcbi.1011847.g003
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Eqs S30 and S33 in S1 Text)
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1

x

sinhða0xÞ
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ðEqIIIÞ
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sinh a0

�
sinhða0xÞ

sinh a0

� �

ðEqIVÞ

where ψ is dimensionless IFP, ν is dimensionless IFV, and α0 is the dimensionless form of the

outer granuloma radius (i.e., maximum dimensionless modulus).

Experimental data and parameter values

To the best of our knowledge, although IFP and IFV are well-studied in cancerous tumors,

they have thus far not been theoretically investigated nor experimentally measured in TB gran-

ulomas. This means that any corroboration of the theoretical results must depend on corre-

sponding experimental results for tumors. We predict TB granuloma pressure and velocity

profiles in the Results, hypothesizing that granuloma properties are similar to those of tumors

(Eq S39 and Eq S41 in S1 Text) based on our previous observations of morphological and func-

tional similarities between cancerous tumors and TB granulomas in experiments [5]. Using

tumor parameter values, the dimensionless granuloma size (i.e., the modulus α) should be in

the range of α0 = 1−15 in our simulations, as a common granuloma diameter in the rabbit

Fig 4. Granuloma convective zone thickness estimates and comparisons to experimental granuloma data.

Dimensionless convective zone thickness, λΔ (lines), as a function of dimensionless granuloma size (0< α0 < 30) for

varying values of dimensionless limiting perfusion velocity,�D=�R0
(as defined in the S1 Text), in comparison to

experimental data from rabbit TB granulomas [15] (gray dots).

https://doi.org/10.1371/journal.pcbi.1011847.g004

PLOS COMPUTATIONAL BIOLOGY Biological transport in tuberculosis granulomas

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011847 February 9, 2024 7 / 18

https://doi.org/10.1371/journal.pcbi.1011847.g004
https://doi.org/10.1371/journal.pcbi.1011847


model is 2R0 = 0.5−5 mm (although they can coalesce into larger lesions) [5,16]. We compare

these simulations to IFP/IFV data from tumor models [9]. The oxygen consumption Michae-

lis-Menten parameters are utilized based on our previous work in rabbit TB granulomas [15].

Drug delivery data from mouse models of TB [17] are compared to our simulations, with esti-

mated tissue diffusion coefficients informed by anti-TB drug uptake in rats [18]. All parame-

ters are summarized in S1 Table and all raw and predicted drug delivery data and calculated

mean square error (MSE) values are in S2 Table.

Fig 5. Granuloma oxygen and glucose profile estimates. Dimensionless concentration, f, of oxygen (A) and glucose

(B) as a function of dimensionless granuloma radius, ξ, for increasing values of dimensionless granuloma size (the

modulus α0).

https://doi.org/10.1371/journal.pcbi.1011847.g005
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Results

Interstitial Fluid Pressure and Velocity Radial Profiles

We and others have experimentally and theoretically investigated the interstitial fluid pressure

(IFP) in tumors [8,19–26]. We hypothesize here that there is an analogous IFP rise within TB

granulomas, which has not yet been experimentally investigated. Theoretical IFP (Fig 2A) and

IFV (Fig 3A) profiles are shown for varying values of the modulus α. IFP rises with distance

into the granuloma, while effusive IFV follows an opposite trend and decreases towards the

interior of the granuloma. We theorize in analogy to tumors [8] that i) the plasma that leaks

out of the abnormal blood vessels as previously described [5] causes this rise in the IFP towards

Fig 6. Effect of tissue hydraulic conductivity on oxygen and glucose delivery. (A) Oxygen and (B) glucose

concentration profiles for base case parameter values (Eq S39, see S1 Text) of tissue hydraulic conductivity Kv
increased by a factor of 10 for small (α0 = 3.5) and large (α0 = 20) granulomas.

https://doi.org/10.1371/journal.pcbi.1011847.g006
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Fig 7. Estimates of drug delivery and comparisons to rifampicin and clofazimine distribution data in

experimental granulomas. Dimensionless concentration (lines), f, of rifampicin (A; RIF) and clofazimine (B; CFZ) as

a function of dimensionless granuloma radius, ξ, for increasing values of dimensionless granuloma size (the modulus

α0) in comparison to experimental data from mouse TB granulomas [17] (dots). The mean squared error (MSE, see Eq

S44) between the theoretical and experimental results for rifampicin and clofazimine are 0.012 and 0.010, respectively

(see S2 Table for all raw data, predicted data, and MSE values).

https://doi.org/10.1371/journal.pcbi.1011847.g007
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the granuloma core and ii) this is exacerbated by a paucity of functional lymph vessels As IFP

rises, the pressure drop declines until it eventually becomes zero. This is given by the Starling

equation that accounts for the plasma flux across the microvessel walls between i) the effective

vessel pressure (pv,e� pv−σS(πv−πi)), where pv is the vascular pressure (mmHg), πv and πi are

the vascular and interstitial osmotic pressures (mmHg), respectively, and σS is the Staverman

reflection coefficient) and ii) the IFP (pi, mmHg). This is especially apparent for larger granu-

lomas (Fig 2A, α0>10), where the IFP approaches the effective vessel pressure rapidly with

increasing distance towards the core.

As a result of the reducing pressure differential, the effusive (or filtration) flux of plasma,

ϕB, from the blood vessels (bearing oxygen, nutrients, and drugs) declines in the inward radial

direction eventually becoming zero. Consequently, at this point, there is no further source for

oxygen as well as other nutrients or small molecules/drugs, so that beyond this point the radial

flux of these entities is entirely by their diffusion along with any interstitial (albeit compro-

mised) fluid convection. Thus, IFV drops and stagnates in the core; this is especially apparent

for large granulomas (Fig 3A, α0>10) where the IFV drops to zero rapidly with increasing dis-

tance into the granuloma. At the periphery of the granuloma (r! R0) we may infer that, as in

tumors [8], the IFV is directed outwards, which would further impede transport in the GME.

Model comparisons to experimental IFP/IFV measurements

DiResta et al. measured IFP and IFV in human neuroblastoma tumor models in rats [9]. Our

predictive models of IFP (Fig 2B) and IFV (Fig 3B) align well with these experimental mea-

surements (despite large error bars from the in-situ measurements) using a fitted value of α0 =

4.95, analogous to S3 Fig. Thus, the simple analytical solution for the uniform perfusion case is

strikingly accurate in predicting in vivo IFP/IFV levels, even in large lesions that are presum-

ably non-uniformly perfused and likely contain hypoxic and necrotic regions.

Convective zone thickness

As depicted schematically in Fig 1, convection dominates in the vascularized, well-perfused

outer rim of the GME, i.e., the region closest to the normal lung parenchyma. We can estimate

the thickness of this rim (Δ = R0−RD, Fig 1) by assuming that within this shell, the pressure

gradient becomes small enough that convective velocity approaches 0, representing the turning

point at which diffusion dominates (i.e., this can be defined as the limited perfusion velocity;

see S1 Text). Utilizing this assumption in Eq IV (equivalent to Eq S33 from the S1 Text), the

dimensionless thickness of the convection zone, λΔ, is obtained and plotted vs. granuloma size

for varying limited perfusion velocities (Fig 4). For small granulomas (α0<5), the majority of

the GME is predicted to be well-vascularized; this aligns with experimental observations

[5,16]. For 5<α0<10, the convective zone thickness drastically declines with increasing granu-

loma size until, at α0>10, it plateaus. This indicates that for large granulomas, the convection

zone occupies less than half of the total mass thickness and the thickness of the convection

zone becomes independent of total granuloma size. Utilizing our previously collected data for

convective zone thickness from the rabbit TB model [15], in conjunction with theoretical

parameter estimates from tumors (Eq S39 in S1 Text), we observe good agreement between

our predicted and experimental results.

Oxygen and glucose concentration profiles

Expanding our previous modeling of avascular granulomas limited to diffusive transport com-

bined with cellular consumption [15], our current model predicts oxygen concentration pro-

files while accounting for transcapillary exchange, plasma dilution, and interstitial convection
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and diffusion (Fig 5A). As expected, oxygen concentration drops quickly with distance into

the granuloma core with increasing granuloma size. For α0>10, oxygen is predicted to be fully

consumed rapidly within the GME; in reality, we know from prior measurements that necrosis

emerges due to cell death at oxygen levels nearing–but not reaching–anoxia [5,16]. Similar

profiles result from the modeling of glucose transport (Fig 5B)–a slightly larger chemical spe-

cies with poorer diffusivity (S1 Table) than molecular oxygen–resulting in more rapid con-

sumption of this nutrient particularly for α0>10, wherein the central GME is predicted to be

devoid of glucose.

Overcoming interstitial transport barriers

The effect of tissue hydraulic conductivity on oxygen transport can be observed via in silico
perturbation, whereby the simulated dimensionless oxygen concentration profile within the

GME is shown for when the estimated base case parameter of tissue hydraulic conductivity Kv
(Eq S39 in S1 Text) is increased by a factor of 10 for small (α0 = 3.5) and large (α0 = 20) granu-

lomas (Fig 6A). For both small and large granulomas, increasing hydraulic conductivity does

not significantly affect oxygen concentration. However, in the large granuloma, the base value

hydraulic conductivity value results in the glucose concentration dropping quickly to zero

around a dimensionless radius value of 0.5 (Fig 6B). This implies that this nutrient is theoreti-

cally absent from the central GME under base tissue hydraulic conductivity. Significantly

increasing tissue hydraulic conductivity (e.g., by drug treatment), results in glucose not being

fully consumed before reaching the granuloma core. Indeed, a paucity of glucose is no longer

predicted to emerge even in this very large simulated granuloma with the improvement in

hydraulic conductivity, which suggests improved glucose distribution in the granuloma core.

Model comparisons to experimental drug delivery measurements in

granulomas

Finally, this model can be applied not only to oxygen and nutrient delivery, but to anti-TB

drug delivery as well. In a recent study [17], Kokesch-Himmelreich et al. measured drug deliv-

ery of rifampicin (RIF; molecular weight = 823 g/mol), clofazimine (CFZ; molecular

weight = 473 g/mol), and other antibacterial agents using the spatially-resolved matrix-assisted

laser desorption/ionization mass spectrometry imaging (MALDI-MSI) method in murine TB

granulomas. We extracted and non-dimensionalized the spatially-resolved drug delivery data

for RIF and CFZ in four granulomas (all R0<0.5 mm, α0<5), from this paper [17]. Strikingly,

our simple mass transport model accurately predicts the delivery of these two anti-TB agents,

with low MSE values of ~0.01 for both drugs (Fig 7 and S2 Table).

Discussion

A detailed understanding of the drug transport barriers within granulomas can illuminate

causes underlying the necessary prolonged treatment for TB, and suggest approaches to allevi-

ate these physiological abnormalities of the GME that hinder transport. Thus, analogous

modeling approaches from cancer research are applied here, based on the structural and mor-

phological similarities between TB granulomas and tumors [5] despite the obvious differences

between the two disease etiologies. Indeed, common modeling approaches for tumors that

have been explored in TB granulomas by us and others include reaction-diffusion [15,27], con-

tinuum [28,29], agent-based [30–32], and multiscale [33–35] models, and vascular network/

angiogenesis models from tumors [36,37] are likely to be applied to TB granulomas in the

future. The approximate analytical solution we obtained previously [15], for the case of diffu-

sion-limited reaction, was able to predict the size of hypoxic and necrotic regions in good
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agreement with our experimental results from the rabbit TB model. Here, we extended our

mathematical framework to include the effect of convective transport within the GME as a

result of its abnormal vasculature, and to determine its impact on oxygen, nutrient, and drug

delivery.

Model features, findings, and limitations

Transport phenomena including pressure rise, velocity profile, and interstitial diffusion, are

dependent on the structural properties of the GME. We assume that the TB granuloma struc-

ture is similar to that of a tumor [21], which is comprised of three regions [5,15]: 1) the vascu-

lar region, limited to the periphery and devoid of functional lymphatic vessels; 2) the cellular

region containing the cells; and 3) the interstitial (extra-cellular) space that contains an extra-

cellular matrix network that imparts mechanical rigidity, bathed in interstitial fluid. We have

shown previously that granuloma vessels are structurally and functionally abnormal, leading

to inhomogeneous transport [5]. In tumors, this aberrant vasculature compromises transvas-

cular and interstitial convection due to high vessel permeability and an increase in IFP from

plasma leakage and a lack of functional lymphatics. Together, these effects result in an outward

convective interstitial velocity that opposes inward transport. By assuming that the GME reca-

pitulates these transvascular and interstitial transport limitations seen in tumors based on our

prior experimental evidence [5], the objective of our modeling effort was to predict these

parameters and to indicate fruitful directions for future experimental investigations.

We provide here a comprehensive theoretical model of oxygen transport and reaction

within a granuloma (or a tumor) that accounts for non-uniform vasculature, transcapillary

exchange, plasma dilution, and interstitial convection and diffusion. Three limiting models of

vasculature distribution were considered simultaneously for the first time: a model of uniform

MVD distribution, a shell-core model, and a non-uniform MVD distribution model. Based on

our analyses for IFP and IFV, we can conclude that the simpler case of uniform MVD distribu-

tion is adequate for predicting species transport and reaction. In contrast to earlier tumor IFP/

IFV models [8,19], our model accounts for plasma dilution (which is often excluded in the lit-

erature as negligible). Our mass balance formulation accounts for plasma extravasation from

blood vessels not only as a source for oxygen, nutrients, and drugs, but as a diluent as well.

Indeed, our model of interstitial transport was found to be in accord with tumor experiments.

Predictions of convective zone thickness were found to be in agreement with experimental

data from granulomas. The model was also utilized to theoretically investigate the effect of

enhanced tissue hydraulic conductivity for overcoming transport barriers. Finally, our model

accurately predicted the delivery of two anti-TB agents–rifampicin (first-line therapy) and clo-

fazimine (second-line therapy)–with surprisingly good agreement given the simplicity of the

mathematics describing the underlying transport phenomena.

In short, this model sheds light on the limitations of oxygen, nutrient, and drug transport

within granulomas and tumors, and how such barriers might be overcome. For example, it

predicts an IFP rise towards the granuloma core as a result of the known abnormal vasculature.

This in turn results in a reduced or even stagnated IFV, compromising interstitial convective

transport and thus depriving the granuloma core–where the bacilli hide–of oxygen, nutrients,

and drugs. Our model predicts an absence of glucose in the granuloma core; this warrants

experimental confirmation. The persistent bacteria in the hypoxic and necrotic core are able to

utilize alternative carbon sources (e.g., lactate) [38]; thus, these metabolic alterations may pres-

ent targetable vulnerabilities for therapeutic strategies. Modulating the interstitial hydraulic

conductivity, e.g., with an agent targeting the interstitial components (such as losartan, a

widely-prescribed, safe and inexpensive anti-hypertensive drug [39]), could prove to be an
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effective host-directed therapeutic strategy to modulate the GME and improve drug delivery

and efficacy.

There are some limitations to the model. As described in detail in S1 Text, the non-uniform

and/or shell-core models of perfusion better represent the physiological reality of blood vessel

distribution in granulomas than the uniform perfusion model. However, the simpler limiting

case of uniform perfusion advantageously allows for analytical solutions that 1) do not require

artificially defining regions where convection or diffusion dominate, 2) are in good agreement

when fitted with the non-uniform perfusion numerical solutions, and, most importantly, 3)

accurately predict IFP/IFV experimental data. We also ignore cell membrane transport as a

factor in the mass balance equation; however, we account for the cellular reaction of the species

(i.e., oxygen consumption). Because we do not have experimental parameter measurements

for TB granulomas (e.g., membrane and interstitial hydraulic conductivities) we apply tumor

parameter values to the model given the similarities between granulomas and tumors, based

on our previous experimental and computational observations regarding shared morphologi-

cal and functional characteristics of these diseased masses (including vascular density, archi-

tecture, and perfusion) [5,15]. We also do not consider variable oxygen/nutrient/drug uptake

rates by different types of immune cells, e.g., macrophages vs. T cells, which we have recently

demonstrated experimentally can contribute to heterogeneous drug distribution within the

GME [40]. Finally, because we do not consider the transport of large molecules here, we ignore

any retardation factor. Indeed, because anti-TB agents often bind to proteins such as albumin

[41], it may become necessary to model the unbound vs. bound drug fractions in future

considerations.

Future directions

To the best of our knowledge, we provide here the first consideration of convective transport

in the GME, and initial predictions for IFP and IFV profiles and their associated consequences

in TB granulomas. To further support these findings, it should be experimentally confirmed

whether–as in tumors–TB granulomas lack functional lymphatics. It should be noted that the

first predictions of tumor IFP/IFV [8] preceded, yet accurately predicted, the first experimental

measurements of these parameters by a number of years [42–47]. We posit that future IFP/IFV

measurements in TB granulomas will similarly confirm our predictions here. Continued com-

parison of tumors and TB granulomas via modeling may reveal novel similarities and differ-

ences between these two types of masses, particularly with regards to immune state and

function. Furthermore, our findings support future testing of host-directed therapies that can

modulate the GME to overcome transport barriers and improve treatment outcomes for this

virulent and deadly disease. Indeed, following recent efforts by others to computationally opti-

mize the implementation of multiple antibiotic treatments [48], future modeling efforts should

provide rational basis for multi-drug dosing and scheduling.
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S1. Species Mass Balance in Granulomas and Tumors 6 

A blood-borne molecular nutrient or drug species undergoes the following sequential 7 

transport steps (1, 2) within a granuloma or a tumor: 1) extravasation across the capillary 8 

wall; 2) transport through the interstitial space via convection and diffusion; 3) transport 9 

across a cell membrane; and 4) metabolic reaction within the cell. We neglect the cell 10 

membrane transfer resistance here, but account for the cellular reaction of a species. 11 

Further, for larger molecules such as monoclonal antibodies or proteins, not considered 12 

here, there is specific or non-specific binding (3). 13 

We adopt a coarse-grained continuum approach, and start with the molar form of 14 

unsteady-state mass balance of species j (oxygen, nutrient, or a drug) within the 15 

granuloma or tumor (4), i.e.,  16 

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕

+ ∇ ∙ N𝑗𝑗 = 𝑅𝑅𝑗𝑗 (Eq.S1) 

where 𝑅𝑅𝑗𝑗 is the volumetric source term for species j. The flux of a species j, in general, 17 

contains both convective and diffusive terms, which for dilute solutions is of the form (4) 18 

N𝑗𝑗 = 𝓿𝓿𝐶𝐶𝑗𝑗 − 𝐷𝐷𝑗𝑗𝑒𝑒∇𝐶𝐶𝑗𝑗 (Eq.S2) 



The effective diffusivity 𝐷𝐷𝑗𝑗𝑒𝑒 of a molecule in the interstitial region may be estimated from 19 

its molecular diffusion coefficient 𝐷𝐷𝑗𝑗 via the relation 𝐷𝐷𝑗𝑗𝑒𝑒 = (𝜀𝜀/𝜏𝜏)𝐷𝐷𝑗𝑗 (5), where 𝜀𝜀 is the 20 

volume fraction (or void fraction) of interstitial space among the cells, and 𝜏𝜏 is the so-21 

called tortuosity factor, accounting for the tortuous diffusion paths. This is based on the 22 

assumption that the transport is limited to the interstitial domain. This is not true for 23 

molecules such as oxygen, which might well diffuse through the cellular region as well. 24 

Further, the tortuosity factor in turn can be related to the interstitial volume fraction. For 25 

example, the random pore model suggests 𝜏𝜏 = 1/𝜀𝜀. More generally, 𝜏𝜏 = 1/𝜀𝜀𝑞𝑞, where, q 26 

= 0.5 refers to the so-called Bruggeman exponent. Other factors besides the structure, 27 

e.g., partition coefficient, or solubility, can also affect the effective diffusion coefficient of 28 

a molecule (1, 6). Finally, since we are not considering large molecules, we ignore any 29 

retardation factor (1). 30 

Combining the last two relations and carrying out the indicated differential operation 31 

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝓿𝓿 ∙ ∇𝐶𝐶𝑗𝑗 + 𝐶𝐶𝑗𝑗∇ ∙ 𝓿𝓿 − 𝐷𝐷𝑗𝑗𝑒𝑒∇2𝐶𝐶𝑗𝑗 = 𝑅𝑅𝑗𝑗 (Eq.S3) 

The convective term itself is, thus, comprised of two parts: 1) the usual convective term 32 

𝓿𝓿 ∙ ∇𝐶𝐶𝑗𝑗, and 2) the dilution term 𝐶𝐶𝑗𝑗∇ ∙ 𝓿𝓿 containing the divergence of fluid velocity, ∇ ∙ 𝓿𝓿. 33 

For transport in incompressible fluids (liquids), the second term is typically zero, since 34 

from the equation of continuity ∇ ∙ 𝓿𝓿 = 0 (4). However, for a granuloma or a tumor 35 

comprising of blood and lymphatic vessels that provide a net source/sink term for the 36 

fluid, the equation of continuity, i.e., overall mass balance, instead takes the form (3, 5) 37 

∇ ∙ 𝓿𝓿 = 𝜑𝜑𝐵𝐵(𝐫𝐫) − 𝜑𝜑𝐿𝐿(𝐫𝐫) (Eq.S4) 



where 𝜑𝜑𝐵𝐵(𝐫𝐫) (s−1) is the position (𝐫𝐫) dependent interstitial fluid source term i.e., the net 38 

volumetric rate of plasma extravasated by blood vessels per unit volume of the granuloma 39 

or tumor, while 𝜑𝜑𝐿𝐿(𝐫𝐫) is the corresponding term for the drainage of the interstitial fluid by 40 

lymphatics. In biological tissues these terms represent the rate of plasma flow from blood 41 

vessels into the interstitial space, and from interstitial space into the lymph vessels, 42 

respectively (see Reference (5) for schematic representations).  43 

The distribution of these vessels is well-known to vary with location r, within the tumor 44 

(3), and has also been shown to similarly vary within granulomas (8). In the case of the 45 

diffusion-limited region (denoted by subscript D), where there is a complete absence of 46 

such vessels, Eq.S4 reduces to the common form of the equation of continuity, ∇ ∙ 𝓿𝓿 = 0.  47 

Combining the last two relations, the mass balance in granulomas or tumors takes the 48 

form 49 

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝓿𝓿 ∙ 𝛁𝛁𝐶𝐶𝑗𝑗 − 𝐷𝐷𝑗𝑗𝑒𝑒∇2𝐶𝐶𝑗𝑗 = 𝑅𝑅𝑗𝑗 − 𝐶𝐶𝑗𝑗(𝜑𝜑𝐵𝐵 − 𝜑𝜑𝐿𝐿) (Eq.S5) 

Further, in the above, the net rate of the species “source” term 𝑅𝑅𝑗𝑗 within the tissue is a 50 

sum of two terms: 1) that due to reaction, and 2) that due to the fluid source term 51 

𝑅𝑅𝑗𝑗 = −
𝑘𝑘𝐶𝐶𝑗𝑗

1 + 𝐾𝐾𝐶𝐶𝑗𝑗
+ 𝜑𝜑𝐵𝐵𝐶𝐶𝑗𝑗,𝑏𝑏 

(Eq.S6) 

where the metabolic reaction rate term is assumed of the Michaelis-Menten (MM) form, 52 

as is common for many cellular reactions, with a negative sign denoting “consumption,” 53 

rather than generation, while the source term of species j from the blood vessels is 𝜑𝜑𝐵𝐵𝐶𝐶𝑗𝑗,𝑏𝑏, 54 

where 𝐶𝐶𝑗𝑗,𝑏𝑏 is the concentration of the species j in the bulk plasma. The MM kinetics 55 

appropriately reduce to first-order when 𝐾𝐾𝐶𝐶𝑗𝑗 ≪ 1, with a pseudo-first order rate constant 56 



𝑘𝑘, while it reduces to zero-order for the case when 𝐾𝐾𝐶𝐶𝑗𝑗 ≫ 1, when kinetic rate is equal to 57 

𝑘𝑘/𝐾𝐾 (9). In terms of the more traditional form, the MM kinetics are written as: 𝑟𝑟𝑗𝑗 =58 

𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶𝑗𝑗/(𝐾𝐾𝑀𝑀 + 𝐶𝐶𝑗𝑗), where the MM parameters, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑘𝑘/𝐾𝐾, and the MM constant, 𝐾𝐾𝑀𝑀 =59 

1/𝐾𝐾. In our recent publication (9), further, only the first term in Eq.S6 was included, as 60 

applicable to the diffusion-dominated quiescent inner region where there are no blood 61 

vessels. This assumption is relaxed here. 62 

Combining the last two relations 63 

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝓿𝓿 ∙ ∇𝐶𝐶𝑗𝑗 − 𝐷𝐷𝑗𝑗𝑒𝑒∇2𝐶𝐶𝑗𝑗 = −
𝑘𝑘𝐶𝐶𝑗𝑗

1 + 𝐾𝐾𝐶𝐶𝑗𝑗
+ 𝜑𝜑𝐵𝐵�𝐶𝐶𝑗𝑗,𝑏𝑏 − 𝐶𝐶𝑗𝑗� + 𝜑𝜑𝐿𝐿𝐶𝐶𝑗𝑗 (Eq.S7) 

which in one-dimensional (radial) form 64 

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝓋𝓋𝑟𝑟
𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝑟𝑟

− 𝐷𝐷𝑗𝑗𝑒𝑒
1
𝑟𝑟2

𝜕𝜕
𝜕𝜕𝑟𝑟
�𝑟𝑟2

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝑟𝑟
� = −

𝑘𝑘𝐶𝐶𝑗𝑗
1 + 𝐾𝐾𝐶𝐶𝑗𝑗

+ 𝜑𝜑𝐵𝐵�𝐶𝐶𝑗𝑗,𝑏𝑏 − 𝐶𝐶𝑗𝑗� + 𝜑𝜑𝐿𝐿𝐶𝐶𝑗𝑗 (Eq.S8) 

This formulation is a bit different from the corresponding mass balance equations in the 65 

literature, because it accounts for the effect of extravasation not only as a source for 66 

species j but also as a diluent, latter by virtue of the use of equation of continuity, Eq.S4. 67 

In solid tumors, further, there are few functional lymph vessels, and so that 𝜑𝜑𝐿𝐿 → 0 (1). 68 

Even if this were not completely true, certainly 𝜑𝜑𝐵𝐵 ≫ 𝜑𝜑𝐿𝐿, as blood vessels are leakier in 69 

tumors, so that 𝜑𝜑𝐿𝐿 may be neglected. We make the same assumption here for TB 70 

granulomas. Further, carrying out the indicated differentiation in the Laplacian term, the 71 

species mass balance reduces to 72 

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝓋𝓋𝑟𝑟
𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝑟𝑟

− 𝐷𝐷𝑗𝑗𝑒𝑒 �
2
𝑟𝑟
𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝑟𝑟

+
𝜕𝜕2𝐶𝐶𝑗𝑗
𝜕𝜕𝑟𝑟2

� = −
𝑘𝑘𝐶𝐶𝑗𝑗

1 + 𝐾𝐾𝐶𝐶𝑗𝑗
+ 𝜑𝜑𝐵𝐵�𝐶𝐶𝑗𝑗,𝑏𝑏 − 𝐶𝐶𝑗𝑗� (Eq.S9) 



The plasma flux across the microvessel walls is further given by the Starling equation (3, 73 

5)  74 

𝜑𝜑𝐵𝐵 ≡
𝐽𝐽𝑣𝑣
𝑉𝑉

= 𝐿𝐿𝑝𝑝𝑎𝑎𝑣𝑣{(𝑝𝑝𝑣𝑣 − 𝑝𝑝𝑖𝑖) − 𝜎𝜎𝑆𝑆(𝜋𝜋𝑣𝑣 − 𝜋𝜋𝑖𝑖)} = 𝐿𝐿𝑝𝑝𝑎𝑎𝑣𝑣(𝑝𝑝𝑣𝑣,𝑒𝑒 − 𝑝𝑝𝑖𝑖) (Eq.S10) 

where 𝐽𝐽𝑣𝑣/𝑉𝑉 is the volumetric flow rate out of the vasculature per unit volume of tissue, 𝐿𝐿𝑝𝑝 75 

is the membrane hydraulic conductivity of vessels (cm4/s·mmHg) within the granuloma, 76 

𝑎𝑎𝑣𝑣(𝑟𝑟) is the surface area of the vessels/volume of tissue (cm2/cm3), i.e., S/V, which varies 77 

with location r, owing to the heterogeneous nature of blood vessel distribution in 78 

granulomas or tumors. For example, 𝑎𝑎𝑣𝑣 = 𝑁𝑁𝑣𝑣(𝜋𝜋𝑑𝑑𝑣𝑣)𝑙𝑙𝑣𝑣, where 𝑁𝑁𝑣𝑣(𝑟𝑟) is the number density 79 

of microvessels/volume, and 𝑑𝑑𝑣𝑣 and 𝑙𝑙𝑣𝑣 are their average diameter and length. 80 

Further, 𝑝𝑝𝑣𝑣 and 𝑝𝑝𝑖𝑖 are the vascular and interstitial pressures (mmHg), respectively, while 81 

𝜋𝜋𝑣𝑣  and 𝜋𝜋𝑖𝑖  are the corresponding osmotic pressures (mmHg), and 𝜎𝜎𝑆𝑆 is the Staverman 82 

reflection coefficient. In other words, the driving force is the hydrostatic pressure 83 

difference minus the osmotic pressure difference between the inside of the vessels and 84 

the interstitial space in tissue. For a single solute, for instance, the osmotic pressure, 𝜋𝜋 =85 

−(𝑅𝑅𝑅𝑅/𝑉𝑉�𝑗𝑗)ln𝑎𝑎𝑗𝑗, i.e., it depends on the species activity or concentration. Further, in Eq.S10, 86 

we have defined an effective vessel pressure, 𝑝𝑝𝑣𝑣,𝑒𝑒 ≡ 𝑝𝑝𝑣𝑣 − 𝜎𝜎𝑆𝑆(𝜋𝜋𝑣𝑣 − 𝜋𝜋𝑖𝑖). 87 

Combining the last two equations 88 

𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝜕𝜕�

Accumulation

+ 𝓋𝓋𝑟𝑟
𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝑟𝑟���

Convection

−𝐷𝐷𝑗𝑗𝑒𝑒 �
2
𝑟𝑟
𝜕𝜕𝐶𝐶𝑗𝑗
𝜕𝜕𝑟𝑟

+
𝜕𝜕2𝐶𝐶𝑗𝑗
𝜕𝜕𝑟𝑟2

�
�������������

Diffusion

= −
𝑘𝑘𝐶𝐶𝑗𝑗

1 + 𝐾𝐾𝐶𝐶𝑗𝑗�����
Reaction

+ 𝐿𝐿𝑝𝑝𝑎𝑎𝑣𝑣(𝑝𝑝𝑣𝑣,𝑒𝑒 − 𝑝𝑝𝑖𝑖)�𝐶𝐶𝑗𝑗,𝑏𝑏 − 𝐶𝐶𝑗𝑗������������������
Extravasation and Dilution

 

(Eq.S11) 



where the different transport (convection and diffusion), accumulation, and source 89 

(reaction and extravasation) terms are as indicated. This may be compared to the mass 90 

balance equation of our previous work (9), that assumes: 1) that the flux is by diffusion 91 

only (i.e., 𝓋𝓋𝑟𝑟 = 0, or no convection), and 2) that the last term on the right, accounting for 92 

transcapillary extravasation and plasma dilution, is zero as there are no blood vessels in 93 

the diffusion-limited region. In other words, it involves only diffusion and reaction, as in a 94 

conventional catalyst particle, the convection and the fluid source term being assumed 95 

zero.  96 

For this, we next non-dimensionalize this mass balance equation using the following 97 

dimensionless variables 98 

𝜉𝜉 ≡
𝑟𝑟
𝑅𝑅0

;  𝜓𝜓 ≡
𝑝𝑝𝑖𝑖
𝑝𝑝𝑣𝑣,𝑒𝑒

 ;  𝜚𝜚 ≡ 1 −
𝑝𝑝𝑖𝑖
𝑝𝑝𝑣𝑣,𝑒𝑒

;  𝑓𝑓 ≡
𝐶𝐶𝑗𝑗
𝐶𝐶𝑗𝑗,𝑏𝑏

 ;   𝜈𝜈 ≡
𝓋𝓋𝑟𝑟
𝓋𝓋𝑅𝑅0

 ;𝑃𝑃𝑃𝑃𝑅𝑅0 ≡
𝓋𝓋𝑅𝑅0𝑅𝑅0
𝐷𝐷𝑗𝑗𝑒𝑒

; 

𝜙𝜙 ≡ 𝑅𝑅0�
𝑘𝑘
𝐷𝐷𝑗𝑗𝑒𝑒

 ;  𝛼𝛼(𝜉𝜉) ≡ 𝑅𝑅0�
𝐿𝐿𝑝𝑝𝑎𝑎𝑣𝑣(𝜉𝜉)
𝐾𝐾𝑣𝑣

 ;  𝜒𝜒 ≡ 𝐾𝐾𝐶𝐶𝑗𝑗,𝑏𝑏 ;  𝜏𝜏 ≡ �
𝐷𝐷𝑗𝑗𝑒𝑒

𝑅𝑅02
� 𝜕𝜕 ;  𝜔𝜔 ≡

𝐾𝐾𝑣𝑣𝑝𝑝𝑣𝑣,𝑒𝑒

𝐷𝐷𝑗𝑗𝑒𝑒
 ; 

(Eq.S12) 

It is noteworthy that for given membrane and tissue properties, the modulus 𝛼𝛼 ∝ 𝑅𝑅0, since 99 

the square root term is independent of granuloma/tumor size, i.e., a bigger modulus 100 

means a larger granuloma/tumor. In other words, the modulus 𝛼𝛼 may be roughly 101 

considered as dimensionless radius of granuloma/tumor. 102 

In dimensionless form, the mass balance, thus, the unsteady-state mass balance for 103 

species j is  104 

𝜕𝜕𝑓𝑓
𝜕𝜕𝜏𝜏

+ �𝑃𝑃𝑃𝑃𝑅𝑅0�𝜈𝜈
𝜕𝜕𝑓𝑓
𝜕𝜕𝜉𝜉

− �
2
𝜉𝜉
𝜕𝜕𝑓𝑓
𝜕𝜕𝜉𝜉

+
𝜕𝜕2𝑓𝑓
𝜕𝜕𝜉𝜉2

� = −𝜙𝜙2 𝑓𝑓
1 + 𝜒𝜒𝑓𝑓

+ (𝛼𝛼2𝜔𝜔)𝜚𝜚(1 − 𝑓𝑓) (Eq.S13) 



Besides the dimensionless concentration, 𝑓𝑓(𝜉𝜉), this equation involves the convection 105 

term on the left that is a function of 𝜉𝜉 via the dimensionless velocity 𝜈𝜈(𝜉𝜉), as well as the 106 

extravasation term, i.e., the last term on the right, also a function of 𝜉𝜉 via the 107 

dimensionless pressure difference 𝜚𝜚(𝜉𝜉). Thus, other relations are needed for 𝜈𝜈(𝜉𝜉) and 108 

𝜚𝜚(𝜉𝜉), as discussed next. 109 

For the steady-state case, the species mass balance reduces to 110 

𝑑𝑑2𝑓𝑓
𝑑𝑑𝜉𝜉2

− ��𝑃𝑃𝑃𝑃𝑅𝑅0�𝜈𝜈 −
2
𝜉𝜉
�
𝑑𝑑𝑓𝑓
𝑑𝑑𝜉𝜉

− 𝜙𝜙2 �
𝑓𝑓

1 + 𝜒𝜒𝑓𝑓
� + (𝛼𝛼2𝜔𝜔)𝜚𝜚(1 − 𝑓𝑓) = 0 (Eq.S14) 

subject to the boundary conditions 111 

B.C. 1: at 𝜉𝜉 = 1 𝑓𝑓 = 1

B.C. 2: at 𝜉𝜉 = 0
𝑑𝑑𝑓𝑓
𝑑𝑑𝜉𝜉

= 0 
  

The expressions for the dimensionless interstitial velocity 𝜈𝜈(𝜉𝜉) and the volumetric effusion 112 

term, Ω(𝜉𝜉) ≡ 𝛼𝛼2𝜔𝜔𝜚𝜚(𝜉𝜉), are developed in the next section. 113 

S2. Interstitial Fluid Pressure and Velocity Profiles  114 

We and others have experimentally and theoretically investigated the interstitial fluid 115 

pressure (IFP) in tumors (1, 3, 7, 10-15). It is hypothesized that there is an analogous IFP 116 

rise within TB granulomas, not yet experimentally investigated, as modeled below (5). 117 

 118 

The steady-state equation of continuity, or fluid mass balance, Eq.S4 provides 𝛁𝛁 ∙ 𝓿𝓿 =119 

𝜑𝜑𝐵𝐵(𝐫𝐫) − 𝜑𝜑𝐿𝐿(𝐫𝐫), which is combined with the constitutive equation for viscous flow in porous 120 

media, namely D’Arcy’s law, 𝓿𝓿 = −(𝐵𝐵0/μ)𝛁𝛁𝑝𝑝𝑖𝑖, normally written in the tumor literature as 121 

(15) 122 

 𝓿𝓿 = −𝐾𝐾𝑣𝑣𝛁𝛁𝑝𝑝𝑖𝑖 (Eq.S15) 



where  𝐾𝐾𝑣𝑣 ≡ (𝐵𝐵0/μ), is the so-called hydraulic conductivity of the tumor or granuloma, 123 

while 𝐵𝐵0 is the D’Arcy permeability, to provide 124 

 −𝐾𝐾𝑣𝑣∇2𝑝𝑝𝑖𝑖  = 𝜑𝜑𝐵𝐵 − 𝜑𝜑𝐿𝐿 (Eq.S16) 

Using the Laplacian for a one-dimensional transport in a spherical shaped granuloma, 125 

Eq.S16 reduces to 126 

−𝐾𝐾𝑣𝑣
1
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑟𝑟
�𝑟𝑟2

𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑟𝑟

� = 𝜑𝜑𝐵𝐵 − 𝜑𝜑𝐿𝐿 (Eq.S17) 

Assuming as above, that either 𝜑𝜑𝐿𝐿 → 0, or that 𝜑𝜑𝐵𝐵 ≫ 𝜑𝜑𝐿𝐿, for the TB granulomas and 127 

combining Eqns. (Eq.S10) and (Eq.S17)  128 

−𝐾𝐾𝑣𝑣
1
𝑟𝑟2

𝑑𝑑
𝑑𝑑𝑟𝑟
�𝑟𝑟2

𝑑𝑑𝑝𝑝𝑖𝑖
𝑑𝑑𝑟𝑟

� − 𝐿𝐿𝑝𝑝𝑎𝑎𝑣𝑣(𝑝𝑝𝑣𝑣,𝑒𝑒 − 𝑝𝑝𝑖𝑖) = 0 (Eq.S18) 

where recall that 𝑎𝑎𝑣𝑣 = 𝑎𝑎𝑣𝑣(𝜉𝜉). This can be written in the dimensionless form  129 

1
𝜉𝜉2

𝑑𝑑
𝑑𝑑𝜉𝜉

�𝜉𝜉2
𝑑𝑑𝜚𝜚
𝑑𝑑𝜉𝜉
� − 𝛼𝛼2𝜚𝜚 = 0 (Eq.S19) 

where recall that the dimensionless interstitial pressure difference, 𝜚𝜚 ≡ (𝑝𝑝𝑣𝑣,𝑒𝑒 − 𝑝𝑝𝑖𝑖)/𝑝𝑝𝑣𝑣,𝑒𝑒 =130 

1 − 𝜓𝜓, and the dimensionless interstitial pressure, 𝜓𝜓 ≡ 𝑝𝑝𝑖𝑖/𝑝𝑝𝑣𝑣,𝑒𝑒.  131 

In general, as indicated above, the microvessel surface area per unit volume also varies 132 

with location, i.e., 𝑎𝑎𝑣𝑣 = 𝑎𝑎𝑣𝑣(𝜉𝜉), so that the parameter 𝛼𝛼 = 𝛼𝛼(𝜉𝜉). We consider three different 133 

cases for the vasculature architecture as described below:  134 

1) the case of uniform perfusion throughout the granuloma/tumor, wherein 𝑎𝑎𝑣𝑣 =135 

𝑎𝑎𝑣𝑣,0 = constant, i.e., independent of 𝜉𝜉;  136 

2) the case of non-uniform perfusion described via step change (3), wherein the 137 

diffusion-limited hypoxic core has no vessels (𝑎𝑎𝑣𝑣 = 0), while the outer shell of 138 



the granuloma/tumor is fully vascularized (𝑎𝑎𝑣𝑣 = 𝑎𝑎𝑣𝑣,0), i.e., the shell-core model, 139 

and  140 

3) the case of non-uniform perfusion with a realistic variation in microvessel 141 

density (MVD) distribution, 𝑁𝑁𝑣𝑣 = 𝑁𝑁𝑣𝑣(𝜉𝜉).  142 

The first two cases allow analytical solution for the IFP and IFV, while the last requires a 143 

numerical solution. We consider below the more general Case 2 first, from which Case 1 144 

derives as a limiting case. 145 

S2.1. Shell-Core Model of Non-uniform Perfusion in Granulomas  146 

Adapting the approach of Baxter and Jain (1990) for tumors to granulomas, it is assumed 147 

here that in the region 𝑅𝑅𝐷𝐷 < 𝑟𝑟 < 𝑅𝑅0, 𝑎𝑎𝑣𝑣 = 𝑎𝑎𝑣𝑣,0, while in the region 𝑟𝑟 < 𝑅𝑅𝐷𝐷, 𝑎𝑎𝑣𝑣 = 0. Thus, 148 

the modulus  𝛼𝛼 = 𝛼𝛼0 in the shell region, defined as 149 

𝛼𝛼0 ≡ 𝑅𝑅0�
𝐿𝐿𝑝𝑝𝑎𝑎𝑣𝑣,0

𝐾𝐾𝑣𝑣
 (Eq.S20) 

which represents a ratio of the interstitial resistance to vascular resistance to IF flow. 150 

The momentum balance equation is subject to the following boundary conditions (16): 151 

BC 1:  at 𝜉𝜉 = 1, 𝜚𝜚 = 1,  i.e.,  𝜓𝜓 = 0 (or 𝑝𝑝𝑖𝑖 = 0), 

BC 2:  at 𝜉𝜉 = 𝜉𝜉𝐷𝐷 ,
𝑑𝑑𝜚𝜚
𝑑𝑑𝜉𝜉

= 0;   𝜚𝜚 = 𝜚𝜚𝐷𝐷. 
(Eq.S21) 

where the first boundary condition specifies that the pressure at the periphery, 𝑝𝑝𝑖𝑖 = 0, 152 

while the second represents no flow, or pressure gradient, along with continuity of 153 

pressure at the diffusion-limited core radius 𝑅𝑅𝐷𝐷.  154 

The general solution to Eq.S19, which is of the same form as that for molecular diffusion 155 

and first order reaction in granuloma (9), is  156 



𝜚𝜚 =
𝐶𝐶1
𝜉𝜉

cosh(𝛼𝛼0𝜉𝜉) +
𝐶𝐶2
𝜉𝜉

sinh(𝛼𝛼0𝜉𝜉) (Eq.S22) 

which upon differentiating provides 157 

𝑑𝑑𝜚𝜚
𝑑𝑑𝜉𝜉

=
𝐶𝐶1
𝜉𝜉2

{𝛼𝛼0𝜉𝜉sinh(𝛼𝛼0𝜉𝜉) − cosh(𝛼𝛼0𝜉𝜉)} +
𝐶𝐶2
𝜉𝜉2

{𝛼𝛼0𝜉𝜉cosh(𝛼𝛼0𝜉𝜉) − sinh(𝛼𝛼0𝜉𝜉)} (Eq.S23) 

Using B.C. 2 in Eq.S23 while using B.C. 1 in Eq.S22, and solving the resulting two 158 

equations simultaneously for the two unknown constants of integration 𝐶𝐶1 and 𝐶𝐶2, followed 159 

by some simplification, provides  160 

𝐶𝐶1 = −
sinh(𝛼𝛼0𝜉𝜉𝐷𝐷) − 𝛼𝛼0𝜉𝜉𝐷𝐷 cosh(𝛼𝛼0𝜉𝜉𝐷𝐷)

sinh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)] + 𝛼𝛼0𝜉𝜉𝐷𝐷 cosh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)] 

𝐶𝐶2 = −
𝛼𝛼0𝜉𝜉𝐷𝐷 sinh(𝛼𝛼0𝜉𝜉𝐷𝐷) − cosh(𝛼𝛼0𝜉𝜉𝐷𝐷)

sinh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)] + 𝛼𝛼0𝜉𝜉𝐷𝐷 cosh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)]
 

(Eq.S24) 

Using these in Eq.S22 and simplifying further, the dimensionless pressure differential (16)  161 

𝜚𝜚(𝜉𝜉) =
1
𝜉𝜉
�
sinh[𝛼𝛼0(𝜉𝜉 − 𝜉𝜉𝐷𝐷)] + 𝛼𝛼0𝜉𝜉𝐷𝐷 cosh[𝛼𝛼0(𝜉𝜉 − 𝜉𝜉𝐷𝐷)]
sinh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)] + 𝛼𝛼0𝜉𝜉𝐷𝐷 cosh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)]

� (Eq.S25) 

where we have used the identities, sinh(𝑢𝑢 − 𝑣𝑣) = sinh𝑢𝑢 cosh 𝑣𝑣 − cosh𝑢𝑢 sinh 𝑣𝑣 and 162 

cosh(𝑢𝑢 − 𝑣𝑣) = cosh𝑢𝑢 cosh 𝑣𝑣 − sinh𝑢𝑢 sinh𝑣𝑣. These results are applicable to the shell 163 

region, i.e., for 𝜉𝜉𝐷𝐷 ≤ 𝜉𝜉 ≤  1. The dimensionless pressure differential in the non-164 

vascularized core of the particle is obtained by setting 𝜉𝜉 =  𝜉𝜉𝐷𝐷 in Eq.S25. 165 

Further, taking the derivative of the dimensionless pressure gradient, and combining it 166 

with the 1-dimensional Darcy’s law 𝓋𝓋𝑟𝑟 = −𝐾𝐾𝑣𝑣(d𝑝𝑝𝑖𝑖/𝑑𝑑𝑟𝑟) = 𝐾𝐾𝑣𝑣𝑝𝑝𝑣𝑣,𝑒𝑒/𝑅𝑅0(𝑑𝑑𝜚𝜚/𝑑𝑑𝜉𝜉), provides the 167 

velocity profile within a granuloma 168 

𝓋𝓋𝑟𝑟 =
𝐾𝐾𝑣𝑣𝑝𝑝𝑣𝑣,𝑒𝑒

𝑅𝑅0
1
𝜉𝜉2
�
𝛼𝛼0(𝜉𝜉 − 𝜉𝜉𝐷𝐷) cosh[𝛼𝛼0(𝜉𝜉 − 𝜉𝜉𝐷𝐷)]− (1 − 𝛼𝛼02𝜉𝜉𝐷𝐷𝜉𝜉) sinh[𝛼𝛼0(𝜉𝜉 − 𝜉𝜉𝐷𝐷)]

sinh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)] + 𝛼𝛼0𝜉𝜉𝐷𝐷 cosh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)]
� (Eq.S26) 



which when evaluated at the granuloma surface (𝜉𝜉 = 1), yields the efflux velocity at the 169 

surface  170 

𝓋𝓋𝑅𝑅0 = �
𝐾𝐾𝑣𝑣𝑝𝑝𝑣𝑣,𝑒𝑒

𝑅𝑅0
� �
𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷) cosh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)] − (1 − 𝛼𝛼02𝜉𝜉𝐷𝐷) sinh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)]

sinh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)] + 𝛼𝛼0𝜉𝜉𝐷𝐷 cosh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)]
� (Eq.S27) 

The surface effusion velocity could alternately be determined as follows. From the Gauss-171 

Ostrogradskii divergence theorem (4), ∫ ( 𝛁𝛁 ∙ 𝓿𝓿)𝑑𝑑𝑉𝑉𝑉𝑉 = ∫ (𝓿𝓿 ∙ 𝒏𝒏)𝑑𝑑𝑑𝑑𝑆𝑆 , and using Eq.S4 for 172 

the divergence of velocity in this, along with Eq.S10 for the volumetric efflux 𝜑𝜑𝐵𝐵, there 173 

results 174 

𝓋𝓋𝑅𝑅0 = �
𝐾𝐾𝑣𝑣𝑝𝑝𝑣𝑣,𝑒𝑒

𝑅𝑅0
�� (𝛼𝛼2𝜚𝜚)𝜉𝜉2𝑑𝑑𝜉𝜉

1

𝜉𝜉𝐷𝐷
 (Eq.S28) 

Finally, assuming 𝛼𝛼 = 𝛼𝛼0, using Eq.S25 for 𝜚𝜚 and integrating, Eq.S27 results. 175 

From Eq.S26 and Eq.S27, the dimensionless velocity, 𝜈𝜈 ≡ 𝓋𝓋𝑟𝑟/𝓋𝓋𝑅𝑅0 , 176 

𝜈𝜈 =
1
𝜉𝜉2
�
𝛼𝛼0(𝜉𝜉 − 𝜉𝜉𝐷𝐷) cosh[𝛼𝛼0(𝜉𝜉 − 𝜉𝜉𝐷𝐷)]− (1 − 𝛼𝛼02𝜉𝜉𝐷𝐷𝜉𝜉) sinh[𝛼𝛼0(𝜉𝜉 − 𝜉𝜉𝐷𝐷)]
𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷) cosh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)]− (1 − 𝛼𝛼02𝜉𝜉𝐷𝐷) sinh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)] � (Eq.S29) 

The above algebraic relations for the dimensionless pressure difference ϱ, Eq.S25, and 177 

the dimensionless IF velocity 𝜈𝜈, Eq.S29, can be utilized in the steady-state species j mass 178 

balance differential equation, Eq.S14. In other words, Eq.S14, Eq.S25, and Eq.S29 179 

together form a set of differential-algebraic equations that can be solved simultaneously 180 

numerically to compute the concentration profile of a molecule within a granuloma. We 181 

have already solved the concentration profile, Eq.S14, for the case of no convective flow 182 

(𝜈𝜈 = 0) as well as no source term (Ω = 0), where we also provided analytical solutions for 183 

the two limiting cases of first- and zero-order kinetics (9). Our analysis here extends our 184 



initial results to the more general case to include both convective transport (𝜈𝜈 ≠ 0) as well 185 

as a source term (Ω ≠ 0). 186 

S2.2. Uniform Perfusion Case  187 

For the case when there is no hypoxic core,  𝜉𝜉𝐷𝐷 → 0, i.e., the granuloma is uniformly 188 

perfused throughout, then the corresponding relations may be obtained by simply setting 189 

𝜉𝜉𝐷𝐷 = 0 in the above. Thus, from Eq.S25, the dimensionless pressure rise within the 190 

granuloma for the case of uniform perfusion (5) 191 

𝜓𝜓 = 1 − 𝜚𝜚 = 1 −
1
𝜉𝜉

sinh(𝛼𝛼0𝜉𝜉)
sinh(𝛼𝛼0)  

(Eq.S30) 

The radial velocity profile from Eq.S26 192 

𝓋𝓋𝑟𝑟 = �
𝐾𝐾𝑣𝑣𝑝𝑝𝑣𝑣,𝑒𝑒

𝑅𝑅0
�

1
𝜉𝜉2
�

(𝛼𝛼0𝜉𝜉) cosh(𝛼𝛼0𝜉𝜉)
sinh𝛼𝛼0

−
sinh(𝛼𝛼0𝜉𝜉)

sinh𝛼𝛼0
� 

(Eq.S31) 

while the efflux velocity at the granuloma surface, from Eq.S27 with 𝜉𝜉𝐷𝐷 = 0  193 

𝓋𝓋𝑅𝑅0 = �
𝐾𝐾𝑣𝑣𝑝𝑝𝑣𝑣,𝑒𝑒

𝑅𝑅0
� (𝛼𝛼0 coth𝛼𝛼0 − 1) 

(Eq.S32) 

so that the dimensionless velocity profile takes the form (5)  194 

𝜈𝜈 = �
1

𝛼𝛼0 coth𝛼𝛼0 − 1
�

1
𝜉𝜉2
�

(𝛼𝛼0𝜉𝜉) cosh(𝛼𝛼0𝜉𝜉)
sinh𝛼𝛼0

−
sinh(𝛼𝛼0𝜉𝜉)

sinh𝛼𝛼0
� (Eq.S33) 

These simpler alternate relations for the volumetric fluid effusion and the dimensionless 195 

IFV applicable for the case of uniform vasculature can next be utilized in the species j 196 

mass balance, Eq.S14, to obtain concentration profile within a granuloma or a tumor. 197 

S2.3. Non-uniform Perfusion Case  198 

In the above shell-core model, we considered the case where the granuloma/tumor was 199 

assumed to be fully vascularized outside of the hypoxic core, while there was no perfusion 200 



within it. This is not physically realistic, as the microvessel density (MVD) distribution does 201 

not change so abruptly, but rather more gradually. In fact, the MVD distribution in a 202 

granuloma has been measured by us (8), as shown in Figure S1.  203 

Clearly the blood vessels are restricted to the granuloma periphery and tend to be absent 204 

from the central region, as we found previously (8), but this change happens gradually. 205 

In fact, it might be argued that the MVD distribution appears to follow the pressure 206 

difference distribution, i.e., the extravasation driving force, 𝜚𝜚 = 1 − 𝜓𝜓. As a result, in 207 

analogy with Eq.S30, we might simply assume the MVD distribution 208 

𝑁𝑁𝑣𝑣(𝜉𝜉)
𝑁𝑁𝑣𝑣,0

=
𝑎𝑎𝑣𝑣(𝜉𝜉)
𝑎𝑎𝑣𝑣,0

=
𝛼𝛼(𝜉𝜉)
𝛼𝛼0

=
1
𝜉𝜉

sinh(𝛽𝛽𝛼𝛼0𝜉𝜉)
sinh(𝛽𝛽𝛼𝛼0)  (Eq.S34) 

Where 𝛽𝛽~1/2 is a fitted constant. This would be used in both momentum balance, 209 

Eq.S19, and mass balance, Eq.S14. 210 

It is apparent from Figure S1 that the agreement is good. There might, in fact, be 211 

physiological reasons for this. Thus, we might surmise that functional blood vessels are 212 

not present beyond the point where 𝑝𝑝𝑖𝑖 → 𝑝𝑝𝑣𝑣,𝑒𝑒, since the plasma can no longer flow out of 213 

the blood vessels. Clearly, in this case, analytical solution for the pressure profile is not 214 

possible, and Eq.S19 must be solved numerically, which, when combined with Eq.S34, 215 

may be written as   216 

�
2
𝜉𝜉
𝑑𝑑𝜚𝜚
𝑑𝑑𝜉𝜉

+
𝑑𝑑2𝜚𝜚
𝑑𝑑𝜉𝜉2

� − 𝛼𝛼02 �
1
𝜉𝜉

sinh(𝛽𝛽𝛼𝛼0𝜉𝜉)
sinh(𝛽𝛽𝛼𝛼0) � 𝜚𝜚 = 0 (Eq.S35) 

A numerical solution of this provides the pressure differential profile within the granuloma. 217 

This is next related to the velocity profile via 218 



𝜈𝜈 =
1
𝓋𝓋𝑅𝑅0

�
𝐾𝐾𝑣𝑣𝑝𝑝𝑣𝑣,𝑒𝑒

𝑅𝑅0
� �
𝑑𝑑𝜚𝜚
𝑑𝑑𝜉𝜉
� (Eq.S36) 

where from Eq.S28 and Eq.S34 219 

𝓋𝓋𝑅𝑅0 = �
𝐾𝐾𝑣𝑣𝑝𝑝𝑣𝑣,𝑒𝑒

𝑅𝑅0
�𝛼𝛼02 � �

sinh(𝛽𝛽𝛼𝛼0𝜉𝜉)
sinh(𝛽𝛽𝛼𝛼0) �

2

𝜚𝜚𝑑𝑑𝜉𝜉
1

0
 (Eq.S37) 

where 𝜚𝜚 is obtained from a solution to Eq.S35. 220 

Alternately, we can write the dimensionless velocity as 221 

𝜈𝜈 = �
𝑑𝑑𝜚𝜚
𝑑𝑑𝜉𝜉
� �

𝑑𝑑𝜚𝜚
𝑑𝑑𝜉𝜉
�
𝜉𝜉=1

�  (Eq.S38) 

The last two ODEs, for 𝜚𝜚 (Eq.S35) and for 𝜈𝜈 (Eq.S36 or Eq.S38), along with Eq.S14, the 222 

ODE representing the mass balance of species j, represent a system of three differential 223 

equations that need to be solved simultaneously in order to numerically obtain the 224 

pressure difference, velocity, and species j concentration profiles within the granuloma or 225 

the tumor. This is then the most general case considered here, wherein few simplifying 226 

assumptions have been made.  227 

S3. Comparison of Interstitial Perfusion for Varying Vascular Distribution 228 

Because IFP and IFV have not yet been measured experimentally in granuloma vessels, 229 

we first predict these profiles assuming that granulomas and tumors share certain 230 

physiological parameters. Thus, in combination with oxygen consumption parameters 231 

values from our previous work (9), we use the following parameter values (provided from 232 

tumors (1, 3, 5, 12-14)): 233 

𝐿𝐿𝑝𝑝 = 2.8 × 10−7 cm∙mmHg−1∙s−1;  𝑎𝑎𝑣𝑣,0 = 200 cm2∙cm−3;𝐾𝐾𝑣𝑣 = 4.13 ×

10−8 cm2∙mmHg−1∙s−1  
(Eq.S39) 

Assuming, that these values are a good first estimate for granulomas as well,  234 



�
𝐿𝐿𝑝𝑝𝑎𝑎𝑣𝑣,0

𝐾𝐾𝑣𝑣
= �2.8 × 10−7 × 200

4.13 × 10−8
= 36.82 cm−1 235 

Thus, for 2𝑅𝑅0 = 0.5 − 5 mm, a common size of granulomas observed in rabbits (though 236 

they can be larger if multiple lesions coalesce) (8, 17), this provides the range of the 237 

modulus 𝛼𝛼0 = 1 − 15, which would hence be of the primary interest for granulomas. 238 

S3.1. Predictions with the Shell Core Model (𝝃𝝃𝑫𝑫 > 𝟎𝟎) 239 

We provide figures (Figure S2) of dimensionless pressure rise  and velocity profile 240 

(Eq.S7) for the case of 𝜉𝜉𝐷𝐷 = 0.5 and different values of 𝛼𝛼0 based on the use of Eqs. 241 

(Eq.S25) – (Eq.S29). These expressions are applicable to the shell region, i.e., for 𝜉𝜉𝐷𝐷 ≤242 

𝜉𝜉 ≤  1. For the hypoxic core, the dimensionless pressure differential is obtained by setting 243 

𝜉𝜉 =  𝜉𝜉𝐷𝐷 in Eq.S25, providing 244 

𝜓𝜓0 = 1 − 𝜚𝜚0 = 1 −
𝛼𝛼0

sinh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)] + 𝛼𝛼0𝜉𝜉𝐷𝐷 cosh[𝛼𝛼0(1 − 𝜉𝜉𝐷𝐷)]
 

(Eq.S40) 

As Figure S2A shows, the pressure rises sharply in the shell and then levels out at the 245 

value indicated by Eq.S40. In fact. for 𝛼𝛼0 > 10, the interstitial pressure in the particle core 246 

attains the value in the effective vascular pressure. 247 

Figure S2B plots the resulting effusion velocity as a function of radial distance in the shell. 248 

The velocity in the core is zero, due to the absence of any pressure gradient therein. It is 249 

interesting that for small modulus 𝛼𝛼0, the velocity profile has a slight convexity to it. In 250 

fact, it is possible that the small 𝛼𝛼0 values (0 < 𝛼𝛼0 < 5) are inconsistent with the 251 

assumptions inherent in the shell-core model, as for small 𝛼𝛼0 , the hypoxic core is unlikely 252 

to exist. 253 



S3.2. Predictions with the Uniform Vasculature Model  (𝝃𝝃𝑫𝑫 → 𝟎𝟎) 254 

The case of uniform vasculature is actually consistent with smaller values of the modulus 255 

𝛼𝛼0 (0 < 𝛼𝛼0 < 5), which recall is rather a dimensionless particle radius. Nonetheless, the 256 

computations for the case of uniform vasculature are provided in for the pressure rise 257 

(Figure 2) and the velocity profile (Figure 3) for a variety of the values of the modulus 𝛼𝛼0. 258 

It is evident that the maximum pressure rises at a given value of 𝛼𝛼0 is higher for the case 259 

of uniform perfusion rather than for the case of shell perfusion. The velocity profiles 260 

(Figure 3) are also more reasonable for smaller values of 𝛼𝛼0 than that in Figure S2B 261 

based on assuming perfusion limited to a shell. 262 

On the other hand, for the case of larger modulus 𝛼𝛼0 (𝛼𝛼0 > 7), the difference in the 263 

predictions of the two models are small. In summary, we can surmise that for smaller 264 

values of the modulus 𝛼𝛼0 (smaller particles), the uniform perfusion model is a better 265 

approximation, while for the case of larger particle sizes and 𝛼𝛼0, the shell-core model is 266 

more physically realistic, but even the uniform perfusion model is adequate. In short, the 267 

simpler uniform perfusion model is adequate in general. 268 

It is further seen from Figures 2 and 3 that when flow resistance of the interstitial space 269 

is smaller (large 𝐾𝐾𝑣𝑣) than the flow resistance of the vessel walls, or when the granuloma 270 

particle size is small, i.e., when 𝛼𝛼0 ≤ 1, the pressure rise within the granuloma is small, 271 

and the convective velocity of the plasma leaving the vessels is linear all the way to the 272 

particle center, so that the entire granuloma is well-perfused and there is no hypoxic ring 273 

or necrotic core, i.e., transport of a solute is not limited by diffusion.  274 



On the other hand, when flow resistance of the interstitial space is higher (smaller 𝐾𝐾𝑣𝑣) 275 

than the flow resistance of the vessel walls, or when the granuloma particle size is large, 276 

𝛼𝛼0 ≫ 1, and the IFP rise is rapid, and within a short distance Δ of the particle surface, 𝜓𝜓 →277 

1 or 𝑝𝑝𝑖𝑖 → 𝑝𝑝𝑣𝑣,𝑒𝑒. Further, in this case, the convective velocity of the plasma 𝓋𝓋𝑟𝑟 → 0 for 𝜉𝜉 <278 

𝜉𝜉𝐷𝐷, after which convective transport of oxygen/solute comes to a halt, so that the oxygen 279 

and other nutrients must diffuse thereafter, resulting in a hypoxic ring, as well as a necrotic 280 

core inside the granuloma. Thus, Swabb et al. (1974) concluded that for small molecules, 281 

e.g., oxygen, glucose, and amino acids, the transport via diffusive mechanism is 282 

dominant. On the other hand, larger molecules such as antibodies are largely dependent 283 

on convective transport. 284 

S3.3. Comparisons with the Non-uniform Vessel Distribution  285 

The uniform and shell-core model microvessel distributions discussed above are two 286 

limiting cases of a more realistic and gradual vessel distribution of the kind discussed 287 

above. We next explore how the predictions of pressure rise, e.g., for this case are in 288 

comparison to the above two limiting distributions. 289 

Based on the numerical integration of Eq.S35, Figure S3 provides a comparison of the 290 

pressure rise for the case of a particle with MVD distribution as described by Eq.S34 for 291 

the case of 𝛼𝛼0 = 6, which is rather an intermediate value in the range of interest (0 < 𝛼𝛼0 <292 

15). The case of uniformly distributed vessels Eq.S30 overpredicts the pressure rise in 293 

comparison, while the shell-core distribution can provide a reasonable estimate provided 294 

the thickness of the well-perused shell is used a s a fitted parameter. Thus, in Figure S3, 295 

the value of 𝜉𝜉𝐷𝐷 = 0.48 provides a good approximation. For that matter, the simple uniform 296 



distribution model can also provide a good estimate of the pressure profile, provided the 297 

modulus 𝛼𝛼0 is used as a fitted parameter. Thus, the use of 𝛼𝛼0 = 4.1 provides a pressure 298 

rise profile (dotted line) that adequately mimics that resulting from the case of non-299 

uniformly distributed vessels (Eq.S35). In summary, the uniform MVD distribution model 300 

would be adequate in most cases for a prediction of the pressure rise, and consequently, 301 

the effusion velocity distribution while it has the advantage of simple explicit expressions. 302 

S4. Overcoming Transport Barriers  303 

To theoretically investigate the effect of improving delivery (e.g., of oxygen, nutrients, or 304 

drugs) by improving the tissue hydraulic conductivity of the tumors or granulomas, we 305 

retain as the base case the parameters used above, namely, those in Eq.S39, along with 306 

the following typical values:  307 

𝑝𝑝𝑣𝑣,𝑒𝑒 = 20 mmHg;  𝑅𝑅0 = 2.5mm; 𝑘𝑘 = 0.01 s−1;𝐷𝐷𝑗𝑗𝑒𝑒 = 1 × 10−6 cm2 s−1 (Eq.S41) 

The first-order rate constant and the effective diffusion coefficient are typical of nutrient 308 

of the size of glucose (18), rather than a smaller molecule such as oxygen. Larger 309 

molecules (>50,000 Da), e.g., antibodies, are also of interest where a diffusion retardation 310 

factor (14) may be needed to describe diffusion in the interstitial space. 311 

Further, as discussed above, the simpler explicit expressions describing the IFP and IFV 312 

within a granuloma or tumor for the case of uniform MVD distribution are adequate. 313 

Consequently, even though the other cases discussed above, namely, the abrupt shell-314 

core model, or the more gradually declining MVD distribution described by the fitted 315 

model, may be more realistic, in what follows, we will simply adopt the uniform MVD 316 



distribution model (Eq.S30 and Eq.S33) for use in the steady-state species mass balance 317 

relation, Eq.S14.  318 

Figure 5B provides the simulated species distribution profile within a tumor or a 319 

granuloma based on the above parameters: 1) as the base case for the hydraulic 320 

conductivity provided in Eq.S39 (𝐾𝐾𝑣𝑣 = 4.13 × 10−8 cm2∙mmHg−1∙s−1) and 2) the case of 321 

improved hydraulic conductivity by a factor of 10. For the parameters adopted, this means 322 

the following dimensionless parameters: a Thiele modulus, 𝜙𝜙 = 25; the modulus 323 

characteristic of the vessel to tissue hydraulic conductivity, 𝛼𝛼0 = 9.2; and the parameter 324 

𝜔𝜔 = 0.83. Additionally, for the base case, the surface effusion velocity from Eq.S32, 𝓋𝓋𝑅𝑅0 =325 

0.27 𝜇𝜇m. s−1, so that the Peclet number at the surface, 𝑃𝑃𝑃𝑃𝑅𝑅0 = 6.78. 326 

The hydraulic conductivity 𝐾𝐾𝑣𝑣 can, in fact, be described in terms of tissue structural 327 

parameters (15). For example (5), by visualizing a porous medium as a bundle of 328 

capillaries of radius a, and using the Poiseuille equation for laminar capillary flow, 𝐾𝐾𝑣𝑣 =329 

(𝜀𝜀/𝜏𝜏)(𝑎𝑎2/8𝜇𝜇), where 𝜇𝜇 is the interstitial fluid viscosity. Other factors affecting hydraulic 330 

conductivity have been discussed (1). 331 

S5. Convective Zone Thickness  332 

The convective zone thickness Δ of the outer well-perfused rim, where the dimensionless 333 

concentration 𝑓𝑓 → 1, can be estimated from a numerical solution of the mass balance 334 

equation. We are interested in approximately determining the thickness of this zone, 335 

where convective transport dominates. It is necessary to select a criterion for this, e.g., at 336 

a location when the pressure gradient becomes small enough so that convective velocity 337 

→ 0 (at the edge of the diffusive, non-vascularized zone, RD, Figure 1), before diffusion 338 



becomes the dominant mode of transport. For this, a reasonable estimated Peclet number 339 

can be assumed, e.g., 𝑃𝑃𝑃𝑃𝐷𝐷 ≪ 1. Then from the definition of the Peclet number, one can 340 

obtain the corresponding velocity, i.e.,  341 

𝓋𝓋𝐷𝐷 = 𝑃𝑃𝑃𝑃𝐷𝐷 �
𝐷𝐷O2
𝑒𝑒

𝑅𝑅0
� (Eq.S42) 

For example, for the case of oxygen, with 𝐷𝐷O2
𝑒𝑒 = 2.5 × 10−5 cm2/s, and 𝑅𝑅0 = 0.25 cm, and 342 

assuming 𝑃𝑃𝑃𝑃𝐷𝐷 = 0.01, the limiting perfusion velocity, 𝓋𝓋𝐷𝐷 = 1 × 10−6  cm/s. Thus, the 343 

dimensionless, limiting perfusion velocity for determining the thickness Δ, 𝜈𝜈𝐷𝐷 ≡ 𝓋𝓋𝐷𝐷/𝓋𝓋𝑅𝑅0 =344 

1 × 10−6/1.36 × 10−5 = 0.073.  345 

In other words, from Eq.S33 for the uniform MVD distribution case, we can determine the 346 

corresponding dimensionless convective zone thickness 𝜆𝜆Δ = 1 − 𝜉𝜉𝐷𝐷, where 𝜉𝜉𝐷𝐷 ≡ 𝑅𝑅𝐷𝐷/𝑅𝑅0, 347 

for an assumed of say 𝜈𝜈𝐷𝐷 ≈ 0.001 − 0.1, i.e., by solving the following 348 

𝜈𝜈𝐷𝐷 − �
1

𝛼𝛼0 coth𝛼𝛼0 − 1
� �
𝛼𝛼0
𝜉𝜉𝐷𝐷

cosh(𝛼𝛼0𝜉𝜉𝐷𝐷)
sinh(𝛼𝛼0) −

1
𝜉𝜉𝐷𝐷2

sinh(𝛼𝛼0𝜉𝜉𝐷𝐷)
sinh(𝛼𝛼0) � = 0 (Eq.S43) 

 349 

S6. Mean Squared Error (MSE) 350 

The agreement between the experimental drug delivery data and the predicted values 351 

from the model can be assessed via the MSE metric, which is reported for each 352 

granuloma and drug in S2 Table.docx. We calculate MSE as (Eq. S44) 353 

𝑀𝑀𝑑𝑑𝑀𝑀 =
1
𝑛𝑛
�(𝑌𝑌 − 𝑌𝑌′)2
𝑛𝑛

𝑖𝑖=1

 (Eq.S44) 

Where Y represents actual experimental values each measured at ith observed values, Y’ 354 

represents the predicted values, i is and n is the total number of data points for each 355 

granuloma. A lower MSE indicates a better fit of model predictions to observed data.   356 



Abbreviations, symbols, and terminology  357 
 358 
Abbreviations:  
B.C. Boundary condition 
CFZ Clofazamine 
Da Dalton 
GME Granuloma microenvironment 
HDT Host-directed therapy 
IFP Interstitial fluid pressure 
IFV Interstitial fluid velocity 
MM 
MSE 

Michaelis-Menten 
Mean squared error 

MVD Microvascular density 
RIF Rifampicin 
ODE Ordinary differential equation 
TME Tumor microenvironment 

Roman Symbols:  
𝑎𝑎𝑣𝑣 surface area of the vessels/volume of tissue (cm2/cm3) 
𝐵𝐵0 D’Arcy permeability (cm-2) 
𝐶𝐶1,2 Constants of integration 
𝐶𝐶𝑗𝑗 Concentration of chemical species j (i.e., where j is oxygen, a 

nutrient [e.g., glucose], or a drug) (mol/L) 
𝐶𝐶𝐺𝐺 concentration of glucose (mol/cm3) 
𝐶𝐶𝐺𝐺,𝑏𝑏 constant bulk concentration of glucose in the perfused region (mol/L) 
𝐶𝐶𝑂𝑂2 concentration of oxygen (mol/cm3) 
𝐶𝐶𝑂𝑂2,𝑏𝑏 constant bulk concentration of oxygen in the perfused region (mol/L) 
𝐷𝐷𝐶𝐶𝐶𝐶𝐶𝐶,𝑅𝑅𝑅𝑅𝐶𝐶   effective diffusion coefficient of CFZ and RIF in the interstitial fluid 

(mm2/s) 
𝐷𝐷𝑗𝑗𝑒𝑒 the effective diffusion coefficient of chemical species j in the 

interstitial fluid (mm2/s) 
𝑑𝑑𝑣𝑣 average microvessel diameter (mm) 
𝑓𝑓 dimensionless concentration of oxygen 
𝐽𝐽𝑣𝑣 vascular volumetric flow rate (mm3/s) 
𝑘𝑘 first-order rate constant for oxygen consumption (s-1) 
𝐾𝐾 inverse of the half-saturation Michaelis-Menten constant (L/mol) 
𝐾𝐾𝑀𝑀 half-saturation constant of the Michaelis-Menten equation (mol/L) 
𝐾𝐾𝑣𝑣 hydraulic conductivity coefficient (mm/s) 
𝐿𝐿𝑝𝑝 membrane hydraulic conductivity of blood vessels (mm4/s-mmHg) 
𝑙𝑙𝑣𝑣 
n 

average microvessel length (mm) 
number of drug delivery points gathered experimentally per 
granuloma 

𝑁𝑁𝑣𝑣 microvessel density (number of microvessels/mm2) 
𝑝𝑝𝑖𝑖 interstitial fluid pressure (mmHg) 
𝑝𝑝𝑣𝑣,𝑒𝑒 effective vessel pressure (mmHg) 



𝑃𝑃𝑃𝑃r 
𝑃𝑃𝑃𝑃𝑅𝑅0 

Péclet number for radial transport 
Péclet number at the granuloma-lung interface (at r = R0) 

𝑃𝑃𝑃𝑃Δ Péclet number below which diffusion dominates 
𝑞𝑞 Bruggeman exponent 
𝑟𝑟 radial position in the granuloma (mm) 
Δ𝑟𝑟 radial thickness over which the shell-balance is performed (mm) 
𝑅𝑅0 radius of the granuloma (mm) 
𝑅𝑅𝐷𝐷 radius of diffusive region (mm) 
𝑅𝑅𝑗𝑗 volumetric source term for chemical species j 
𝑣𝑣𝑟𝑟 radial interstitial fluid velocity (mm/s) 
𝑣𝑣Δ radial velocity associated with 𝑃𝑃𝑃𝑃Δ (mm/s) 
𝑉𝑉 granuloma/tumor volume (mm3) 
𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 
Y 
 
Y’ 

maximum rate of respiration (mol/mm3 s) 
experimental (observed) value of normalized drug delivery in a TB 
granuloma 
modeled (predicted) value of normalized drug delivery in a TB 
granuloma 

Greek Symbols:  
𝛼𝛼0  dimensionless modulus (i.e., granuloma/tumor size) 
𝜒𝜒 dimensionless Michaelis-Menten kinetic factor 
Δ thickness of well-perfused layer (mm) 
𝜀𝜀 volume fraction 
𝜙𝜙 Thiele modulus 
𝜑𝜑𝐵𝐵 volumetric rate of oxygen delivery from the vasculature into the 

tissue (mm3/s) 
𝜑𝜑𝐿𝐿 volumetric flow rate of plasma to the lymph vessels (mm3/s) 
κ ratio of the first-order rate constant for oxygen consumption to the 

half-saturation constant of the Michaelis-Menten equation (mol/Ls) 
𝜆𝜆Δ dimensionless well-perfused layer thickness 
𝜋𝜋𝑖𝑖 interstitial oncotic pressure (mmHg) 
𝜋𝜋𝑣𝑣 vessel oncotic pressure (mmHg) 
ϱ dimensionless pressure difference 
𝜎𝜎𝑆𝑆 solute (Staverman) reflection coefficient 
𝜏𝜏 tortuosity factor 
𝜈𝜈 dimensionless IFV 
𝜉𝜉 dimensionless radial depth 
𝜓𝜓 dimensionless IFP 
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