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Unlocking complex soil systems as carbon
sinks: multi-pool management as the key

Gerrit Angst 1,2,3 , Kevin E. Mueller 4, Michael J. Castellano 5,
Cordula Vogel6, Martin Wiesmeier7,8 & Carsten W. Mueller 9

Much research focuses on increasing carbon storage in mineral-associated
organic matter (MAOM), in which carbon may persist for centuries to millen-
nia. However, MAOM-targeted management is insufficient because the for-
mation pathways of persistent soil organic matter are diverse and vary with
environmental conditions. Effective management must also consider parti-
culate organic matter (POM). In many soils, there is potential for enlarging
POM pools, POM can persist over long time scales, and POM can be a direct
precursor of MAOM. We present a framework for context-dependent man-
agement strategies that recognizes soils as complex systems in which envir-
onmental conditions constrain POM and MAOM formation.

Since the late 1980s1–3, many studies have stated the necessity to
distinguish particulate organic matter (POM) from mineral-
associated organic matter (MAOM) in order to better understand
soil organicmatter (SOM) dynamics andmanage soils as a carbon (C)
sink4. The logic is simple: although SOM includes diverse biomole-
cules that are positioned continuously along many biophysical and
spatiotemporal gradients in soil5, POM andMAOM are two pools that
are reasonable to separate (physically) and differ broadly in their
ecological functioning, chemical composition, and turnover times6.
Particulate OM is mostly derived from partly decomposed plant
fragments6, and where it is not occluded within aggregates7, it has a
relatively short residence time8 and can be easily decomposed under
the right environmental conditions. Contrastingly, MAOM is
tightly bound to minerals or occluded within small microaggregates
(<50 µm9) and assumed to persist in soil for hundreds to thousands
of years10, even though MAOM can be recycled on shorter
timescales11 and is a potential nutrient pool for plants12. The lower
bioavailability of MAOM and its large contribution to bulk soil C
storage in many soils has stimulated many researchers to mainly
focus on factors that influence its formation, chemical composition,
and accumulation.

Recently, much SOM research and conceptual development of
soil management strategies has emphasized the remains ofmicrobiota
(or microbial necromass)13–15, which can constitute a substantial por-
tion of MAOM16. To build-up microbial biomass, and microbial
necromass retained in MAOM, some authors suggest manipulating
plant inputs, e.g., by introducing plants that supply types of organic
substrates that microorganisms can more efficiently convert to
microbial biomass13,14,17 and thus enhancing microbial necromass.
However, the performance of such microbe-and-MAOM-centric stra-
tegies for research and soil management may suffer from persistent
uncertainty about the composition of MAOM and the efficiency of its
formation fromdifferent precursors. For example, inmany soils, biotic
and abiotic factors likely allow plant-derived biomolecules to account
for a substantial fraction of MAOM16. Particulate OM itself can be a
precursor to MAOM, but the importance of such a link between these
two pools is likely sensitive to environmental constraints. Recent stu-
dies of agricultural soil microcosms suggest that formation of MAOM
is unrelated to POM, but linked to inputs of dissolved compounds
leached from plant litter18,19, which can easily sorb to mineral surfaces
(“direct sorption”) orbemetabolizedby themicrobial community. Yet,
similar elemental, isotopic, and chemical characteristics among POM
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and MAOM across diverse ecosystems20–23 indicate intricate links
between MAOM formation and microbial depolymerization and
transformation of POM into simpler forms and microbial necromass.
Thus, different SOM precursors and formation pathways appear to
have varying importance in different contexts24, and generalizations
about MAOM formation mechanisms seem problematic. Dissolved
organic compounds may be less relevant in systems that lack a thick
organic layer or in which plant biomass or litter is regularly removed,
suchas in certain croplands25,26. Decomposing POMcanalso bea direct
source of dissolved organic compounds in mineral soils and thus link
POM and MAOM22,27. Likewise, microbial depolymerization and trans-
formation of litter, or POM, and the related build-up of MAOMmay be
more or less efficient depending on multiple environmental con-
straints that determine microbial proliferation and the stabilization of
microbial remains. For example, “recalcitrant” POM (with high lignin to
nitrogen (N) or C:N ratios) can hamper formation of MAOM as com-
pared to “high-quality” POM (low lignin:N or C:N ratios28).

Focusing research or management exclusively or primarily on
MAOM also obscures several key facts: (i) C stocks in organic horizons
and in POMwithin mineral soils can be large, and persist for hundreds
to thousands of years (even if the residence time of each biomolecule
or C atom is not long), (ii) some types of POM, such as that occluded in
aggregates, are relatively stable as indicated by residence times of
hundreds of years29), and (iii) proportionally, POM-Cmay contribute as
much or more to total C storage than MAOM-C, such as in soils with a
limited capacity formineral protection of SOM30,31 or grassland soils in
alpine or semi-arid environments29,30. In our view, emphasis toward

MAOM also coincides with a problematic reduction in the number of
studies andmanagement strategies that consider the organic horizon,
which is primarily comprised of POM and is a large pool of C and
nutrients in many ecosystems. While the importance of POM has cer-
tainly been recognized for some soil systems and in some conceptual
and quantitative models4,32,33, we see a critical need to develop a more
holistic and integrative view of POM and MAOM dynamics, including
their interactions and sensitivity to management practices and envir-
onmental conditions that vary in space and time.

In summary, we propose that understanding of SOM dynamics
and effective management for C sequestration are hindered by an
over-emphasis on MAOM, inattention to interactions between MAOM
and POM, and context-blind generalizations about SOM dynamics. In
our view, a recalibration of SOM research to address these hindrances
will result in more integrative conceptual and quantitative models of
SOM dynamics, enabling more accurate and applicable knowledge of
the sources of SOM (i.e., microbial versus plant-derived organic
matter16,28,34) and the functions and locations of SOM (in organic versus
mineral horizons, in top- versus subsoils, in POM versus MAOM
fractions).

Developing a systems approach for SOM research and
management
We advocate for a systems approach (Fig. 1) to studying andmanaging
SOM that recognizes soils as complex systems in which POM and
MAOM are distinctly important, but intertwined parts, and POM and
MAOM formation, stocks, and stability determined by processes

Systems approach
Reconciled with prevalent environmental conditions, 
taking into account C-saturation and constraints on 
formation of POM and MAOM
For example, increasing rhizodeposits and plant input 
chemistry in grassland soils with a C-saturation deficit

Uninformed management
Not reconciled with prevalent 
environmental conditions
For example, maximization of root 
exudates in soils with a C-saturated 
mineral phase

C-saturated 
mineral phase

C-saturation
deficit

Increasing and perpetuating plant inputs
increases C stored in POM

Maintenance/increase of C storage in POM and MAOM

Conservation of hydromorphic soils maintains C stored in 
POM and MAOM
Retention of harvest residues and establishment of diverse 
forests may increase C storage in POM and MAOM
Active rewilding may increase bioturbation and thus POM 
and MAOM in mineral soil

POM-C in soils with low proportion of reactive minerals
(such as plaggen soils)

Use of plants with high-quality tissues (e.g., legumes) and 
restoration of or increase in plant or crop diversity increase 
quantity and quality of rhizodeposits and POM, and the formation 
of MAOM via direct sorption and microbial necromass formation
Perennialization increases the period in which rhizodeposits are 
delivered to the soil, which increases MAOM-C as well as POM-C

pH

input
chemistry

pH

input
chemistry

plant-derived 
SOM

microbial-derived
SOM

Maintain management

POM-targeted management

Situational management

MAOM-targeted management

Low oxygen/pH/input-quality 
and/or 
Low C-saturation deficit and 
maximum capacity for MAOM                   
retention due to low proportion 
of reactive minerals

Unfavorable conditions for 
either biotic transformation of organic 
matter or for retention of MAOM 

Favorable conditions for both
biotic transformation of organic 
matter and for retention of MAOM 

Sufficient oxygen/pH, high input-quality
Large C-saturation deficit due to high 
proportion of reactive mineral surfaces

Fig. 1 | Systems approach for the contextualization of carbon-focused man-
agement strategies. Management strategies that are adapted to prevailing envir-
onmental conditions (i.e., following the systems approach) should be maintained,
while strategies not well-adapted to site-specific conditions (i.e., uninformed) can
be improved (first double circle from the upper left). The optimal management
strategy depends on whether the soil has a carbon (C)-saturated mineral phase

(second double circle) and favorable conditions for biotic transformation of
organic matter and retention of mineral-associated organic matter (MAOM; third
double circle). Recommended management strategies are indicated in boxes and
examples provided in the bullet points below. POM particulate organic matter,
SOM soil organic matter. Some elements in this figure adapted from Angst et al.58.
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whose importance and outcomes are dependent on environmental
factors and management practices that vary from site to site. Below,
we outline this systems approach for maintaining and/or establishing
soils as a C sink (Fig. 1). We specifically highlight how various con-
straints can affect the formation and interaction of MAOM and POM,
with anemphasis on howoptimal soilmanagementmight dependonC
saturation, land use, or soil type.

Targeting POM in systems with C-saturated mineral phase
We argue that whether C-focused management strategies should tar-
get POM or MAOM (or both) is principally determined by the C
saturation of a soil. The C-saturation concept is based on the
assumption that the amount of silt- and clay-sized minerals determine
the overall capacity of a soil to store C35–37. The concept primarily
focuses on MAOM as the major soil C pool and on the specific mineral
surface area of fine-sized minerals as the main driver of MAOM stabi-
lization. While MAOM-C indeed tends to “saturate” with increasing C
contents, the capacity of a soil to store additional C is not reached at
that point. Near and above the C-saturation threshold of a soil, for-
mation of MAOM will be less efficient13,18,38, but not zero39–41. Likewise,
there is ample evidence that additional (plant) inputs can continue to
accumulate as labile (free) or stabilized (occluded) POM42–47. Thus, for
soils (or soil horizons48,49) that are at or near their theoretical
C-saturation limit, MAOM-centric strategies aimed at increasing C
storage will be ineffective48 and may even be counterproductive50,51.
For example, in C-saturated soils, promoting plants with ‘high quality’
litter or greater root exudation could diminish both POM pools
(because of more complete decomposition of plant litter and miner-
alization of plant-derived C28) or MAOM pools (due to exudation-
induced priming50). In our opinion, for soils with a C-saturatedmineral
phase, focus should rather be on increases in POM, e.g., via higher
amounts of structural, perhaps more recalcitrant, plant inputs (Fig. 1).
If these inputs are perpetuated, C storage in such soils canbe increased
in the long term via the rather labile POM pool, even if MAOM for-
mation is low. For example, in forests managed for timber production,
management practices that retain larger fractions of biomass residues
(e.g., leaves and branches) could increase SOC stocks52,53, even if
MAOM-C pools are close to saturation. In croplands, increased litter
inputs combined with practices such as no or reduced tillage in agri-
cultural systemsmayalso increase the formation of aggregates54–56 and
thus the persistence of POM occluded within these aggregates.

Increasing MAOM relies on favorable soil conditions for biotic
transformation of organic matter and for retention of MAOM
Globally, the average C-saturation deficit of surface soils (≤30 cm
depth) is estimated to be roughly at 50%, and soils further from
C-saturationmayaccrueCmore effectively48. For these soils, improved
management could increase MAOM-C. However, whether MAOM-
targeted management in such soils is effective primarily depends on
both (i) environmental conditions such as pH, chemistry of organic
matter inputs, or availability of oxygen, and (ii) the overall proportion
of reactive mineral surfaces. These parameters determine the rates at
which soil fauna and microorganisms depolymerize and transform
organic matter into simpler forms and microbial necromass, which is
central to the formation ofMAOM14,20,23,57,58, and the capacity of a soil to
store C as MAOM, respectively. We thus expect that formation of
MAOM can be boosted by implementation of appropriate manage-
ment in soils with conditions that favor transformation of organic
matter (e.g., organic matter inputs with low C/N and lignin/N or suffi-
cient oxygen) and that have abundant reactive minerals, such as soils
rich in silt and clay (Fig. 1).

For example, aerobic grassland soils with a C-saturation deficit
and high abundance of reactive minerals provide the potential to
increase C stored in MAOM via increased root exudates59 and struc-
tural plant inputs60. Grasslands typically have a continuous input of

plant material but no organic horizons61,62, low C:N ratios and low
ratios of lignin to N in plants63, and near-neutral soil pH64, resulting in
an efficient transformation of plant-derived organic matter into
microbial products and subsequent formation of more persistent
MAOM. Recent studies suggest that suitable management strategies,
such as optimized grazing intensities, multitrophic rewilding, or
restoration of plant diversity, can alter the quantity of rhizodeposits
and the quantity and quality of POM in grasslands, boosting formation
of MAOM-C (and POM as precursor pool) both via direct sorption of
dissolved organic matter and biotic transformation of POM60,65–68.

Likewise, soils in an intermediate development stage on loess-rich
parent materials, such as Chernozems, Cambisols, or Luvisols, are
usually fertile, well-aerated, and have a high reactive mineral surface
area69. These characteristics provide favorable conditions for micro-
bial transformation and stabilization of SOM, as indicated by high
amounts of microbial necromass in bulk soil and SOM fractions16,70.
Many of these soils are under agricultural use and consequently low in
POM due to biomass export via harvest and rapid decomposition of
plant inputs in these systems69,71,72. Total SOM stocks in these circum-
stancesmay be increased by an improvedmanagement of plant inputs
(e.g., useof high-quality cover crops [legumes], cultivarswith higher or
deeper root-derived inputs, and/or perennials; retention of crop resi-
dues) in combination with reduced tillage, optimized fertilization, or
organic amendments56,68,73–75 (but also refer to Schlesinger76). These
management practicesmay eventually boost MAOM-C in themedium-
to long-term via root exudates and plant-derived POM as precursor
pools48,59,77.

Reconsidering POM to meet specific soil and management
conditions
Soils with adverse conditions for faunal and microbial activity have
often hampered decomposition of plant residues that leads to the
accumulation of POM both in mineral soils and in organic horizons,
which can comprise high C stocks78. The conditions that favor POM
accumulation (vs. MAOM formation) are likely caused by the interplay
of various environmental factors (such as precipitation, topographic
position, soil type, or vegetation)32 that cannot easily be shifted
towards a state favorable for MAOM formation. Moreover, soils with
lowmineral surface area have a reduced capacity for retainingMAOM,
so even if those soils have a C-saturation deficit and favorable condi-
tions for biotic transformation of organicmatter inputs, POMcould be
an important pathway for additional C sequestration. We argue that
effectivemanagement of such soils as a C sink has to be situational and
will require a renewed consideration of POM, especially where its
formation and stabilization aremore favorable (e.g., forests compared
to most grasslands and some croplands; cold versus warm climates;
acidic versus neutral soils; sandy soils; see below; Fig. 1).

For example, accumulation of POM and reduced formation of
MAOMare often related to low-quality plant inputs (e.g., highC toN or
lignin to N ratios), low soil N availability, and low soil pH values. Such
conditions are often found in coniferous forests69,79,80 and beneath
some deciduous hardwood stands or species81. Plant inputs with high
C:N ratios, rich in tannins, waxes, and lignin, can hamper microbial
metabolization of POM derived from these plant tissues and thus the
efficiency with which MAOM is formed82,83. The typically low soil pH
under trees with low-quality tissues84,85 can have further detrimental
effects on the microbial and faunal community (e.g., absence of
earthworms and inhibition of bacteria), reduce the number of mineral
surfaces available for the sorption of organic matter86, and favor the
dissolution of minerals (typically in Podzols). Trees associated with
ectomycorrhizal fungi may be more likely to create conditions unfa-
vorable for efficient bacterial conversion of plant litter and POM to
MAOM87–91. In systems with one or more of these ‘unfavorable’ condi-
tions, formation of MAOM may proceed relatively slowly71 and be
limited to, or dominated by, direct sorption of dissolved organic
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compounds92. These conditions result in the formation of a thick
organic layer, a high contribution of POM to total SOM pools71, and an
elevated contribution of plant compounds to MAOM (and reduced
contribution of microbial necromass) as compared to other
ecosystems16.

Notably, an overly MAOM-centric view of soil C sequestration and
ecosystem management may undervalue forests with large organic
horizons and higher contributions of POM to SOM in mineral soils71,78.
Implementing MAOM-centric management practices in such forests
without consideration of POMmay result in little change in total SOM
stocks and net C sequestration51. We argue that in many forests, soil C
stocksmay bemaximized bymaintaining or increasing the diversity of
overstory tree species93, including species with both high and low litter
quality, which may allow for relatively large pools of POM andMAOM
at the ecosystem scale94. Such interventions will be most effective
when combinedwithmanagement strategies thatminimize the export
of organic matter, e.g., through retention of harvest residues52,95 or
active rewilding (Fig. 1). For example, retention of harvest residues in a
eucalyptus plantation for a period of three yearsmeasurably increased
both POM- and MAOM-C (2.1- and 1.2-fold)96. Moreover, re-
establishment of populations of large animals or introduction of
earthworms may increase bioturbation rates, with potential positive
effects on MAOM-C58,66,97, negative effects on C stored in the forest
floor, but no substantial changes in combined C stocks of forest floors
and mineral soil98.

Similarly, hydromorphic soils have reduced oxygen availability
and anoxic zones within the soil profile that lead to low redox
potentials99 and the dominance of K-strategists100. This decelerates the
accrual of microbial necromass in MAOM101 and favors the accumula-
tion of POM, which accounts for up to 100% of C in Histosols and a
major proportion of C in Cryosols102–104, paddy soils105, and Gleysols99.
Particulate OM in cryogenic and hydromorphic soils could also play an
important role in their response to climate change. Thawing perma-
frost may accelerate mineralization of POM (and loss of C) previously
protected from decomposition via water logging or low
temperatures104. Likewise, in areas where precipitation and anoxia is
increasing, POM may accumulate (with potential decreases in
MAOM106,107). Conversely, if hydromorphic soils are subject to reduced
precipitation and increased aeration, losses of unprotected POM may
contribute to reduced SOM stocks and substantial CO2 emissions108,109,
unless MAOM forms at the same rate as POM is lost. Conservation and
restoration of wetlands110 and peatlands thus appear to be the most
reasonable interventions tomaintain and increase storage of POM-C in
soil systems that naturally preserve large amounts of rather labile C
over millennia (Fig. 1).

We further argue that soils with a low proportion of reactive
minerals surfaces, even if notC-saturated, are inappropriate targets for
MAOM-centric management. Increases in MAOM-C in such soils will
have little effect on the total SOC stock because their capacity to
accrue C in MAOM is strongly limited and they are commonly domi-
nated by C stored in POM111. Heathland or plaggen soils in north-
western Europe45,112, for example, aremostly sand-rich, the C content is
uncorrelated to MAOM45,113, and they store exceptionally high C
amounts in POM113,114. This POM likely persists due to high contents of
lipids, aliphatic compounds, and sterols that mainly originate from
heathland vegetation and sustained high inputs of organic matter112,113.
In our view, maintenance of and/or increase in C stocks in such sandy
soils should be based on sustained inputs of “recalcitrant” organic
matter with highC:N ratios, such asbiochar115, tomaintain and increase
POM-C, rather than on a MAOM-focused approach using high-quality
plant inputs45 (Fig. 1).

Implications and outlook
We highlight that C sequestration in soil should not be a single-pool
endeavor, and support our view by clarifying the varying relevance of

POM and MAOM formation pathways across different environmental
contexts, including levels of soil C saturation, climate, land use/cover,
and soil type. TargetingMAOM alone will not optimize soils as a C sink
in many contexts. To make full use of the C sequestration potential of
soils, management strategies should recognize soils as complex sys-
tems and be tailored to the respective environmental conditions
(Fig. 1).We advocate for the reconsideration of POMas a quantitatively
and functionally important C pool and management target in a mul-
titude of ecosystems. For example, POM is particularly important in
ecosystems with a C-saturated mineral phase, with unfavorable con-
ditions for biotic activity (and thus formation of MAOM), or with a low
proportion of reactive minerals (such as in sand-rich soils) to accrue
significant amounts of MAOM-C. Increasing and perpetuating organic
matter inputs in such ecosystems is crucial to build and then maintain
stocks of POMwith a short mean-residence time compared to MAOM.

We further suggest that for many soils, C-sequestration can only
be maximized by broadening the focus of MAOM-focused manage-
ment strategies to build POM-C along with MAOM-C. Under suitable
conditions, such as in fertile grassland soils with a C-saturation deficit
and sufficient proportion of minerals, this could, for example, involve
maintenance of diverse plant species with variable tissue quality (likely
boosting POM- and MAOM-C116), instead of only promoting plant
species with high-quality tissues (mainly boosting MAOM-C). In this
context,we specifically see the need tomore strongly address subsoils,
whose large volume andC-saturationdeficit enables additional storage
of C in both POM and MAOM via rhizodeposits. We also believe a
systems approach that aims to build both POM and MAOM is com-
plementary to separate efforts to manage agricultural soils more
holistically117, e.g., to boost soil health, biodiversity, nutrient-avail-
ability, and crop performance118–121.

A systems approach could also help develop sounder policies and
standards for C-farming, which to date have not considered the fact
that multiple C pools exist in soil122. More specifically, monitoring of C
accrual (or maintenance) in both POM andMAOM is clearly needed to
evaluate the “permanence” of soil C pools in response to C-farming
schemes. We also advocate for allocating C-credits for accrual of C in
POM,despite its potential lability, particularly in certain environmental
contexts (Fig. 1); propermanagement couldmaintain large POMpools,
like thick organic horizons, for decades to centuries, and even short-
term C sinks entail measurable climate benefits123. We also believe that
C-farming schemes will be more effectively implemented and subse-
quently improvedbywidespread and standardized assessmentof POM
and MAOM stocks, and environmental factors, as detailed in our sys-
tems approach124, both before and after implementation of C-farming
strategies. Such data could, for example, reduce the risk of C loss and
financial uncertainty for farmers, and help researchers test and
improve newer models of SOM dynamics that explicitly incorporate
POM and MAOM33,125–128 (and are thus more useful for informing soil
management that is POM-and-MAOM-centric). To this end, fast and
cost-effective approaches to quantify POM and MAOM, particularly
simplified fractionation schemes129, are required for optimizing
C-farming frameworks.

Collectively, we advocate for a more holistic view on SOM pools
and their context-dependent formation and interactions; such a view
will help to improve the efficiency of soil management for C seques-
tration and help recalibrate SOM research to be less narrowly focused
on MAOM. Our systems approach (Fig. 1) enables the alignment of
management strategies with the complexity of soils, which will be key
to unlock and maintain them as a sustainable C sink.
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