# Temporal and Spatial Evolution Study of Air Pollution in Portugal

José Manuel Fernández-Guisuraga<sup>1</sup>, Amaya Castro<sup>2</sup>, Célia Alves<sup>3</sup>, Ana Calvo<sup>4</sup>, Elisabeth Alonso-Blanco<sup>5</sup>, Roberto Fraile<sup>6</sup>

Abstract — This study provides an analysis of the spatial distribution and temporal evolution of NO,  $NO_2$  and  $O_3$ seasonal and annual concentrations in Portugal during the period 1995-2010. The contribution of nitrogen oxides and several meteorological variables to the variation of O<sub>3</sub> concentration was evaluated with multiple regression analysis in Entrecampos and Douro Norte stations. The variation in NO concentration shows a marked seasonality and presents a significant decreasing annual trend in most of the urban type stations considered, especially those under the influence of road traffic. Despite the downward trend in the concentration of NO, a statistically significant trend in NO<sub>2</sub> concentration is not observed in most of the monitoring stations, except those less influenced by traffic, in which the emission of primary NO<sub>2</sub> is much lower and the reduction in NO emissions leads to less photochemical production of NO<sub>2</sub>. The pattern of  $O_3$  concentration is completely opposed to that observed in NO. Several stations showed a significant upward trend in O3 concentration as a result of the decrease in NO/NO2 ratio. The correlation between the pollutants and ozone was stronger in Entrecampos than in Douro Norte. In this rural background station, the ozone concentration showed a strong correlation with meteorological variables. In Entrecampos urban station, 68% of the variance in ozone concentration was explained by the variables introduced in the regression model, being the  $NO_2/NO_X$  ratio the variable that explained most of the variance. In Douro Norte rural background station, only 43.4% of the variance in ozone concentration was explained by such variables. Therefore, long-range transport, high biogenic volatile organic compounds (BVOCs) concentration and the local geography may play a key role at this station.

Keywords — Portugal, O<sub>3</sub>, NO<sub>X</sub>, trends

### **1** INTRODUCTION

Current EU Directive on air quality (2008/50/EC) sets out a number of targets framed within the Thematic Strategy on Air Pollution [COM(2005)446] to improve human health and environmental quality. Ground level ozone and particulate matter ( $PM_{2.5}$  and  $PM_{10}$ ) are the pollutants of most concern in Europe [1].

NO is a primary pollutant, while NO<sub>2</sub> and O<sub>3</sub> are of secondary origin (although a small part of NO<sub>2</sub> in the atmosphere has a primary origin). The main source of nitrogen oxide emissions is road traffic [2]. The implementation of catalytic filters in cars has led to a large reduction not only in the absolute NO concentration, but also in NO/NO<sub>2</sub> ratio, particularly in regions with dense transport networks. However, it is known that the cars using these filters emit NO<sub>2</sub> as primary pollutant [3]. Also, the increased use of diesel cars has led to an increase in primary NO<sub>2</sub> emissions, since they emit a higher fraction of this contaminant than gasoline cars [4]. This results in an increase of NO<sub>2</sub>/NO<sub>X</sub> ratio.

Recent estimates indicated that stratospherictropospheric exchanges are only responsible for 20% of tropospheric ozone, because at present, it is mainly generated by complex photochemical reactions [5]. Ozone is formed by photochemical reactions that involve anthropogenic pollutants (CO, volatile organic compounds-VOCs) and solar radiation, in the presence of nitrogen oxides [6].

Previous studies showed the existence of a NO<sub>X</sub>sensitive regime and a VOC-sensitive regime. In the NO<sub>X</sub>-sensitive regime (NO<sub>X</sub> is relatively low and biogenic volatile organic compounds - BVOCs - are high, typical of rural regions), O<sub>3</sub> levels are getting higher with increasing NO<sub>X</sub> and changes little with respect to VOC. The VOC-sensitive regime (typical of urban areas) exhibits the opposite behaviour [7, 8].

This paper provides an analysis of the spatial distribution of NO, NO<sub>2</sub> and O<sub>3</sub> seasonal concentrations in mainland Portugal during the period 1995-2010, using data obtained from the air quality monitoring network of *Agência Portuguesa do Ambiente*. The temporal evolution of these pollutants was also studied in order to determine the

<sup>1.</sup> José Manuel Fernández-Guisuraga is with Department of Physics (IMARENAB), University of León, León 24071, Spain. E-mail: jferng11@estudiantes.unileon.es

<sup>2.</sup> Amaya Castro is with Department of Physics (IMARENAB), University of León, León 24071, Spain. E-mail: amaya.castro@unileon.es

<sup>3.</sup> Célia Alves is with the Centre for Environment and Marine Studies, Department of Environment, University of Aveiro, 3810-193 Aveiro, Portugal. E-mail: celia.alves@ua.pt

<sup>4.</sup> Ana Calvo is with Department of Physics (IMARENAB), University of León, León 24071, Spain. E-mail: aicalg@unileon.es

<sup>5.</sup> Elisabeth Alonso-Blanco is with Centro de Investigaciones Energéticas, Tecnológicas y Ambientales (CIEMAT), 28040 Madrid, Spain. E-mail: elisabeth.alonso@ciemat.es

<sup>6.</sup> Roberto Fraile is with Department of Physics (IMARENAB), University of León, León 24071, Spain. E-mail: roberto.fraile@unileon.es

statistically significant trend in their concentrations and the year in which new trends started. Furthermore, the contribution of NO, NO<sub>2</sub>, NO<sub>X</sub>, NO/NO<sub>2</sub> and NO<sub>2</sub>/NO<sub>X</sub> ratios, SO<sub>2</sub>, PM<sub>10</sub> and several meteorological variables (solar radiation, temperature, pressure and wind speed) to the variation of O<sub>3</sub> concentration was evaluated in a Lisbon urban traffic station and Vila Real background station, during the period 2004-2010.

### 2 METHODOLOGIES

## 2.1 Area of study

The field of this study corresponds to mainland Portugal (37-42 °N, 6.5-9.5 °W), with an area of 8,908,893 ha. Mainland Portugal is covered by a monitoring network for air quality assessment and management purposes. The monitoring network density is greatest in those areas where the protection of human health is critical, corresponding to the urban areas of Lisbon and Oporto, with a population of 2 million and 1.2 million, respectively [9].

At the end of 2010, the *Agência Portuguesa do Ambiente* monitoring network had 91 operational monitoring stations of different types (urban, suburban or rural). These stations reported NO and NO<sub>2</sub> hourly concentrations by chemiluminescence, while O<sub>3</sub> concentrations were obtained by ultraviolet absorption detection, also being reported on an hourly basis. In the first part of this study, data from all these stations that meet the minimum sampling frequency that is required by the air quality Directive 2008/50/EC were used.

Entrecampos station (code 3072) was chosen to assess the contribution of nitrogen oxides and other pollutants, together with several meteorological variables, in the concentration of  $O_3$  on a severely polluted environment. It is an urban traffic station located in Lisbon, with coordinates -9.14889 ° W, 38.7486 ° N and 86 m altitude. Douro Norte station (code 1048) was chosen to assess such contribution in a less polluted environment. It is a rural background station with coordinates -7.7908 ° W, 41.3714 ° N, located at an altitude of 1086 m.

### 2.2 Data and methods

Annual averages were performed to assess the trend in the concentration of these pollutants by the Mann-Kendall sequential test (SQMK) (rank statistic test) [10] for those stations with continuous data for a minimum of ten years. The SQMK test is a non-parametric test that can be applied to non-normally distributed data with missing points. This test allows us to calculate the year when the trend or change starts. A monotonic trend of increase or decrease is evaluated along with the non-parametric Sens's

method for estimating the slope of a linear trend [11].

To analyse the spatial distribution of short term NO, NO<sub>2</sub> and O<sub>3</sub>, a seasonal average of concentrations throughout the entire study period was conducted. Subsequently, the results were plotted through Surfer, a contouring and surface modelling package.

Stepwise multiple regression analysis (SMRA) was employed to assess the contribution of NO, NO<sub>2</sub>, NO<sub>X</sub>, NO/NO<sub>2</sub> NO<sub>2</sub>/NO<sub>X</sub> ratio, SO<sub>2</sub>, PM<sub>10</sub>, solar radiation, temperature, pressure and wind speed to O<sub>3</sub> levels recorded in Entrecampos and Douro Norte stations (urban traffic and rural background type, respectively) during the period 2004-2010, in order to identify the variables that best predict the variation in the concentration of ozone in each case. The possible existence of multicollinearity between the independent variables by Inflation Factor Variance (VIF) and Condition Index (CI) was previously checked, the latter being one of the most suitable methods for detecting multicollinearity [12]. The presence of multicollinearity in a regression model makes difficult to correctly identify important contributors to a physical process [13], so multicollinearity should be avoided.

## **3** RESULTS AND DISCUSSION

## 3.1 Spatial distribution of NO, $NO_2$ and $O_3$ concentrations

Seasonal patterns show that the highest NO concentrations are reached during autumn and winter (Fig. 1a), especially in most densely populated areas of Portugal, corresponding to Lisbon and Oporto metropolitan areas. Also, the high concentration registered in Coimbra during these seasons stands out, although it is not a town with a large population density, but it has a dense road network with high traffic. This spatial pattern suggests that the main cause of these high concentrations is road traffic. During these seasons, adverse dispersion conditions and car engine operation, in addition to increased activity in the populated areas, result in an increased emission and accumulation of primary pollutants such as NO [14].

 $NO_2$  concentration pattern (Fig. 1b) shows no marked seasonality as in the case of NO, although concentrations in summer are slightly lower, especially in the more populated coastal areas. The decrease in  $NO_2$  concentration in summer is not as pronounced as in NO. Because  $NO_2$  is mainly a secondary pollutant, the higher solar radiation and temperature during this season accelerates its production, although the emission of their precursors is reduced. Proceedings of the 2nd Iberian Meeting on Aerosol Science and Technology – RICTA 2014 7-9 July, 2014, Tarragona, Spain

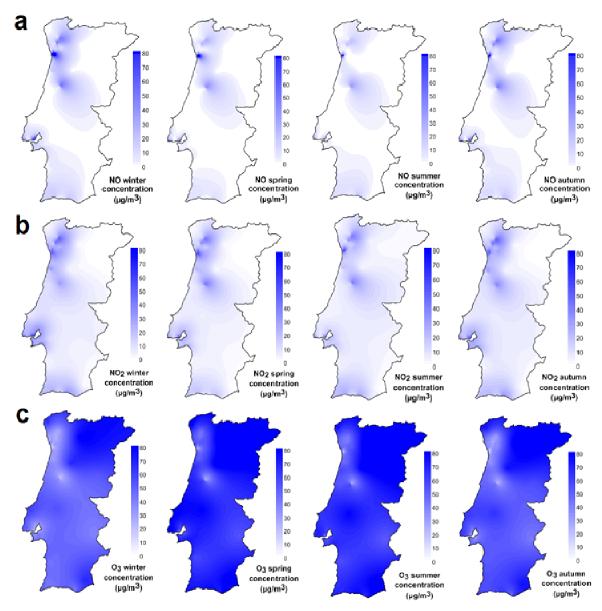



Fig. 1. Seasonally averaged (1995-2010) concentration maps of NO (a), NO<sub>2</sub> (b) and O<sub>3</sub> (c).

The highest O<sub>3</sub> concentrations are reached during the spring and summer (Fig. 1c), thus following a completely opposite pattern of NO. This is because the photochemical activity in these months is high because of the incident solar radiation and the annual temperature reach their maximum. Furthermore, reduction in the emission of primary pollutants (particularly NO) during these months results in an increased accumulation of ozone. Moreover, the high ozone concentration stands out throughout the entire year in Douro Norte monitoring station, located in a mountainous rural area NE of Portugal. This station showed the highest annual average (94.4  $\mu$ g/m<sup>3</sup>) of ozone hourly concentration recorded over the study period. Carvalho et al. [15] highlighted the importance of the long-range transport of atmospheric pollutants or its precursors due to atmospheric flow patterns, mainly from NW of Spain, to the high ozone levels registered in these areas.

## **3.2** Annual trend of NO, NO<sub>2</sub> and O<sub>3</sub> concentrations

The results obtained by the Mann-Kendall sequential test at 95% level of significance for 29 monitoring stations having a minimum of 10 years in the data series are shown in Table 1.

NO concentration presents a significant decreasing trend (U < -1.96) in most of urban and suburban stations. The high decreasing rate of NO concentration in Avenida da Liberdade (U = -3.33, -2.33  $\mu$ g m<sup>-3</sup> year<sup>-1</sup>), Entrecampos (U = -3.60, -2.47  $\mu$ g m<sup>-3</sup> year<sup>-1</sup>) and Mouzinho (U = -3.31, -3.40  $\mu$ g m<sup>-3</sup> year<sup>-1</sup>) urban type stations stands out. These very steep declines of NO concentration in urban type stations can be attributed to the restrictions on the transport sector fuel requirements (Directive 98/70/EC) and the implementation of catalytic filters in vehicles. In contrast, the NO concentration does

not show any significant trend in any of the rural stations studied.

Despite the clear downward trend in NO concentration, a significant trend for the NO<sub>2</sub> is not observed in most cases. This absence of trend might be due to the fact that  $NO_2$  is emitted as a primary pollutant because of the implementation of catalytic filters in cars [3]. This behaviour is not observed in Lavradio (U = -3.96, -2.01  $\mu$ g m<sup>-3</sup> year<sup>-1</sup>) and Chelas  $(U = -2.52, -1.40 \ \mu g \ m^{-3} \ year^{-1})$  monitoring stations, which show a decreasing trend in NO<sub>2</sub> concentration. The trend starting year is about the same as that pointed out for NO. This behaviour could result from considerably lower NO<sub>2</sub> primary emissions by less traffic. Therefore, a reduction in emissions of NO in the vicinity of this stations, leads to less formation of photochemical NO<sub>2</sub>. Moreover, Alto Seixalinho station shows a significant upward trend in the concentration of NO<sub>2</sub> (U = 2.70, +0.82 $\mu$ g m<sup>-3</sup> year<sup>-1</sup>) although its NO concentration trend is not significant, despite registering an increase rate of  $0.32 \ \mu g m^{-3} y ear^{-1}$ . Again, primary NO<sub>2</sub> plays a fundamental role in this urban traffic station.

Several stations showed a significant upward

trend in  $O_3$  concentration, as in the case of Entrecampos (U = 4.86, +2.55 µg m<sup>-3</sup> year<sup>-1</sup>). This urban traffic station presented a strong downward trend in NO concentration, while NO<sub>2</sub> concentration did not exhibit a significant trend. This results in a decrease of NO/NO<sub>2</sub> ratio and therefore an increase in the availability of ozone. A similar behaviour can be observed in other stations. The rate of increase in O<sub>3</sub> concentration is higher in traffic stations than in industrial or background stations because the rate of decrease in NO concentration is higher at trafficimpacted sites.

### **3.3 Influence on ozone levels**

The independent variables used for studying their contribution to ozone levels recorded during the period 2004-2010 in Entrecampos and Douro Norte monitoring stations were NO, NO<sub>2</sub>, NO<sub>X</sub>, NO/NO<sub>2</sub> and NO<sub>2</sub>/NO<sub>X</sub>, SO<sub>2</sub>, PM<sub>10</sub>, solar radiation (SR), temperature (Temp), pressure (P) and wind speed (WS). It was not possible to use relative humidity and wind direction as independent variables due to the lack of data.

Table 1. Sequential Mann-Kendall trend test results (U statistics and trend start year) for NO,  $NO_2$  and  $O_3$  concentration throughout the study period and slope estimation of the linear trend.

|                     |               |                     |       | NO          |            |       | NO <sub>2</sub> |            |       | <b>O</b> <sub>3</sub> |            |
|---------------------|---------------|---------------------|-------|-------------|------------|-------|-----------------|------------|-------|-----------------------|------------|
| Monitoring station  | M unicipality | Туре                | U     | Trend start | µg/m3∙year | U     | Trend start     | µg/m3∙year | U     | Trend start           | µg/m3∙year |
| Laranjeiro          | Almada        | Urban background    | -1.70 |             | -0.5861    | 0.45  |                 | 0.2523     | 3.85  | 2005                  | 1.7382     |
| Alfragide           | Amadora       | Urban background    |       |             |            | 0.14  |                 | -0.0759    | -2.06 | 2005                  | -1.7451    |
| Reboleira           | Amadora       | Urban background    | -1.16 |             | -0.1374    |       |                 |            |       |                       |            |
| Alto seixalinho     | Barreiro      | Urban traffic       | 1.44  |             | 0.3152     | 2.70  | 2006            | 0.8228     | 2.44  | 2009                  | 1.8129     |
| Escavadeira         | Barreiro      | Urban industrial    | 0.63  |             | 0.1457     | 0.09  |                 | 0.0755     |       |                       |            |
| Lavradio            | Barreiro      | Urban industrial    | -3.33 | 2002        | -1.5486    | -3.96 | 2001            | -2.0111    |       |                       |            |
| Coimbra             | Coimbra       | Urban traffic       |       |             |            | -1.32 |                 | -0.8186    | 0.86  |                       | 0.6083     |
| Av.24-Espinho       | Espinho       | Urban traffic       | -2.77 | 2007        | -0.8606    | 0.98  |                 | 0.2905     |       |                       |            |
| E. Avanca           | Estarreja     | Rural background    |       |             |            | 0.08  |                 | -0.1498    |       |                       |            |
| E. Teixugueira      | Estarreja     | Suburban industrial | -2.52 | 2008        | -0.6187    | -0.86 |                 | 0.1557     | 1.92  |                       | 1.1197     |
| Pe Joaquim Neves    | Gondomar      | Urban traffic       |       |             |            |       |                 |            | 2.06  | 2009                  | 0.9628     |
| Av. da Liberdade    | Lisboa        | Urban traffic       | -3.33 | 2005        | -2.3316    | 1.08  |                 | -0.2622    |       |                       |            |
| Beato               | Lisboa        | Urban background    | -3.42 | 2004        | -0.3846    | 1.71  |                 | 0.3067     | 3.45  | 2001                  | 1.6611     |
| Chelas              | Lisboa        | Urban background    | -4.14 | 2000        | -1.0820    | -2.52 | 1999            | -1.4009    |       |                       |            |
| Entrecampos         | Lisboa        | Urban traffic       | -3.60 | 2001        | -2.4701    | 0.63  |                 | 0.4180     | 4.86  | 2000                  | 2.5546     |
| Olivais             | Lisboa        | Urban background    | -0.63 |             | -0.1148    | 1.35  |                 | 0.4096     |       |                       |            |
| St. Cruz de Benfica | Lisboa        | Urban traffic       | -2.43 | 2009        | -1.6517    | -0.99 |                 | -0.0646    |       |                       |            |
| Loures Centro       | Loures        | Urban background    | -0.63 |             | -0.3557    |       |                 |            |       |                       |            |
| Don Manuel II       | Maia          | Urban traffic       | -3.66 | 2004        | -1.3649    | -0.08 |                 | 0.0254     | 1.95  |                       | 1.2682     |
| VN Telha-Maia       | Maia          | Suburban background | -2.74 | 2007        | -0.3446    | -1.37 |                 | -0.1883    | 0.14  |                       | 0.1467     |
| Custoias            | Matosinhos    | Suburban background | -2.74 | 2008        | -1.3432    | 0.06  |                 | -0.3799    | 1.65  |                       | 0.6820     |
| Leça do Balio       | Matosinhos    | Suburban background | -1.70 |             | -0.8023    | 1.52  |                 | 0.9135     | 0.45  |                       | 0.0609     |
| Mouzinho            | Porto         | Urban traffic       | -3.31 | 2003        | -3.3975    | -1.88 |                 | -1.5542    |       |                       |            |
| Fco. Sá Carneiro    | Porto         | Urban traffic       |       |             |            |       |                 |            | 1.52  |                       | 1.3793     |
| Monte Velho         | S. do Cacém   | Rural background    | -1.34 |             | -0.0790    | -0.45 |                 | 0.0047     | 0.54  |                       | 0.0295     |
| Sonega              | S. do Cacém   | Rural industrial    | -1.44 |             | -0.1389    | -0.99 |                 | -0.0921    | -0.86 |                       | 0.1038     |
| Paio Pires          | Seixal        | Suburban background | 0.23  |             | 0.0330     | 1.32  |                 | 1.0614     | 1.95  |                       | 2.9147     |
| Monte Chaos         | Sines         | Suburban industrial | -2.34 | 2008        | -0.1037    | -1.44 |                 | -0.2676    | 2.34  | 2009                  | 1.4904     |
| Ermesinde           | Valongo       | Urban background    | -2.41 | 2008        | -0.3487    | 0.86  |                 | 0.2787     | 2.47  | 2005                  | 0.8332     |

Pearson correlation test determined that O<sub>3</sub> concentration in Entrecampos station is negatively correlated with NO, NO<sub>2</sub> and NO<sub>x</sub> concentration, NO/NO<sub>2</sub> ratio and SO<sub>2</sub> concentration, and positively correlated with NO<sub>2</sub>/NO<sub>X</sub> ratio and PM<sub>10</sub> concentration. This is expected since NO and NO<sub>2</sub> are ozone precursors, and therefore a rise in ozone concentrations is associated with a reduction in NO and NO<sub>2</sub> levels [14]. NO and NO<sub>2</sub> enhance ozone's dissociation and production, respectively. Thus, if the NO/NO<sub>2</sub> ratio decreases, ozone concentrations increase [8], which explains the negative correlation between both parameters. For the same reason, if the NO<sub>2</sub>/NO<sub>X</sub> ratio increases, O<sub>3</sub> concentration also rises. Ozone has a strong positive correlation with solar radiation and temperature, since it is produced through photochemical processes.

In Douro Norte station, the correlation between ozone concentrations with those of most pollutants is significantly weaker than in Entrecampos station, although the direction of the correlations is the same. However, its correlation with solar radiation and temperature is stronger, at the suburban background station with less traffic influence, as previously observed [14].

When two or more explanatory variables in a model are highly correlated in the sample, as in the case of the different nitrogen oxides and their respective ratios, it is very difficult to separate the partial effect of each of these variables on the dependent variable in the regression model. For this reason, the independent variable in relation to nitrogen oxides introduced in the SMRA was  $NO_2/NO_x$  ratio, since in both stations it had the strongest correlation with ozone concentration regarding that group of variables. It should be expected that NO<sub>2</sub>/NO<sub>x</sub> ratio explained a greater proportion of the variance in the ozone concentration. Therefore, the independent variables included in the model were NO<sub>2</sub>/NO<sub>X</sub> ratio, SO<sub>2</sub>, PM<sub>10</sub>, solar radiation, temperature, pressure and wind speed. Independent variables left in the model were significant at 0.05 level. Those which failed to meet this level of significance were excluded from

Table 2. Variance inflation factor and condition index of variables left in SMRA.

| Entrecampos T    | olerance | VIF   | Dimension | Eigenvalues | Condition index |
|------------------|----------|-------|-----------|-------------|-----------------|
| $NO_2/NO_X$      | 0.413    | 2.419 | 1         | 4.551       | 1.000           |
| SR               | 0.368    | 2.716 | 2         | 0.468       | 3.119           |
| WS               | 0.558    | 1.792 | 3         | 0.298       | 3.908           |
| Р                | 0.887    | 1.127 | 4         | 0.101       | 6.715           |
| PM <sub>10</sub> | 0.595    | 1.680 | 5         | 0.058       | 8.853           |
| т                | 0.431    | 2.319 | 6         | 0.032       | 11.926          |
|                  |          |       | 7         | 0.021       | 14.729          |
| Douro Norte      | olerance | VIF   | Dimension | Eigenvalues | Condition index |
| т                | 0.355    | 2.816 | 1         | 5.386       | 1.000           |
| SR               | 0.383    | 2.613 | 2         | 0.381       | 3.759           |
| $NO_2/NO_X$      | 0.878    | 1.139 | 3         | 0.267       | 4.488           |
| PM <sub>10</sub> | 0.883    | 1.133 | 4         | 0.184       | 5.403           |
| WS               | 0.921    | 1.085 | 5         | 0.124       | 6.604           |
|                  |          |       | 6         | 0.031       | 13.178          |

the model.

The variance inflation factor (VIF) in Table 2 is relatively low for all independent variables at both stations, not being in any case higher than 3. Kleinbaum et al. [16] suggests that there should not be problems with collinearity if the VIFs are less than 10 (tolerance < 0.1). However, other authors, such as O'Brien [17], argue that this rule should be taken with caution, since it may be collinearities not involving all independent variables and therefore not well detected by VIF, among many other reasons. For this reason, we also calculated condition indices (Table 2) for each variable in both stations. Condition indices ranging from 10-30 are associated with a weak collinearity, although they should not present problems, while indices higher 30 can cause a serious problem of collinearity and potential disaster in the regression model [18]. Condition indices did not exceed the value of 15 in both stations, so we can assume that the regression model may be appropriate to elucidate the contribution of the variables considered in the ozone concentration recorded at both stations.

SMRA results for Entrecampos and Douro Norte stations are shown in Table 3. In Entrecampos station, NO<sub>2</sub>/NO<sub>X</sub> ratio, solar radiation, wind speed, pressure, temperature and PM<sub>10</sub> remained in the model with the required level of significance (0.05), while the variables that did not meet that requirement were excluded. The value of adjusted  $R^2$ for this station was 0.680, which means that 68 % of the variance in the ozone concentration can be explained by the variables introduced in the model. It is a noticeably high value considering that relative humidity and wind direction were not introduced in the model as independent variables. The  $NO_2/NO_X$ ratio explained by itself 55.1 % of the variance in ozone concentration in Entrecampos station. He and Lu [13] also suggested that NO<sub>2</sub>/NO<sub>x</sub> ratio can be regarded as the dominant precursor of ozone concentration.

In Douro Norte rural station the variables that remained in the model were temperature, solar radiation,  $NO_2/NO_x$ ,  $PM_{10}$  and wind speed. These variables only explained 43.4% of the variance in ozone concentration in this station (37.5 % of the variance was explained by temperature and solar

Table 3. Stepwise regression model for  $O_3$  concentration in Entrecampos and Douro Norte stations with the variables  $NO_2/NO_X$  ratio, solar radiation, wind speed, pressure,  $PM_{10}$  and temperature.

| Entrecampos             | $NO_2/NO_X$ | SR       | WS          | Р                | PM <sub>10</sub> | Т     |
|-------------------------|-------------|----------|-------------|------------------|------------------|-------|
| Adjusted R <sup>2</sup> | 0.551       | 0.628    | 0.649       | 0.660            | 0.673            | 0.680 |
| F change                | 462.402     | 78.395   | 23.823      | 13.077           | 15.857           | 8.923 |
| Sig. F change           | < 0.0001    | < 0.0001 | < 0.0001    | < 0.0001         | < 0.0001         | 0.003 |
| Douro Norte             | Т           | SR       | $NO_2/NO_X$ | PM <sub>10</sub> | WS               |       |
| Adjusted R <sup>2</sup> | 0.247       | 0.375    | 0.402       | 0.426            | 0.434            |       |
| F change                | 124.443     | 77.487   | 17.782      | 16.594           | 6.445            |       |
| Sig. F change           | < 0.0001    | < 0.0001 | < 0.0001    | < 0.0001         | 0.012            |       |

radiation). It was noted in section 3.1 that high ozone concentrations recorded at this station may be due to long-range transport from the NW of Spain [15]. The low variance explained by the variables may suggest photochemical production of O<sub>3</sub> from its precursors during transport to this station. Moreover, taking into account that Douro Norte is located in a mountainous area, the amount of biogenic volatile organic compounds (BVOCs) would be significantly higher during the day and consequently contribute to the local photochemical ozone production from transported precursors. In addition, local geography would also play a key role in ozone concentrations recorded at this site. This hypothesis would explain the low correlation between the local ozone concentration and other pollutants, and the strong correlation with both temperature and solar radiation, which are the two factors that explain most of the variance in the regression model.

### CONCLUSIONS

Together with meteorological variables, 16 years of NO, NO<sub>2</sub> and O<sub>3</sub> concentrations collected over the period 1995-2010 in several air quality stations of mainland Portugal were analysed. The variation in NO concentration showed a marked seasonal pattern, with the lowest levels occurring during the colder months, especially in the most densely populated areas. The seasonal fluctuations of NO<sub>2</sub> concentrations are not so marked. Despite an overall downward trend in the NO concentration, a statistically significant tendency towards a decrease of NO<sub>2</sub> levels was not observed in most of the monitoring stations. Ozone showed an opposite seasonal pattern to that of NO. Several stations showed a significant upward trend in O<sub>3</sub> level as a result of the decrease of the NO/NO<sub>2</sub> ratio. Long range transport of precursors to mountain sites in the northern region led to frequently high surface  $O_3$ concentrations. A strong correlation between this photochemical pollutant and both solar radiation and temperature was obtained at a representative site of that region. For this rural site, the percentage of variance in O<sub>3</sub> concentrations explained by other pollutants is relatively low. At urban traffic sites, most of the variance is explained by the NO<sub>2</sub>/NO<sub>X</sub> ratio.

The ozone trends observed in this study in the northern region could be extrapolated to other rural areas of NW Iberian Peninsula, because this geographical area has homogeneous topographical and climatological characteristics. In addition, Galicia and the north of Portugal are affected by similar synoptic circulation patterns.

Taking into account that, in addition to meteorological variability, the  $O_3$  trends are strongly affected by changes in the photochemical precursor emissions, the analysis of future concentration

patterns should be very useful to confirm the influence of these factors. Despite the general drop on the NO levels, future long-term trend assessments will be desirable in order to evaluate the effectiveness of both air quality plans and emission control technologies.

### REFERENCES

- A. Monteiro, R. Vautard, M. Lopes, A.I. Miranda, C. Borrego, "Air pollution forecast in Portugal: a demand from the new air quality framework directive," Int. J. Environ. Pollut., vol. 25, pp. 4-15, 2005.
- [2] R.N. Colvile, E.J. Hutchinson, J.S. Mindell, R.F. Warren, "The transport sector as a source of air pollution," Atmos. Environ., vol. 35, pp. 1537-1565, 2001.
- [3] K.A. Kourtidis, I. Ziomas, C. Zerefos, E. Kosmidis, P. Symeonidis, E. Christophilopoulos, S. Karathanassis, A. Mploutsos, "Benzene, toluene, ozone, NO<sub>2</sub> and SO<sub>2</sub> measurements in an urban street canyon in Thesalonniki, Greece," Atmos. Environ., vol. 36, pp. 5355-5364, 2002.
- [4] D.C. Carslaw, S.D. Beevers, "Investigating the potential importance of primary NO<sub>2</sub> emissions in a street canyon," Atmos. Environ., vol. 38, pp. 3585-3594, 2004.
  [5] A. Marenco, H. Gouget, P. Nédélec, J.-P. Pagés, "Evidence
- [5] A. Marenco, H. Gouget, P. Nédélec, J.-P. Pagés, "Evidence of a long-term increase in tropospheric ozone from Pic du Midi data series: Consequences: Positive radiative forcing," J. Geophys. Res., vol. 99, pp. 16617-16632, 1994.
- [6] M.C.M. Alvim-Ferraz, S.I.V. Sousa, M.C. Pereira, F.G. Martins, "Contribution of anthropogenic pollutants to the increase of tropospheric ozone levels in the Oporto Metropolitan Area, Portugal since the 19<sup>th</sup> century," Environ. Pollut., vol. 140, pp. 516-524, 2006.
- [7] S. Sillman, "The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments," Atmos. Environ., vol. 33, pp. 1821-1845, 1999.
- [8] A. Melkonyan, W. Kuttler, "Long-term analysis of NO, NO<sub>2</sub> and O<sub>3</sub> concentrations in North Rhine-Westphalia, Germany," Atmos. Environ., vol. 60, pp. 316-326, 2012.
- [9] C. Borrego, E. Sá, J. Ferreira, A.I. Miranda, "Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach," Atmos. Environ., vol. 43, pp. 5796-5806, 2009.
- [10] R. Sneyers, On the statistical analysis of series of observations. Geneva: WMO Tech. Note 143, pp. 10-15, 1990.
- [11] P.K. Sen, "Estimates of the regression coefficient based on Kendall's tau," J. Am. Stat. Ass., vol. 63, pp. 1379-1389, 1968.
- [12] O.G. Judge, W.E. Griffith, R.C. Hill, C.H. Lee, H. Lütkepohl, The theory and practice of econometrics. New York: Wiley, pp. 340-347, 1985.
- [13] H. He, W.-Z. Lu, "Decomposition of pollution contributors to urban ozone levels concerning regional and local scales," Build. Environ., vol. 49, pp. 97-103, 2011.
- [14] I. Mavroidis, M. Ilia, "Trends of NOx, NO<sub>2</sub> and O<sub>3</sub> concentrations at three different types of air quality monitoring stations in Athens, Greece," Atmos. Environ., vol. 63, pp. 135-147, 2012.
- [15] A. Carvalho, A. Monteiro, I. Ribeiro, O. Tchepel, A.I. Miranda, C. Borrego, S. Saavedra, J.A. Souto, J.J. Casares, "High ozone levels in the northeast of Portugal: Analysis and characterization," Atmos. Environ., vol. 44, pp. 1020-1031, 2010.
- [16] D.G. Kleinbaum, L.L. Kupper, K.E. Muller, Applied Regression Analysis and Other Multivariables Methods. Belmont, Calif.: Thomson, pp. 314-345, 1988.
- [17] R.M. O'Brien, "A caution regarding rule of thumb for variance inflation factors," Qual. Quant., vol. 41, pp. 673-690, 2007.
- [18] D.A.Belsley, Conditioning Diagnostics: Collinearity and Weak Data in Regression. New York: Wiley, 1991.