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Data-Driven Dynamic Motion Planning for
Practical FES-Controlled Reaching

Motions in Spinal Cord Injury
Derek N. Wolf , Member, IEEE, Antonie J. van den Bogert , and Eric M. Schearer , Member, IEEE

Abstract— Functional electrical stimulation (FES) is a
promising technology for restoring reaching motions to
individuals with upper-limb paralysis caused by a spinal
cord injury (SCI). However, the limited muscle capabilities
of an individual with SCI have made achieving FES-driven
reaching difficult. We developed a novel trajectory opti-
mization method that used experimentally measured mus-
cle capability data to find feasible reaching trajectories.
In a simulation based on a real-life individual with SCI,
we compared our method to attempting to follow naive
direct-to-target paths. We tested our trajectory planner with
three control structures that are commonly used in applied
FES: feedback, feedforward-feedback, and model predic-
tive control. Overall, trajectory optimization improved the
ability to reach targets and improved the accuracy for
the feedforward-feedback and model predictive controllers
(p < 0.001). The trajectory optimization method should be
practically implemented to improve the FES-driven reach-
ing performance.

Index Terms— Trajectory optimization, neuroprostheses,
neuromuscular stimulation, data-driven modeling.

I. INTRODUCTION

FUNCTIONAL electrical stimulation (FES) neuroprosthe-
ses are a promising technology for restoring reaching

functions to individuals with upper-limb paralysis caused by
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spinal cord injury (SCI). Many different techniques including
reinforcement learning [1], [2] and iterative learning con-
trol [3] have shown success in controlling a single or a couple
degrees of freedom in the arm.

These limited successes controlling FES-driven reaching
motions have not carried over to individuals with SCI due
to the unique actuation issues in their arms. Individuals with
SCI suffer from rapid muscle atrophy [4] which combines
with increased muscle fatigue when electrically stimulated [5].
Additionally, some muscles suffer a complete loss of function
even in the presence of stimulation because of lower motor
neuron damage [6] as well as changes in muscle spastic-
ity. While reaching controllers have been implemented in
simulation [7], [8], in a rehabilitation setting with people
who have suffered a stroke [3], or with healthy individu-
als [9], the person-specific actuation issues in SCI must be
accounted for when controlling practical full-arm reaching
motions.

A common method of compensating for the issues in muscle
actuation driven by FES is to use a robot to support the
desired motions and simplify the complexity of controlling
multiple degrees of freedom. For full-arm reaching motions
with FES, two seminal approaches are the MUNDUS [10],
[11] and BrainGate2 studies [12] which both compensated
for these muscular actuation difficulties by using a robot. The
MUNDUS project saw major hand position errors arise from
slipping in the locked joints, mainly shoulder rotation. For the
BrainGate2 system, the major errors in control arose due to
the uncontrolled coupled motions produced in other degrees
of freedom by the robotic arm support. To better control the
arm through reaching motions, it is necessary to develop a
controller that directly accounts for the actuation limitations in
an individual with SCI as well as the dynamics of the system.

To our knowledge, there have been three main attempts
to control full-arm reaching motions without robots actively
controlling degrees of freedom [9], [13], [14]. In monkeys,
non-disabled muscle activations during reaching were recre-
ated with FES [14], but non-disabled activations may not
correspond to a person with SCI. Model-learning methods
have been used to determine configuration dependent models
of forces produced by the muscles along with a feedback
controller to move the hand along a straight-line path to a
desired hand position [9], [13]. Razavian achieved 2D reaching
motions using FES in a healthy individual [9]. Our own work
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previously achieved 3D reaching motions using straight-line
paths in a participant with a spinal cord injury with reasonable
accuracy, but there were areas of the workspace with limited
accuracy [15].

Dynamic programming and trajectory optimization have
been demonstrated in lower-limb movements as a solution
for overcoming these detrimental actuation issues. Simulation
studies have demonstrated the need to find feasible trajectories
that account for the muscle characteristics caused by SCI [16],
[17]. For example, another simulation study found significantly
different optimal trajectories for non-disabled walking com-
pared to FES-driven walking trajectories with muscle charac-
teristics of someone with SCI [18]. These studies activated
fewer muscles or estimated weakened muscle parameters to
simulate the capabilities of an individual with SCI.

The muscle capabilities for every individual with spinal cord
injury are unique, and dynamic trajectory optimization must
include person-specific capability data to find feasible trajecto-
ries. Experimental methods have previously been developed to
measure and predict the muscle torque production capabilities
of stimulating the arms of individuals with SCI [9], [19].
Combining these models with trajectory optimization to find
feasible reaching trajectories has the potential to improve
upper-limb control and successfully reach all parts of the
workspace. Therefore, we developed a subject-specific, data-
driven trajectory optimization that used experimentally mea-
sured muscle capabilities to find feasible reaching trajectories.

II. METHODS

We developed a data-driven trajectory optimization method
for reaching motions that accounts for person-specific mus-
cle weakness and loss of function. We first identified a
person-specific mathematical model of the arm of an individual
with high tetraplegia due to SCI and its response to electrical
stimulation. We created a dynamic simulation of the arm with
the modeled muscle capabilities. We developed a trajectory
optimization routine which accounts for the muscle capabil-
ities of the individual and the dynamics of the arm to find
feasible trajectories to a target arm configuration. We com-
pared the performance of controlling the arm along these
optimized planned trajectories compared to naive direct-to-
target paths using three control structures that are commonly
used in FES-driven reaching: a feedback controller [9], [15],
a feedforward-feedback controller [20], and a model predictive
control (MPC) controller [21]. An illustration of our control
framework is seen in Fig. 1. The trajectory optimization and
simulated control experiments were completed using an HP
Spectre laptop with an Intel i7-8565U 1.80 GHz processor.

Informed consent was obtained and the protocols were
approved by the institutional review boards at Cleveland
State University (IRB NO. 30213-SCH-HS) and MetroHealth
Medical Center (IRB NO. 04-00014).

A. Person-Specific Muscle Model
Our model identification procedures are based on those

presented in [22] and [23]. We present a brief summary of
the procedure and resulting model here.

Fig. 1. Framework for our control structure presented in this paper.
We identify a person-specific model of an arm and its response to elec-
trical stimulation. We then use this model of the muscular capabilities
of the participant and a simulation of the arm to find optimal trajectories
to achieve a desired arm configuration. Our controller then attempts to
drive the arm along the desired trajectory to the target configuration.

Fig. 2. Experimental setup used to identify a person-specific model of
an individual’s arm and its response to stimulation.

We completed a system identification experiment with a
single human participant with high tetraplegia. The individual
sustained a hemisection of the spinal cord at the C1-C2
level. We worked with her right arm which she is unable to
voluntarily move except for limited shrugging of the shoulder.
She exhibits normal to hypersensitive sensation on her right
side and does exhibit hypertonia in some of her muscles. More
details on the participant can be found in [24] (participant 1).
The experimental setup is shown in Fig. 2.

The individual is implanted with the IST-12 stimulator
telemeter in her abdomen [25]. We controlled nine muscle
groups with the device: 1. triceps (electrode type: nerve cuff,
maximum pulse-width: 250 µs, current amplitude: 2.1 mA),
2. deltoids (nerve cuff, 23 µs, 2.1 mA), 3. latissimus dorsi
(nerve cuff, 10 µs, 0.8 mA), 4. serratus anterior (nerve cuff,
20 µs, 1.4 mA), 5. biceps and brachialis (nerve cuff, 49 µs,
0.8 mA), 6. supraspinatus and infraspinatus (62 µs, 1.4 mA),
7. rhomboids (intramuscular, 107 µs, 18.0 mA), 8. lower
pectoralis (intramuscular, 22 µs, 18.0 mA), and 9. upper
pectoralis (intramuscular, 25 µs, 20.0 mA). Muscle stimulation
uses bi-phasic, charge balanced pulses delivered at 13 Hz.
The maximum stimulation parameters are defined for subject
comfort and safety.
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To gather data for model-learning, we used a HapticMaster
(Moog FCS) robot with three degrees of freedom. The robot
records the 3D forces at its end-effector. The participant’s wrist
was attached to the robot via the ADL gimbal attachment
(Moog FCS) which transmits force but not torque to the
robot. An Optotrak Certus Motion Capture System (Northern
Digital, Inc.) captured data used to calculate the arm’s config-
uration defined as three rotations at the shoulder — shoulder
plane of elevation, shoulder elevation, and shoulder rotation —
and two rotations at the elbow - flexion and pronation —
as defined by the ISB standards [26]. (For reference, the
standard anatomical motion of shoulder abduction/adduction
corresponds to shoulder elevation at a 0-degree plane of
elevation. The standard anatomical motion of shoulder flex-
ion/extension corresponds to shoulder elevation at a 90-degree
plane of elevation.) At 27 positions spaced throughout the
participant’s comfortably reachable workspace — defined as
the space in which the robot can comfortably move the
subject’s hand — we measured the amount of force produced
by each muscle group when stimulated at their maximum
pulse-width as well as with no muscle groups stimulated with
the wrist held statically by the robot. When multiplied by the
transpose of the Jacobian of the arm, the torques about each of
four degrees of freedom — shoulder elevation plane, shoulder
elevation, shoulder rotation, and elbow flexion (pronation does
not create force at the wrist) — can be calculated. (The force
capabilities of the subject’s muscles are visualized in [19], and
representative force and torque measurements during model
identification are shown in the supplemental Fig. S1 and S2.)
The process was repeated three times, and the data was used
to train a semiparametric Gaussian process regression (GPR)
model [27] for each muscle group. The input to the model is
the configuration of the arm and the output is the joint torque
predicted to be measured by the robot when a muscle group is
stimulated. The difference between the predicted torque with
no muscles stimulated and with a muscle group stimulated
is the predicted amount of torque produced by the muscle
group.

It is assumed that the torques produced by the muscle groups
combine linearly, an assumption that is supported by [28].
Therefore, the torque, τ ∈ R4 produced by a set of muscle
activations, α ∈ R9 where α ∈ [0, 1] for each muscle group,
is determined by

τ = R(q)α (1)

where q is the arm configuration and R(q) ∈ R4×9 is
the configuration dependent muscle torque production matrix.
The i th column of R corresponds to the torques produced
by the i th muscle group when stimulated at 100% activation.

Using the semiparametric GPR model, the capabilities of
the individual’s muscles at any arm configuration in their
workspace can be predicted by calculating the muscle torque
production matrix.

B. Dynamic Arm Simulation
We developed a dynamic simulation of the participant’s

arm that used our previously found muscle torque production

models to simulate the participant’s true capabilities. The
simulation consisted of two links, a humerus and a forearm,
and four degrees of freedom. There were three rotations at the
shoulder: shoulder plane of elevation, shoulder elevation, and
shoulder rotation. There was one degree of freedom for elbow
flexion. All rotations are defined in [26].

The segment lengths of the participant were measured to be
0.315 m for the humerus and 0.253 m for the forearm. The
mass, moments of inertia, and position of the center of masses
for each link were estimated using the properties from [29].
The equations of motion were found using Autolev 4.3 [30]:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q), (2)

where M(q) is the mass matrix, C(q, q̇) is the Coriolis
matrix, and g(q) is the gravitational and passive stiffness
term. For numerical stability, the simulation included stiffness
of 1 Nm/rad and damping of 1 Nms/rad on each degree of
freedom with the equilibrium configuration being the passive
equilibrium measured with the participant. The equations of
motion were rearranged into implicit state space form,

f(x, ẋ, α) = 0, (3)

where the state, x, incldues the angles and angular velocities:
x = (q, ω)⊤, and

f =

[
q̇ − ω̇

M(q)ω̇ + C(q, q̇)ω + g(q) − R(q)α

]
. (4)

Symbolic differentiation was used to generate C code for the
function f, and its three Jacobian matrices — df/dx, df/dẋ,
df/dα — to allow gradient-based trajectory optimization and
linearization. The C code was compiled into a MEX function
for use in MATLAB.

The model was actuated using torques across each of the
degrees of freedom. The inputs to the model were the set
of nine muscle activations, and equation (1) was used to
determine the torque across each joint.

The simulation made several assumptions regarding the
dynamics of the real-life system. The simulation did not
include gravity. The participant’s shoulder muscles are not
strong enough to support against the force of gravity. Due
to this, the participant uses a mobile arm support to sup-
port against the force of gravity. We assumed that the arm
support perfectly compensates for the force of gravity on
the arm.

The system was simulated using the backwards Euler
method with a time step of 0.02 seconds. Newton’s method
was used to find the next state of the system at the end of the
time step [29], [31]. For each time step, the control inputs were
discretized and held constant across the entire time step which
is realistic to how the real stimulation systems work where the
frequency of stimulation determines the rate at which control
inputs can change. The dynamics of the system and the muscle
torque production models were modeled as continuous systems
which varied with the state of the system, defined by the
joint angles and joint velocities of the arm. The system was
simulated using MATLAB r2019b (The MathWorks, Inc).
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C. Trajectories

1) Direct-to-Target Trajectories: Direct-to-target trajectories
were defined as a similar approach to the straight-line tra-
jectories followed in previous research [9], [15]. We defined
a fifth-order polynomial for each joint which began at the
starting arm configuration with zero velocity and ended
at the target configuration with zero-velocity producing
smooth, minimum-jerk trajectories similar to natural human
reaching [32].

2) Optimized Planned Trajectories: Using the dynamic arm
simulation presented in II-B as a basis, trajectory optimiza-
tion was used to determine feasible reaching trajectories
that accounted for the person-specific muscle capabilities.
We attempted to find a feasible trajectory from a given
starting configuration to a target configuration. From (1),
we can see that for some target configurations, it was pos-
sible that no feasible trajectory exists because the mod-
eled muscles are unable to produce torque in the required
direction. To search for a feasible trajectory, we used the
trajectory optimization techniques described for optimizing
human gait in [33]. We used IPOPT [34] to solve a direct
collocation constrained nonlinear optimization problem to
calculate the optimal muscle activations to achieve the desired
motion.

With known dynamics from (4), for n total nodes, the
trajectory optimization problem was written as

minimize:
α,x

mean(α2) + γ mean((q − qtarg)
2)

subject to:
state constraints

xmin ≤ xk ≤ xmax, ∀k ∈ {1, 2, . . . , n}

activation constraints
αi,k ∈ [0, 1],

∀i ∈ {1, 2, . . . , 9} , ∀k ∈ {1, 2, . . . , n}

dynamics constraints
f(xk, ẋk+1, αk) = 0, ∀k ∈ {1, 2, . . . , n − 1}

task constraints

x1 = [q0 0]
⊤ xn = [qtarg 0]

⊤. (5)

The first term of the objective function minimizes the average
of the squared muscle activations for all n nodes of the trajec-
tory, α. Minimizing muscle activations is desirable because it
limits fatigue in the participant and allows for greater control
bandwidth for a feedback controller to adjust activation before
muscle saturation. The second term attempts to minimize the
average distance from each configuration across all n nodes
of the trajectory, q, to the final target configuration, qtarg. This
term was added to bias the solution to more direct paths.
While paths that go directly to the target are not always
reasonable, for most reaching tasks, a person will want to
reach in the most direct path possible to achieve the desired
motion. γ is a weighting factor which was selected to be
γ = 1 rad−2 to achieve the overall goal of the objective func-
tion to balance the goals of minimal activations and direct path
reaches.

The optimization problem includes constraints on the state
(joint angles and joint velocities), muscle activations, dynam-
ics, and task. To guarantee the controller found trajectories
within the participant’s comfortable workspace, the joint
angles were constrained to be between the minimum and
maximum joint angles seen during the system model iden-
tification in section II-A with an additional 11◦ of rotation
in each direction to ensure trajectories along the edge of
the workspace could be reached. The joint velocities had
a maximum magnitude of 10 rad/s. The combined state
constraints are represented by xmin and xmax. The muscle
activations were constrained between 0 and 1. The dynamics
constraints ensured that the dynamics from the simulation
developed in section II-B were satisfied throughout the tra-
jectory. The dynamics were approximated using the backward
Euler method. The task constraints ensured that the first node
began at the start configuration with zero velocity, x0, and
the final node ended at the target configuration with zero
velocity, xtarg.

To select the target arm configurations, we created a grid of
arm configurations with 20◦ spacing between the maximum
and minimum joint angles measured in the training data in
section II-A. This resulted in a grid of 81 target configura-
tions — and corresponding 3-dimensional hand positions —
spaced throughout the subject’s workspace (see Fig. 5a). The
desired starting configuration for each reaching motion was
defined as the resting equilibrium configuration as measured
while identifying the model. This configuration placed the
participant’s wrist near the center of their reachable workspace.
For each target configuration, we completed the trajectory
optimization with 100 nodes (time-step of 0.02 s). Increasing
the number of nodes increases the computational load but
improves the estimation of the system dynamics. To select
the number of nodes, an optimization was completed for a
single trajectory using 200 nodes, and this optimized trajectory
was accepted as the ground truth. We then completed a series
of optimizations using different numbers of nodes, and the
root mean squared (rms) error of the predicted trajectory to
the ground truth trajectory was calculated. We started with
ten nodes and increased the number of nodes until the new
trajectory had a final rms error of 1 mm when compared to
the 200-node trajectory.

The duration of each trajectory was 2 seconds. For the
first attempt at finding a trajectory for a given target position,
we used an initial guess of a direct-to-target trajectory (fitting a
fifth-order polynomial for each joint from the start to the target
arm configuration) with zero activation. If IPOPT was unable
to find an acceptable solution in 1500 iterations, we would
try to find a feasible trajectory for the target position one
additional time with a random initial guess. If a feasible
trajectory was still not found, the target position was aban-
doned and the next target configuration was attempted. It is
important to note that not finding a feasible trajectory does not
guarantee that one does not exist. For all targets, the amount
of time to complete the optimization ranged from 11 seconds
to 826 seconds with an average time of 323 seconds. For
feasible targets, the average amount of time to complete the
optimization routine was 79 seconds.
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D. Controlling Simulated Reaching Motions

To test our trajectories found with the optimization methods
in II-C.2, we compared three controllers: 1. a feedback con-
troller (referred to as “FB” in figures and tables), 2. a combined
feedforward-feedback controller (“FF+FB”), and 3. a model
predictive control (“MPC”) controller.

1) Feedback Controller: The feedback controller is similar
to the controller presented in [15] used for straight-line reach-
ing. A PID controller transforms errors in joint-position and
velocity to desired control torques, τFB ∈ R4, across each
degree of freedom. For the current configuration of the arm,
q, the muscle torque production matrix, R(q), is predicted
using the person-specific model developed in II-A. For the
feedback only controller, to resolve muscle redundancy and
solve for the desired muscle activations, α, we then solve the
following quadratic programming problem,

minimize:
α

||α||
2
2

subject to:R(q)α = τFB

αi ∈ [0, 1] ∀i ∈ {1, 2, . . . , 9} . (6)

If overcompensation occurs, meaning the feedback controller
calls for torques which are infeasible due to the muscle
capabilities of our participant, the controller attempts to find
the muscle activations which produce the maximum torque in
the desired direction of τFB. We achieve this by asking for
70% of the requested torque. If no feasible solution is found
with the new requested torque, we continue to scale down the
requested torque to 70% of the previous requested torque to
find a set of muscle activations which produce torque in the
desired direction. If after 10 iterations no solution is found,
the controller outputs zero muscle activation.

The parameters of the PID controller were manually tuned
on several trajectories with the goal of producing accurate
reaches with smooth activation profiles. For the feedback
controller, the proportional gain was 10 N/rad, derivative gain
was 1 N-s/rad, and integral gain was 1 N/rad-s.

2) Feedforward-Feedback Controller: For the feedforward-
feedback controller, the feedforward activations, αff, were
derived from the trajectory optimization for the planned tra-
jectories. For the direct-to-target trajectories, we solved the
inverse dynamics problem using a nonlinear interior-point
optimization to find the feedforward muscle activations that
would drive the dynamic arm simulation along the desired
trajectory. The feedforward-feedback controller used the same
PID controller to transform errors in joint-position and velocity
to desired feedback control torques, τFB ∈ R4, across each
degree of freedom as described above. The feedforward acti-
vations were added to the activation commands produced by
the feedback control, αfb, and ensure that the total activation
for each muscle is between 0 and 1. The new optimization
problem becomes

minimize:
α f b

||αfb||
2
2

subject to:R(q)αfb = τFB

αfb,i + αff,i ∈ [0, 1] ∀i ∈ {1, 2, . . . , 9} . (7)

The same overcompensation strategy as presented above is
used to select the feedback muscle activations. If feasible
activations cannot be found, the feedback activations are set to
zero and only the feedforward activations are used. The overall
muscle activations applied to the arm are α = αfb + αff.

The PID controller parameters of the feedforward-feedback
controller were kept the same as the feedback controller for
consistency: the proportional gain was 10 N/rad, derivative
gain was 1 N-s/rad, and integral gain was 1 N/rad-s.

3) MPC Control: We also developed an MPC control scheme
with the hypothesis that including knowledge of the system
dynamics more explicitly in the controller would produce more
accurate reaches. Additionally, MPC controllers are able to
explicitly account for the constraints of the system and thus
eliminate the issue of overcompensation. The MPC control
scheme we developed is based on the incremental MPC
formulation presented in [35] which incorporates the benefits
of integral control to the MPC control scheme. To find the
continuous time state-space matrices of the system, Ac and
Bc, the Jacobians of the equations of motion found in II-B
were used to linearize the system about the current state,

Ac = −
df
dẋ

−1 df
dx

Bc = −
df
dẋ

−1 df
dα

. (8)

The state-space system was discretized using a zero-order
hold. The state of the system included the joint angles and
joint velocities. The output of the system and the reference
trajectory included only the joint angles.

At each time-step, k, the discretized state-space model of
the system can be written as

xk+1 = Axk + Bαk

yk = Cxk, (9)

which can be used to predict the next state of the system, xk+1,
and the current system output, yk . To add integral action to
the controller, the state is augmented with the current control
input, and the new control input is defined as the change in
control input, 1u. The state-space system becomes[

xk+1
αk

]
=

[
A B
0 I

] [
xk

αk−1

]
+

[
B
I

]
1αk

yk = [C D]

[
xk

αk−1

]
+ D1αk . (10)

These state-space matrices are assumed constant for the
control calculations during a given time-step. The controller
selects the commands which minimize the objective function

J =

ny∑
i=1

ek+i
T ek+i + λ

nu−1∑
i=0

1αk+i
T 1αk+i . (11)

The first term of the equation minimizes the error, ek+i , for
a given time-step which is defined as the estimated output as
calculated by (10) subtracted from the reference trajectory. The
prediction horizon, ny , determines for how many time steps
forward the model predicts states and system error. The control
horizon, nu , determines the number of time steps forward that
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the controller optimizes control inputs. For time steps nu <

i < ny , 1u = 0. The lumped scalar weighting λ acts as a
muscle group activation smoothness parameter by weighting
the amount that the activation commands change.

The parameters of the MPC controller were tuned on several
trajectories with the goal of producing accurate reaches along
with smooth activation profiles. The time step of the simulation
was 0.02 seconds. The prediction horizon was selected to be
four time steps, and the control horizon was two time steps.
This weighting on the change in muscle activations, λ, was
selected to be 0.001 which was the highest value that did not
see a large drop in accuracy. We selected this highest value
of the control input weighting to create smoother activation
profiles which are more comfortable.

E. Simulation Experiments
We tested a set of 30 reaches from a neutral starting position

to target arm configurations as found by the trajectory opti-
mization in section II-C.2. For each target reach, we tested all
combinations of planned and direct-to-target paths, controllers,
and variations of model uncertainty described below.

1) Planned vs Direct-to-Target Trajectories: To evaluate the
importance of trajectory planning to control FES-driven arms
of individuals with SCI, we controlled the simulated arm
following the planned trajectories found in section II-C.2 and
naive direct-to-target trajectories as defined in II-C.1.

2) Control Strategy: We compared three control strategies
for driving the arm along the desired trajectory. We used
the feedback, feedforward-feedback, and MPC controllers pre-
sented in section II-D to drive the arm along each trajectory.
For the direct-to-target trajectories driven by the feedforward-
feedback controller, the feedforward commands were found by
solving the inverse dynamics with the known arm simulation
model. Feedforward commands found during trajectory opti-
mization were used during the feedforward-feedback control
of planned trajectories. For feedback and MPC control of
trajectories, the controllers attempted to drive the arm along
the planned trajectory without any feedforward control inputs.

3) Model Uncertainty: We first used an ideal model where
the controller had perfect information about the dynamics of
the system (i.e., the muscle model in the controller perfectly
matched the muscle model of the dynamic simulation).

To demonstrate our methodology for later real-world appli-
cation with human participants, each controller was tested with
an “uncertain model”. The muscle torque production capability
model used in the arm simulation that we were controlling
was different than the muscle torque capability model used by
the controller. The uncertain muscle models were created by
developing a new set of training data for the models produced
tin section II-A. The training data were randomly pulled from
the predicted distribution (mean and variance) calculated by
the semiparametric GPR models. We repeated the control with
uncertain models for all trajectories 10 times to ensure a wide
selection of uncertain muscle capability matrices. In a real-
world scenario, model errors lead to muscle capability pre-
dictions of both incorrect magnitude and incorrect amount of
torque on each degree of freedom (joint-space torque direction
vector). This uncertain model would similarly produce changes

in both the magnitude and direction of torque produced by
each muscle group.

Another realistic scenario is the presence of fatigue which
affects the magnitude of torque created but not the direction.
To test the controller’s response to fatigue, a “fatigued model”
was created by limiting the magnitude of the muscle torque
production matrix of the arm simulation to 90% of the
predicted value used by the controller.

4) Data Analysis: To measure the accuracy of the con-
trollers, we defined the error of a given reach in joint-space
as the Euclidean distance from the final arm configuration
and the desired configuration and in Cartesian space as the
3-dimensional Euclidean distance from the final hand position
to the target hand position. While the controllers drove the arm
in joint-space, for an individual person, the most important
measure for completing functional tasks is the ability to place
the participant’s hand at a target; therefore, we use hand posi-
tion as the main measurement of success. The main outcome
metrics of the control experiments were: 1) the number of
targets where the final error was at most 5 cm and 2) the
average error across all 30 targets.

The main goal of the paper was to determine the necessity
of motion planning. We compared the two outcome metrics
(targets reached with 5 cm error and overall average error)
within the trials for each controller driving the arm along a
planned trajectory vs. a direct-to-target path. Kruskal-Wallis
tests were completed to compare the average error results of
these same controller comparisons.

The analysis was then repeated using the results from the
controllers using the uncertain and fatigued models.

III. RESULTS

Using a person-specific model of an individual with SCI’s
arm driven by FES, we used trajectory optimization to find
feasible reaching trajectories from a starting position in the
center of the workspace to target arm configurations through-
out the participant’s reachable workspace. Out of a grid of
81 potential target arm configurations, we found 30 feasi-
ble trajectories from a central equilibrium position to target
positions throughout the participant’s workspace (see Fig. 5a
for an image of the feasible target positions). Reaches ranged
from 2 to 36 cm in length with an average reach length of
20 cm. For each trajectory, we simulated three controllers:
feedback, feedforward-feedback, and MPC to drive the arm
along both naive direct-to-target paths and planned trajectories
found using trajectory optimization.

A representative example of a set of reaches for a single
target configuration is shown in Fig. 3. This is a 15 cm
reach and the hand position trajectory is shown in Fig. 5a.
When driving the arm along direct-to-target trajectories,
the feedback controller produced an error of 15.0 cm, the
feedforward-feedback controller had an error of 15.0 cm, and
the MPC controller achieved an error of 5.0 cm. For direct-
to-target trajectories, the feedforward-feedback controller and
feedback controllers performed identically because the inverse
dynamics was unable to find activations to achieve the desired
direct-to-target trajectory resulting in zero feedforward acti-
vations. This was common for all direct-to-target trajectories
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Fig. 3. A representative reach showing the hand position, joint angles, and activation patterns for controlling a simulated arm when controlled along
direct-to-target and planned trajectories for the same target with an ideal model for the feedback (FB), feedforward-feedback (FF+FB), and MPC
controllers. To better show the movement of the hand and all four joints, the hand position and joint angles are plotted relative to the starting position
and configuration respectively. The feedforward-feedback and feedback controllers are unable to produce torque to travel along the direct-to-target
path. However, the MPC controller is able to deviate from the path in some joints to perform a more accurate reach by driving better following the
shoulder elevation plane.

and demonstrates the need to plan smarter trajectories that
account for the participant’s muscle capabilities. Planning
improved all controllers for this representative reach with

the feedback controller producing an error of 7.8 cm, the
feedforward-feedback controller achieving 0.0 cm of error, and
the MPC controller achieving an error of 0.9 cm.
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Fig. 4. Planning trajectories generally improved the controller accuracy. This figure shows the average error and standard deviation for the planned
and direct-to-path trajectories across each controller and for all model conditions. For each controller, a star denotes when trajectory planning
results in significantly different error (p < 0.05) compared to direct-to-path trajectories.

The feedback and feedforward-feedback controllers for
the direct-to-target trajectory and the feedback controller
for the planned trajectory became stuck in configurations in
which the controller called for torques in a direction that
the muscles cannot achieve (Fig. 3). Therefore, the controller,
unable to find activations to produce any torque in the desired
direction, requested zero muscle activation, and the arm did
not move in the desired direction. The MPC controller, on the
other hand, avoided this situation by using knowledge of the
dynamics and muscle capabilities of the system to deviate
from the desired trajectory for some joints to allow other
joints to move closer to the desired target and produce a
more accurate reach. Though not seen in this example with
an ideal model and planned trajectory, this issue of overcom-
pensation and a feedback controller applying zero torque can
also occur in the feedforward-feedback controller in planned
trajectories.

These patterns in performance are seen for all reaches in
Fig. 4 and Fig. 5b which show the average final error and
the number of targets out of the 30 possible trajectories that
were reached with less than 5 cm error for each control
experiment respectively. Fig. 6 shows the percentage of targets
(out of the 30 possible trajectories) that were reached by each
controller and each model uncertainty conditions with less than
the benchmark level of error for benchmark errors ranging
from 2 to 20 cm.

Overall, for the ideal model, planning generally resulted in
improved controller performance. As seen in Fig. 5b and 6a,
trajectory planning resulted in an improved ability to reach
more positions throughout the individual’s workspace. Fol-
lowing planned trajectories, the feedback controller reached
12 target hand positions with an error of less than 5 cm
compared to only 6 target hand positions with direct-to-
target paths. The feedforward-feedback controller achieved
30 targets with planned trajectories compared to only 6 for
direct-to-target trajectories. For the MPC controller, planning
resulted in reaching 26 targets compared to 13 targets without
planning. The ability to reach more positions throughout the
workspace is critical for achieving daily reaching tasks. Tra-
jectory optimization improved the accuracy for all 30 targets
for feedforward-feedback, 25 targets for MPC, and 16 targets
for feedback control. The difference in error was significant

Fig. 5. (a) The target hand positions of targets which are achieved
with less than 5 cm error using the planned trajectories and each of the
three control strategies. The feedforward-feedback (FF+FB) controller
achieves all 30 targets, the MPC controller achieves 26 targets, and
the feedback (FB) controller achieves 12 target hand positions. (b) This
table describes the performance of all control strategies in the number of
targets out of a possible 30 that the controller was able to achieve final
hand positions with less than 5 cm error when using an ideal model.

for the feedforward-feedback controller (p < 0.001) and MPC
(p < 0.001), but not for the feedback controller (p = 0.2).

For the uncertain model, planning once again leads to
improved performance, however the difference is less pro-
nounced. Planning leads to reaching more targets with 5 cm
error for both the feedback and feedforward-feedback con-
trollers (see Fig. 5. At benchmark errors of better than 7 cm,
trajectory optimization improves all controllers (6b). Trajec-
tory optimization improved the accuracy for 28 of 30 targets
for feedforward-feedback control, 21 targets for MPC, and
11 targets for feedback control. The difference in error was sig-
nificant for the feedforward-feedback controller (p < 0.001)
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Fig. 6. This plot shows the percentage of trajectories (out of
30 attempted reaches) for which each controller achieved less than the
benchmark error on the horizontal axis when using a (a) ideal model,
(b) uncertain model (average of 10 trials is shown), and (c) fatigued
model.

but not for the MPC (p = 0.2) or feedback only controller
(p = 0.9).

For the fatigued model, trajectory planning improves the
controller performance for reaching targets with at most
5 cm error (see Fig. 5b). Trajectory optimization improved
the accuracy for 29 of 30 targets for feedforward-feedback
control, 14 targets for MPC, and 15 targets for feedback
control. The difference in error was significant for the
feedforward-feedback controller (p < 0.001) but not for the
MPC (p = 0.7) or feedback only controller (p = 0.3).

In all model conditions, the feedforward-feedback and MPC
controllers generally performed better than the feedback only
controller. This is likely due to improved incorporation of the

system dynamics to avoid the overcompensation issues as seen
in Fig. 3.

IV. DISCUSSION

We developed a data-driven, person-specific trajectory opti-
mization scheme that accounts for the experimentally mea-
sured muscle characteristics of a person with SCI to find
feasible reaching trajectories. Combined with commonly used
FES-control schemes, this planner resulted in reaching more
targets throughout the subject’s workspace. More advanced
controllers that incorporate knowledge of the arm’s dynamics
to the controller via feedforward activations or in an MPC
control strategy may further improve the performance.

Reaching all portions of the participant’s workspace was
found to be difficult with straight-line paths in [15], and
we were able to recreate that result with the direct-to-target
trajectories in this study including demonstrating situations
where simple PID feedback controllers will fail to produce
activations. As had been observed in [19] and [36], due to
the unique muscle capabilities of individuals with SCI the
workspace of the person will include configurations that are
not controllable in that the muscles are unable to drive the
arm in the direction of the next desired state. The need to
account for these unique, person-specific capabilities prevents
straight-line feedback controllers such as the one presented
in [9] from being successfully implemented in individuals
with SCI for full-arm 3D reaching motions. Even in the
presence of no uncertainty in the controller, if uncontrollable
configurations are not avoided and planned for, as seen in this
paper, the reaching motion will not be successful. This point is
made more clear by the fact that feedforward commands could
not be found for direct-to-path reaches using a known model
of the system’s capabilities and dynamics. This is because the
muscles are unable to produce torque in any desired direction
at any given configuration. This point bears repeating, even
with an ideal model of the participant’s muscle capabilities
and the dynamics of the system, trajectory optimization is
necessary to avoid paths which include uncontrollable con-
figurations and produce accurate reaches.

While we attempted to model some level of uncertainty,
the dynamic simulation presented in this study is very basic
and does not include many nonlinearities and sources of
uncertainty which exist in individuals with SCI including
electro-mechanical delays, muscle activation dynamics, rapid
fatigue, and the nonlinear elasticity of the arm-support. When
practically implementing the control framework in an individ-
ual with SCI, the increased uncertainty makes it even more
critical to avoid uncontrollable configurations, and planning
alone may not be able to do so. While the feedfoward-feedback
controller produced the best accuracy in this study, there
were still situations where the arm would get stuck in an
uncontrollable configuration due to uncertainty in the model,
and zero feedback muscle activation would be requested for
all muscle groups. The use of an MPC controller may offer
a solution to this specific issue as the controller is able to
determine which degrees of freedom to prioritize to best move
towards the desired target. MPC control has been demonstrated
to be successful in other FES implementations [37], [38].



WOLF et al.: DATA-DRIVEN DYNAMIC MOTION PLANNING 2255

However, in this study it did not perform as well overall
in the presence of model errors. Tube-base MPC has been
developed in lower-limb hybrid exoskeleton control to account
for model errors [39]. It is also important to improve the
model used in the MPC control. Many of the errors in the con-
troller can most likely be attributed to linearizing the system.
To avoid this problem, one method would be to develop a GPR
model of the system dynamics directly as presented in [40]
and [41].

Other methods of trajectory optimization could also be
used to better avoid uncontrollable locations — again, defined
as a location where the muscles cannot produce torque in
any arbitrary direction — to improve the performance of all
controllers. Some of the found trajectories were on the edge
of controllability, and even small deviations would lead to
large errors. One possible solution to this would be to map
the controllability of the configuration workspace. Previous
research has attempted to map the configuration dependent
capabilities of the workspace for rehabilitation purposes [19].
With a similar mapping, additional terms could be added to the
trajectory optimization or a trajectory optimization algorithm
such as CHOMP [42] could be used to bias the trajectories
away from uncontrollable locations.

The feedback-feedforward controller performed similarly to
some other simulation studies with an error of 11.7 degrees
(Euclidean distance of all joint angles) in the uncertain condi-
tion and 1.2 degrees in the fatigued. Blana, et. al. achieved
an rms error of 4 degrees at the shoulder and elbow for
2D reaching with a fatiguing muscle model [20]. Cooman
developed a feedforward-feedback controller with time-
delay compensation that achieved rms errors ranging from
3.9-10 degrees for each degree of freedom at a maximum
of 10% uncertainty in the model’s inertial parameters [43].
However, our controllers accounted for the true muscle capa-
bilities of an individual with SCI, including a limited sub-
set of available muscles, while Cooman’s controller used
24 independent muscles with no uncertainty in the muscle
capabilities.

The control structure developed in this paper has since been
implemented in an individual with SCI [21]. That study was
published as a companion article to the current study, and
it focused on the practical implementation of these methods.
The current study focuses on developing the methodologies,
background, and development of the trajectory optimization
and controllers. The current study also contributes to the
generality of the findings in a way that is not possible with
practical implementation. Implementation of this controller for
use in daily life would require improvements in both modeling
accuracy — possibly through the inclusion of more com-
plicated muscle-force relationships including force-velocity
relationships and activation dynamics — and optimization time
— it is unfeasible to wait over a minute every time a person
needs to reach. Additionally, some of the trajectories output
by the optimization initially move away from the desired
target (see Fig. 3) which may be undesirable for some tasks
(consider eating). Further work with different optimization
functions or weighting of the terms in (5) may be necessary
for these tasks.

This simulation study has developed a data-driven trajec-
tory planning method for successfully achieving FES-driven
reaching motions. This novel method uses experimentally
measured capabilities of an individual with SCI to find fea-
sible reaching trajectories. With the right control structure —
feedforward-feedback or MPC were found to be best in this
study — this methodology should be practically implemented
in individuals with SCI to improve FES-driven reaching.
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