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Abstract

Efficient computation of the geopotential gradient is essential for numerical propagators, particularly in scenarios involving low Earth
orbits. Conventional geopotential calculations are based on spherical harmonics series, which become computationally demanding as the
degree/order increases. This computational burden can be mitigated by means of parallelized algorithms. Additionally, certain situations
lend themselves to high parallelization, such as the propagation of space debris catalogs, satellite mega-constellations, or the dispersion
of particles resulting from a space collision event. This paper introduces an optimized Graphics Processing Unit (GPU) implementation
designed to facilitate extensive parallelization in the geopotential gradient calculation. The formulation developed in this study is not
specific to any GPU. However, to illustrate the low-level optimizations necessary for an efficient implementation, we selected the Com-
pute Unified Device Architecture (CUDA) as the dominant and de facto standard in parallel computing. Nevertheless, most of the con-
cepts and optimizations presented in this paper are also valid for other GPU architectures. Built upon the spherical harmonic expansion
using the Cunningham formulation, which is well-suited for GPU computations, our implementation offers several variants with different
tradeoffs between speed and accuracy. Besides GPU double precision, we introduced a mixed precision arithmetic –a hybrid between
single and double precision– that exploits GPU capabilities with a low penalty in accuracy. The proposed algorithm was implemented
as a software reusable module, and its performance was evaluated against GMAT, GODOT, and Orekit astrodynamic codes. The algo-
rithm’s accuracy in double precision is comparable to such codes. The mixed precision version showed enough accuracy for LEO satellite
propagation, with around 1 m difference in four days. Testing across different CUDA architectures revealed very high speed-up factors
compared to a single CPU, reaching a speed-up of 645 for the mixed precision variant and 450 for the double precision one in the prop-
agation of about 3200 objects with a geopotential of degree/order 126 � 126 using an A100 GPU device.
� 2024 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The demand for more efficient and faster orbital propa-
gation is increasing with the advent of satellite mega-
constellations and the space debris awareness needs. The
space debris catalogs are constantly growing not only due
to the increment of the objects in space but also because
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of the improvement in the sensor’s sensitivity (Adushkin
et al., 2020). It is also of particular interest the propagation
of the cloud of particles generated by a collision event in
space (Pardini and Anselmo, 2007) (Kaplinger et al.,
2013), and the orbital covariance of space debris
(Hoogendoorn et al., 2018). Many of those propagations
are performed in low Earth orbit (LEO) where a more
accurate representation of the Earth gravity field is neces-
sary (Vallado and McClain, 2013).
org/licenses/by/4.0/).
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The Earth’s gravity field is customarily derived from its
gravitational potential function given as a sum of spherical
harmonics of different degrees and orders, i.e., the geopo-
tential. A comprehensive list of the existing gravity models
is available at ICGEM (2023). In their evolution, the
degree n and order m considered in the models have been
progressively increased, from tens to hundreds or even
thousands.

In orbital propagation, that representation is truncated
according to the characteristics of the mission. For exam-
ple, Vallado notes that it is usual to truncate at degree/
order 70�70 for LEO applications (Vallado and
McClain, 2013), and 30 � 30 for Space Situational Aware-
ness (SSA) services (Vallado et al., 2013). Other scenarios,
different from the construction of the geopotential models
themselves, require higher representations like LEO precise
orbit determination with degree/order 120 � 120 (Mao
et al., 2021; Schreiner et al., 2023); or re-entry precise orbit
determination of GOCE with 200 � 200 (Gini et al., 2015).

From a practical point of view, the computational burden
associated with such gravitational potential is high. One way
to optimize this demanding task is parallelizing algorithms,
models, or the entire propagations usingGraphics Processor
Units (GPUs). Although other methods to compute the
gravity field are suitable for a high level of parallelization,
for example, the mass concentration (mascon) models
(Russell and Arora, 2012), the standard in the astrodynamic
software is to use spherical harmonics to represent the grav-
ity potential, due to the quasi-spherical structure of the
Earth. The spherical harmonic expansion needed to calcu-
late the geopotential gradient is computationally expensive,
with algorithmic complexity O n2ð Þ.

A few authors addressed this problem by proposing
Computer Processor Unit (CPU) and Graphics Processor
Unit (GPU) parallelization alternatives. In particular,
GPU devices are specially designed to perform massively
parallel computations. Isupov et al. (2016) focused their
work on the calculation of the Legrende polynomials in
GPU for ultra-high degrees and orders. They tested their
implementation based on extended-range arithmetic up to
degree 53200. Also, Xiao and Lu (2007) proposed a paral-
lelized mechanism for very high degrees but, in this case,
using quadruple-precision floating-point arithmetic in
GPU. Both developments add extra complexity required
for those high degrees but not needed in common LEO
propagations.

Another interesting work is that of Martin and Schaub
(2020). They propose a parallel implementation in GPU
based on the Pines formulation (Pines, 1973) using Vulkan
(Khronos-Group, 2022), which is a parallel computing
cross-platform API. Using that API, they obtain low-
moderate speed-up ratios even for multiple simultaneous
computations. In the same line, we can mention the work
of Bai and Junkins (2010) about solving initial value prob-
lems by the Picard-Chebyshev method with NVIDIA
GPUs, also reaching low speed-up ratios.
2

Regarding CPU parallelization, a very interesting pro-
posal is made by Fukushima (2012) that equalizes the com-
putation effort between p processors, obtaining a speed-up
factor equivalent to the number of processors for moderate
degrees. This is an intelligent solution for speeding up sin-
gle geopotential gradient computations. However, scaling
to hundreds or thousands of simultaneous propagations
is more costly than with a GPU-based solution.

This study aims to propose an efficient implementation
for the geopotential gradient computation in GPU devices.
As a concrete GPU architecture is needed to illustrate the
implementation details and to evaluate its performance,
the Compute Unified Device Architecture (CUDA) was
selected (NVIDIA-Corporation, 2022a). CUDA was cho-
sen due to its dominance in the parallel computing field.
It is the architecture and programming model that allows
the use of the NVIDIA GPUs to execute parallel programs.

This work is tailored for its use in LEO satellite propa-
gations. Our approach is based on the Cunningham formu-
lation (Cunningham, 1970) that is stable, singularity-free,
and low demanding in shared memory. Moreover, carefully
implemented, it has enough accuracy even when executing
part of the computations in single precision arithmetic.

The next sections present the base Cunningham formu-
lation (Section 2), its adaptation and implementation
details for CUDA GPUs (Sections 3 and 4), and the accu-
racy and performance analysis (Sections 5 and 6). The per-
formance of the implemented reusable module was
compared against the production-grade implementations
used in the GMAT (NASA, 2022), GODOT (ESA,
2022), and Orekit (CS-Group, 2022) astrodynamic codes.
Finally, the specifications of the hardware used in the tests
are listed in Appendix A; the results of the accuracy and the
performance tests in Appendix B and Appendix C; and in
Appendix D how to integrate this GPU specific module
into existing astrodynamic software, providing some
insights about the performance gains that can be expected.

With the purpose of enabling reproducibility and pro-
moting its use, the complete source code is made public
in Rubio (2023) under a free software license.

2. Base formulation and recursions

The acceleration €r of a space debris or satellite expressed
in a quasi-inertial geocentric reference system is given by

€r ¼ �l
r

r3
þ ap; ð1Þ

where l is the Earth gravitational parameter, r ¼ x; y; zð Þ
the satellite position, r its modulus, and ap is the force
per unit of mass, i.e., specific force, due to the perturbation
forces such as the effect of the non-spherical Earth, atmo-
spheric drag, solar radiation pressure, attraction of third
bodies, tides, etc. (Vallado and McClain, 2013).

The total gravitational force, per unit of mass, that the
Earth exerts on the satellite is given by the gradient of
the geopotential at the satellite location
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$U ¼ �l
r

r3
þ ag: ð2Þ

The geopotential U is commonly given as an expansion in
spherical harmonics relative to an Earth-fixed reference
system (Montenbruck and Gill, 2012). Its expression is1

U ¼ l
r

X1
n¼0

Xn
m¼0

Rn
�
rn

P n;m sin/ð Þ

� Cn;m cos mkð Þ þ Sn;m sin mkð Þ½ �; ð3Þ
where / is the geocentric latitude, k the longitude, R� the
Earth reference radius, and Pn;m is the associated Legendre
polynomial of degree n and order m. The Cn;m and Sn;m

terms are called the Stokes coefficients. Their numerical
value is given by the corresponding geopotential model
(JGM-2, EGM2008, etc.). The coefficients with m ¼ 0 are
called zonal coefficients, the ones with n ¼ m sectorial coef-
ficients, and those with n – m– 0 tesseral coefficients.

The former expression of the geopotential, Eq. (3), and
consequently the derived expression for the gradient has an
infinite number of terms. In practice, the series is truncated
to some degree N depending on the mission, as stated in the
Introduction. If, as in Eq. (3), the maximum order is also
given by the maximum degree N, the expansion is referred
to as a square gravity model. It is also feasible to derive
non-square gravity models, as indicated in Eckman et al.
(2011), by employing distinct values for the degree N and
orderM. In this study, we exclusively focus on square grav-
ity models, leaving the analysis of non-squared models for
future research.

The evaluation of Eq. (3) to compute the geopotential
and its gradient presents some difficulties. First, its expres-
sion in terms of spherical coordinates suffers singularities at
the poles when calculating the geopotential gradient. Sec-
ond, the direct evaluation of the associate Legendre func-
tions is computationally intensive for high degrees and
orders. Thus, different procedures have been developed to
avoid the singularities and to compute the geopotential
recursively. One alternative is moving the polar singularity,
rotating the whole expansion (Fukushima, 2017), other is
using a singularity-free formulation. Members of this last
group are the Pines formulation (Pines, 1973) used in
GMAT, the variant of the Clenshaw summations
(Clenshaw, 1955) named modified forward row method
and described in Holmes and Featherstone (2002) used in
Orekit, and the Cunningham formulation (Cunningham,
1970) used in GODOT and in the present article.

The Cunningham formulation follows a recursion
sequence that allows maintaining a minimum amount of
intermediate memory, as detailed in Section 4, making it
very appropriate for a GPU implementation. Other recur-
sion sequences can be used; a summary of them can be con-
1 Hence, the resulting gravitational specific force derived from Eqs. (2)
and (3) is given in an Earth-fixed reference system. To incorporate it into
the equations of motion, Eq. (1), it must be transformed to the quasi-
inertial reference system (Montenbruck and Gill, 2012).

3

sulted in Holmes and Featherstone (2002) and Fantino and
Casotto (2009) where one can find forward and reverse
methods by rows (degree) or by columns (order). However,
none of them enables a greater degree of parallelization.

The gradient of the geopotential $U can be computed
according to Cunningham (1970). Following the notation
by Montenbruck and Gill (2012), its contribution to the
acceleration a ¼ €x; €y;€zð Þ is given by

€x ¼
XN
n¼0

Xn
m¼0

€xn;m; €y ¼
XN
n¼0

Xn
m¼0

€yn;m; €z ¼
XN
n¼0

Xn
m¼0

€zn;m; ð4Þ

where €xn;0 and €yn;0 are

€xn;0 ¼ l

R2
�
�Cn;0V nþ1;1½ �; ð5Þ

€yn;0 ¼ l

R2
�
�Cn;0W nþ1;1½ �; ð6Þ

and

€xn;m ¼ l
2R2

�
�Cn;mV nþ1;mþ1 � Sn;mW nþ1;mþ1½

þ n�mþ2ð Þ!
n�mð Þ! Cn;mV nþ1;m�1 þ Sn;mW nþ1;m�1ð Þ

i
;

ð7Þ

€yn;m ¼ l
2R2

�
�Cn;mW nþ1;mþ1 þ Sn;mV nþ1;mþ1½

þ n�mþ2ð Þ!
n�mð Þ! �Cn;mW nþ1;m�1 þ Sn;mV nþ1;m�1ð Þ

i
;

ð8Þ

for m > 0. The third component contributions are calcu-
lated with

€zn;m ¼ l

R2
�

n� mþ 1ð Þ �Cn;mV nþ1;m � Sn;mW nþ1;mð Þ: ð9Þ

The factors V n;m and W n;m are obtained using recursion for-
mulas. Starting with W 0;0 ¼ 0;W 1;0 ¼ 0, and

V 0;0 ¼ R�
r
; ð10Þ

V 1;0 ¼
ffiffiffi
3

p R2
�
r2

sin/ ¼
ffiffiffi
3

p R2
�
r3

z; ð11Þ

V 1;1 ¼
ffiffiffi
3

p R2
�
r2

cos/ cos k ¼
ffiffiffi
3

p R2
�
r3

x; ð12Þ

W 1;1 ¼
ffiffiffi
3

p R2
�
r2

cos/ sin k ¼
ffiffiffi
3

p R2
�
r3

y; ð13Þ

then calculating the other factors when n ¼ m using

V n;m ¼ 2m� 1ð Þ xR�
r2

� �
V m�1;m�1 � yR�

r2

� �
W m�1;m�1

� �
; ð14Þ

W n;m ¼ 2m� 1ð Þ xR�
r2

� �
W m�1;m�1 � yR�

r2

� �
V m�1;m�1

� �
; ð15Þ

and

V n;m ¼ 2n� 1

n� m
zR�
r2

� �
V n�1;m � nþ m� 1

n� m
R2
�
r2

� �
V n�2;m; ð16Þ

W n;m ¼ 2n� 1

n� m
zR�
r2

� �
W n�1;m � nþ m� 1

n� m
R2
�
r2

� �
W n�2;m; ð17Þ

when n – m.
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Fig. 1 shows the sequences needed to calculate recur-
sively the V n;m and W n;m terms. For the sectorial terms
(n ¼ m), only the previous sectorial term with index
[m� 1;m� 1] is required. For the non sectorial terms
(n – m) the two previous degree terms with indexes
[n� 1;m] and [n� 2;m] are needed.
3. GPU formulation

In this section, we present the initialization and recur-
sions that allow efficient computation of the gradient of
the geopotential, as well as the more appropriate strategy
of summing the different spherical harmonics. Such algo-
rithms are not specific to any particular GPU architecture.
3.1. Initialization and recursions

The first step to achieve an efficient implementation is to
pre-compute all terms that do not depend on the satellite
position x; y; z, and r. Those terms can be calculated at star-
tup in the CPU and reused in the GPU for each individual
position. Eqs. (5)–(9) and (14)–(17) can be factorized and
rewritten as

€xn;0 ¼ F 0ð Þ
n V nþ1;1; ð18Þ

€yn;0 ¼ F 0ð Þ
n W nþ1;1; ð19Þ

€xn;m ¼ F 1ð Þ
n;mV nþ1;mþ1 þ F 2ð Þ

n;mW nþ1;mþ1

þF 3ð Þ
n;mV nþ1;m�1 þ F 4ð Þ

n;mW nþ1;m�1;
ð20Þ

€yn;m ¼ F 1ð Þ
n;mW nþ1;mþ1 � F 2ð Þ

n;mV nþ1;mþ1

�F 3ð Þ
n;mW nþ1;m�1 þ F 4ð Þ

n;mV nþ1;m�1;
ð21Þ

€zn;m ¼ F 5ð Þ
n;mV nþ1;m þ F 6ð Þ

n;mW nþ1;m; ð22Þ
V m;m ¼ F 7ð Þ

n;m QxV m�1;m�1 � QyW m�1;m�1

� �
; ð23Þ

W m;m ¼ F 7ð Þ
n;m QxW m�1;m�1 � QyV m�1;m�1

� �
; ð24Þ

V n;m ¼ F 8ð Þ
n;mQzV n�1;m � F 9ð Þ

n;mQrV n�2;m; ð25Þ
W n;m ¼ F 8ð Þ

n;mQzW n�1;m � F 9ð Þ
n;mQrW n�2;m: ð26Þ
Fig. 1. Schema of the recursions used to calculate V n;m and W n;m. To
calculate the terms where n ¼ m only the previous sectorial term
V m�1;m�1=W m�1;m�1 is required. To calculate the non sectorial terms where
n– m, the two previous degree terms V n�1;m=W n�1;m and V n�2;m=W n�2;m are
needed.

4

The reusable coefficients F ið Þ
n;m do not depend on the satellite

position r. They depend on the degree n, order m, and the
geopotential model through l;R�, and the normalized

Stokes coefficients Cn;m and Sn;m, which are related to the
non-normalized ones Cn;m and Sn;m used in Eq. (3) by
(Montenbruck and Gill, 2012)

Cn;m

Sn;m

( )
¼ Pn;m

Cn;m

Sn;m

	 

; ð27Þ

Pn;m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nþ mð Þ!
2� d0;mð Þ 2nþ 1ð Þ n� mð Þ!

s
; ð28Þ

where d0;m is the Kronecker delta. As an example, the trans-
formation for Eq. (5) into Eq. (18) is

€xn;0 ¼ l

R2
�
�Cn;0V nþ1;1½ � ¼ F 0ð Þ

n V nþ1;1; ð29Þ

F 0ð Þ
n ¼ � l

R2
�

Pnþ1;1

Pn;0
Cn;0

¼ � l

R2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 1ð Þ nþ 2ð Þ 2nþ 1ð Þ

2 2nþ 3ð Þ

s" #
Cn;0 ð30Þ

Using the same procedure, we can obtain the other reusa-

ble coefficients F 1ð Þ
n;m . . .F 9ð Þ

n;m as

F 1ð Þ
n;m ¼ � l

2R2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ mþ 2ð Þ nþ mþ 1ð Þ 2nþ 1ð Þ

2nþ 3

r" #
Cn;m; ð31Þ

F 2ð Þ
n;m ¼ � l

2R2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ mþ 2ð Þ nþ mþ 1ð Þ 2nþ 1ð Þ

2nþ 3

r" #
Sn;m; ð32Þ

F 3ð Þ
n;m ¼ l

2R2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 2nþ 1ð Þ n� mþ 2ð Þ n� mþ 1ð Þ

2nþ 3

r" #
Cn;m; ð33Þ

F 4ð Þ
n;m ¼ l

2R2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k 2nþ 1ð Þ n� mþ 2ð Þ n� mþ 1ð Þ

2nþ 3

r" #
Sn;m; ð34Þ

F 5ð Þ
n;m ¼ � l

R2
�

n� mþ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ mþ 1ð Þ 2nþ 1ð Þ
n� mþ 1ð Þ 2nþ 3ð Þ

s" #
Cn;m; ð35Þ

F 6ð Þ
n;m ¼ � l

R2
�

n� mþ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ mþ 1ð Þ 2nþ 1ð Þ
n� mþ 1ð Þ 2nþ 3ð Þ

s" #
Sn;m; ð36Þ

F 7ð Þ
n;m ¼ 2m� 1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

nþ mð Þ nþ m� 1ð Þ 2n� 1ð Þ

s
; ð37Þ

F 8ð Þ
n;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n� 1ð Þ 2nþ 1ð Þ
nþ mð Þ n� mð Þ

s
; ð38Þ

F 9ð Þ
n;m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� m� 1ð Þ n� m� 1ð Þ 2nþ 1ð Þ

nþ mð Þ n� mð Þ 2n� 3ð Þ

s
; ð39Þ

with k ¼ 1þ dm;1.
When computing the former expressions in double pre-

cision, it is necessary to recall that multiplication is not
associative in floating-point arithmetic (Dahlquist and
Björck, 2003). A very small but noticeable improvement



Fig. 2. First values of €zn;m for a geopotential gradient calculation with
latitude 90 degrees (zero colatitude), longitude 55 degrees, and altitude
500 km. The geopotential model is the EGM2008 (NGA, 2022), as in other
parts of this work.
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in accuracy is obtained if in Eqs. (30)–(36) we compute first

the division l=R2
� or l= 2R2

�
� �

, then the terms inside the

brackets, and last, the multiplication by the normalized
Stokes coefficient.

The position-dependant part includes the initialization
of Qx;Qy ;Qz, and Qr, along with the initialization of the

first values of the recursion V 0;0; V 1;0; V 1;1, and W 1;1. To
minimize the number of operations and avoid using tran-
scendental functions, we introduce the following auxiliary
variables

H 1 ¼ R�
r
; H 2 ¼

ffiffiffi
3

p
H 1; H 3 ¼ H 1

r
; ð40Þ

and computing Qx;Qy ;Qz, and Qr from

Qx ¼ H 3x; Qy ¼ H 3y; Qz ¼ H 3z; Qr ¼ H 3R�: ð41Þ
The first values for the recursions are obtained with

V 0;0 ¼ H 1; V 1;0 ¼ H 2Qz; V 1;1 ¼ H 2Qx; W 1;1

¼ H 2Qy : ð42Þ
Once computed these initial values and the F ið Þ factors, the
recursions can be calculated in GPU using Eqs. (18)–(26).

3.2. Single and double summation

The last step is to implement the summations of Eqs. (4).
The same as with multiplications, summations are not
associative with respect to the resulting accuracy
(Dahlquist and Björck, 2003). Indeed, the effect of an
incorrect summation order leads to a significant difference
in the error magnitude.

We propose two different summation strategies; the first
one is called double summation method

a ¼
X0
m¼N

Xm
n¼N

an;m

 !
; ð43Þ

and the second one called single summation method

a ¼
X0
m¼N

XN
n¼0

an;m

 !
; ð44Þ

where a is one of the acceleration components €x; €y, or €z.
Regarding accuracy, the correct summation strategy is

to sum in order from the smaller terms to the bigger ones.
The bigger differences between terms occur in colatitudes
near zero, i. e., at the North Pole. As an illustration,
Fig. 2 shows the €zn;m values for a geopotential gradient cal-
culation with colatitude zero. The best summation order
according to Fig. 2 is the double summation method, that
is, first sum the elements of each column starting with the
element of larger degree, and then sum the column totals
from bigger to smaller. This optimal summation order
requires summing the terms in a different order than the
recursions provide. Therefore, it needs two memory vectors
to store the intermediate results.
5

The recursions provide the terms in order from low to
high degree, as shown in Fig. 1. In GPU, for the Cunning-
ham formulation, we parallelize using one thread to calcu-
late each column. Consequently, the terms of the same
degree (row) are available at the same time. Based on this,
we can invert the order of the column summations, which
leads to the simpler but still accurate single summation
method. This method requires only one memory vector
to store the results of the inner summations for each col-
umn, thus optimizing the use of the memory with respect
to the double summation method.

4. GPU implementation

While CPUs are optimized to process data in sequence
by means of heavy cores with very high processor speeds,
GPUs exploit parallelism using a great number of light-
weight but slower cores. Hence, special care should be
taken to optimize the GPU implementation to obtain a
competitive version for low geopotential orders. An effi-
cient implementation needs to account for the specific
GPU architecture details. Ignoring these details can lead
to more than one order of magnitude penalty in the execu-
tion speed. This section discusses the key aspects to con-
sider for an efficient algorithm version based on the
CUDA programming guides (NVIDIA-Corporation,
2022b). As stated in the Introducction, CUDA is the dom-
inant and de facto standard in parallel computing in GPUs.
The complete source code is available in Rubio (2023) for
reference.

According to the CUDA programming guides, the key
aspects to consider for the Maxwell, Pascal, Turing, Volta,
and Ampere CUDA architectures are:

� Minimize the use of arithmetic instructions with low
throughput

� Maximize parallel execution
� Optimize for high occupancy
� Avoid intra-warp divergence
� Perform coalesced access to global memory
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� Avoid shared memory bank conflicts
� Optimize memory copies between host and device
4.1. Minimize the use of arithmetic instructions with low

throughput

The great difference between the throughputs of single
and double precision units in GPU devices makes the use
of single precision, when possible, of special interest. In
the latest CUDA architectures, this disparity is approxi-
mately twofold. For instance, in the A100 device corre-
sponding to the Ampere architecture, the maximum
throughput in double precision is 9.7 TFLOPS, while in
single precision, it reaches 19.5 TFLOPS (NVIDIA-
Corporation, 2023). This difference is even more pro-
nounced in older CUDA architectures, making mixed pre-
cision usage more advantageous and enabling the
utilization of older GPUs. Additionally, the memory allo-
cation for double precision is also doubled, imposing a
constraint on the achieved performance for certain
memory-bound algorithms.

With careful implementation, the Cunningham formula-
tion provides enough accuracy even when the majority of
the computation is performed in single precision arith-
metic. Specifically, the precomputed factors can be
obtained in double but stored in single precision; the Eqs.
(19)–(26) can be computed in single precision; and the final
summations of Eqs. (43) or (44) and the input derived val-
ues (H 1;H 2;H 3;Qx;Qy ;Qz;Qr) computed in double preci-

sion. In the sequel, we will refer to this combination as
the mixed precision version, in contrast to the double pre-
cision version that performs all computations in double
precision arithmetic.

To illustrate the differences between the double and the
single precision versions, Fig. 3 represents the function unit
utilization for 78 simultaneous geopotential gradient calcu-
lations using double precision and Fig. 4 the same for the
mixed precision. In the first case, the double precision
GPU unit is saturated, setting a clear limit in performance.
In the second case, the utilization of the double unit is in
the mid-range, and the work is more evenly shared between
both single and double precision units.
Fig. 3. Function unit utilization for 78 simultaneous calculations of
gravity order 126�126 with the double precision version, executed in a
GeForce GTX 1050 Ti GPU.
4.2. Maximize parallel execution

For one geopotential gradient calculation, the limit in
parallelization is given by the dependencies in the recursion
scheme. As some terms depend on others, we need to calcu-
late them following a strict serial sequence.

Except for the sectorial terms, all the dependencies are
limited to their column, so we can parallelize assigning of
one computation thread per column, as shown in Fig. 5.

The total number of terms to calculate for a geopoten-
tial model of order and degree n is n2=2. Hence, we expect
6

an algorithm complexity of O n2ð Þ for a single-core CPU
and of O nð Þ for the GPU implementation.

Beyond the parallelization limit imposed by the recur-
rence relations, we can launch several geopotential gradient
computations at the same time. This can be useful for one
single satellite propagation when using a numeric integra-
tor that allows some degree of parallelization like, for
example, the Bulirsch-Stoer integrator (Stoer and
Bulirsch, 1996) and other extrapolation and alternative
methods (Fukushima, 1999). It can also be useful to launch
several simultaneous propagations of different objects, as
explained in the Introduction.

4.3. Optimize for high occupancy

A CUDA device is composed of an array of Streaming
Multiprocessors (SMs). Each SM can execute several
thread blocks at the same time. A block is an aggregate
of threads with the capability of sharing information
between them. Therefore, each geopotential gradient com-
putation is circumscribed to one block with one thread per
column, as represented in Fig. 5. If we want to maximize
the calculations throughput, we need to launch enough
blocks and threads to achieve a high level of hardware uti-
lization. Usually, the greater number of simultaneous cal-
culations performed in the device gives the lowest average
time per individual calculation. The threads inside a block
are grouped in warps, which are simply groupings of 32
threads. Occupancy is the ratio of active warps to the max-
imum number of possible active warps per one SM. The
theoretical occupancy is restringed by the following limits:

� The maximum number of blocks per SM
� The maximum number of threads per SM
� The maximum number of registers per SM
� The maximum shared memory per block

The number of threads per block is fixed by the number of
columns of V n;m and W n;m terms. As can be shown in Eqs.
(20)–(22), it is needed to access terms with index m� 1 and
mþ 1; therefore, the number of threads is the desired
geopotential order plus 2 (from 0 to mþ 1). The threads
of a warp can issue each instruction simultaneously; in con-
sequence, there is some performance benefit if the number
of threads is multiple of 32, for example, by using a geopo-
tential degree/order of 126 (128 threads).



Fig. 4. Function unit utilization for 78 simultaneous calculations of
gravity order 126�126 with the mixed precision version, executed in a
GeForce GTX 1050 Ti GPU.

Fig. 5. Thread assignment and shared memory vectors for the V n;m;W n;m

terms.
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The maximum number of registers that a thread can use
is configurable at compilation time. If not limited, the
required registers can exceed the maximum of the SM,
and fewer blocks are executed simultaneously. Limiting
the number of registers means that local memory is used
in exchange for the registers, causing some performance
penalty. Still, this penalty is preferable to the decrease in
the achieved occupancy.

Another limit is the amount of shared memory per SM.
Shared memory is the common memory used by all the
threads of the same block. Each thread needs to keep in
memory the two previous V n;m and W n;m terms due to the
recursions scheme. Also, as shown Eqs. 20,21, each thread
needs to access to the neighbour threads V n;m and W n;m

terms in order to compute the acceleration contributions.
Therefore, this information should be in shared memory.
Another shared memory buffer is required to store the
€x; €y, and €z accumulations of Eq. (44) (single summation).
If the more accurate summation order of Eq. (43) is chosen,
Table 1
Shared memory sizes depending on the geopotential degree n.

Buffer name Elements Bytes

Input (mixed precision) 7 28
Input (double precision) 7 54
V nm (mixed precision) 2 nþ 2ð Þ 8 nþ 2ð Þ
V nm (double precision) 2 nþ 2ð Þ 16 nþ 2ð Þ
W nm (mixed precision) 2 nþ 2ð Þ 8 nþ 2ð Þ
W nm (double precision) 2 nþ 2ð Þ 16 nþ 2ð Þ
Single summation 3 nþ 2ð Þ 24 nþ 2ð Þ
Double summation 3 2nþ 1ð Þ 24 2nþ 1ð Þ
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as the calculation order is different from the recursions,
another intermediate buffer for €x; €y, and €z is needed (double
summation). Finally, it is worth copying the input data
structure to shared memory to avoid several accesses to
global memory, which is much slower than shared memory.
The total usage of shared memory is summarized in
Table 1.

4.4. Avoid intra-warp divergence

All the threads of a warp can issue one common instruc-
tion at a time. Performance is degraded if some threads
need to execute different instructions according to a data-
dependent condition. Because each thread processes one
column, we have divergence when we need to compute dif-
ferent equations depending on the order m. This situation
occurs when calculating the V n;m terms with Eqs. (10),
(11), (12), (23), and (25) and W n;m terms with Eqs. (13),
(24), and (26). It is not possible to elude the problem com-
pletely. However, we can extract the part with the costly
floating-point operations out of the divergent branches.
For example, for W n;m the code without extracting those
operations looks like:
if(m > n or (n = 0 and m = 0) or (n = 1 and
m = 0))
Wnm = 0

else if(n = 1 and m = 1)
Wnm = H2 * Qy

else if(n = m)
Wnm = F7*(Qx*W[n-1][n-1]+Qy*V[n-1][n-
1])

else
Wnm=(F8*Qz)*W[n-1][m]-(F9*Qr)*W[n-2]
[m]
Extracting the floating-point arithmetic out of the diver-
gent branches looks like:
a,d = 0
b,c,e,f = 1
if(n = 1 and m = 1)
a = H2, b = Qy

else if(n>=2 and n<=m)
if(n = m)

a = Qx, b = W[n-1][n-1], c = F7
d = Qy, e = V[n-1][n-1], f = F7

else
a = F8, b = Qz, c = W[n-1][m], d = F9
e = Qr, f = W[n-2][m]

Wnm = (a*b)*c - (d*e)*f
The performance effect with intra-warp divergent
branches is similar to the case when all the threads execute
all the lines. The first implementation needs two additions
and eight floating-point multiplications per degree itera-
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tion, and the second one only one addition and four mul-
tiplications. Notice that full divergence occurs only for
the first warp that processes orders with m from 0 to 31.
The other warps do not enter the branch of m ¼ 1.

Tests for orders 94�94 and 126�126 show that using
this option, there is a decrease in the use of the double pre-
cision unit from 85% to 75%. However, the extra load and
store operations and the additional registers needed con-
duct to a total increment in the execution time. Hence,
we do not recommend implementing this optimization.

The other divergence circumstance occurs when sum-
ming the x and y gradient contributions with Eqs. (18)–
(21). The required code for €x is:
if(m = 0) x[m] += F0*V[n + 1][1]
else x[m] += F1*V[n + 1][m + 1]+F2*W[n + 1]
[m + 1]

+ F3*V[n + 1][m-1]+F4*W[n + 1]
[m-1]
where x m½ � is the x coordinate accumulator for order m,
and the += operator means that a += b equals
a ¼ aþ b. The overload caused by the divergence is only
one addition and one multiplication and occurs only for
the first warp. The addition is always performed in double
precision, while the multiplication is performed in double
or single precision, depending on whether we are using
the double or the mixed precision version of the algorithm.
A good compromise solution is to extract only the addition
from the divergent branch, especially to improve the mixed
precision version as it is its only double precision repeated
operation. The improved and recommended version for €x
is:
if(m = 0) tmp = F0*V[n + 1][1]
else tmp = F1*V[n + 1][m + 1]+F2*W[n + 1]
[m + 1]

+ F3*V[n + 1][m-1]+F4*W[n + 1]
[m-1]

x[m] += tmp
4.5. Perform coalesced access to global memory

The precomputed factors F 0ð Þ
n ; F 1ð Þ

n;m; . . . ; F
9ð Þ
n;m, and the

input data should be accessed by the program from global
memory. The GPU second-level cache (L2) stores one
cache line per each 128 aligned bytes of global memory.
The first recommendation is to mark all pointers to factors
and input data with __restrict__ const. This indicates to the
compiler the read-only condition and allows using the
read-only cache. The second optimization is to assure coa-
lesced access, which is that all threads in a warp issue read
operations for contiguous memory addresses. This requires
indexing by m (order/thread), striding by n (degree), and
8

setting the 128 bytes alignment for all of the F ið Þ arrays
using a struct align keyword:
struct __align__(128) {
float f0[(N + 2)];
float f1[(N + 2)*(N + 2)];
. . .
float f9[(N + 2)*(N + 2)];
};
Implemented in this form, for the mixed precision ver-
sion, the 32 threads of the warp peek a precomputed factor
in one single operation. In the case of double precision, the
request is split into two separate requests, one per each
half-warp.

4.6. Avoid shared memory bank conflicts

The shared memory is organized in 32 parallel banks
where successive 32-bit words are mapped to consecutive
banks. When a warp accesses words in different banks,
there is no conflict, and the request can be delivered in a
single operation. Moreover, this is also true if several
threads access the same memory location. On the other
hand, when more than one thread in a warp has access
to different addresses of the same bank, a conflict occurs,
and the request must be split.

This situation occurs when performing the summations
of Eqs. (43) and (44). In the single summation version,
Eq. (44), the inner summation is performed during itera-
tion from degree 0 to N while are computed the recursive
terms. At the end of the iterations, we have a vector with
the sums for each order m that must be reduced to a single
total. Regarding accuracy, we need to sum the terms in a
specific order, starting with the smaller ones. This prevents
us from using sequential addressing in the reduction pro-
cess and forces us to use interleaved addressing instead.
In the interleaved addressing scheme, represented in
Fig. 6, each thread sums two consecutive values. Thus,
we sum terms of similar magnitude, avoiding numeric
errors.

The drawback of interleaved addressing is that shared
memory bank conflict occurs. The alternative is to include
extra code to store the totals in a different order and use
sequential addressing. However, the impact of these con-
flicts on the total execution time is so small that the opti-
mization is not worth it.

For the case of the double summation version, Eq. (43),
the situation is the same with the only difference that there
are two reduction processes instead of one.

4.7. Optimize memory copies between host and device

The guidelines for these copies are to compact small
transfers into one larger and minimize the amount of data
transferred. The first one is straightforward, grouping all
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the inputs needed by one execution in one array and doing
the same for the output. The execution times of these trans-
fers are quite short (1.15 ls for the input and 1.28 ls for the
output in the example of the previous section and for the
first GPU listed in Appendix A). Therefore, regarding
input, it is preferable to add extra information, even if this
implies a size increment. This extra information saves com-
putation time on the GPU side. The input contains the fol-
lowing pre-calculated (in double precision) values:
H 1;H 2;H 3;Qx;Qy ;Qz, and Qr. The pre-computed factors

F ið Þ are copied from host to device in a separate transfer
but only once at startup. These factors are reusable because
they do not depend on the satellite’s position.

5. Accuracy analysis

Next, the accuracy of the algorithm is assessed for the
four implementations discussed in Section 3 and Section 4,
i.e., the single and double summations, and the mixed pre-
cision and the double precision arithmetics. It leads to the
following four cases of study:

� Mixed precision and single summation
� Mixed precision and double summation
� Double precision and single summation
� Double precision and double summation

5.1. Accuracy evaluation

Accuracy was evaluated for each implementation by
means of a spherical grid of one-degree step in latitude
and ten-degree step in longitude. The gravity field was
recreated with degree/order 100 � 100 from the
EGM2008 Global Gravitational Model (NGA, 2022),
Fig. 6. Parallel reduction using interleaved addressing. The a i½ � variables
correspond to the individual contributions to each acceleration compo-
nent €x; €y, or €z.
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and a 500 km satellite height was used. The error was eval-
uated against the same computations performed in CPU in
quadruple precision as

e ¼ €x� €xq
aq

;
€y � €yq
aq

;
€z� €zq
aq






1
; ð45Þ

where aq ¼ €xq; €yq;€zq
� �

is the quadruple precision accelera-

tion coming from the gradient of the geopotential (in the
Earth-fixed reference system) and aq its modulus. This ref-
erence computation in quadruple precision was also used
to evaluate the accuracy of the GMAT, GODOT, and Ore-
kit geopotential implementations, whose results are
included in Appendix B.

In Fig. 7 it is represented the upper bound of the errors
for each colatitude, while in the Appendix B are repre-
sented all the grid points. In the mixed precision version,
the accuracy differences between the single and double
summation versions are so small that they overlap in the
graph. In the double precision version, both kinds of sum-
mations can be distinguished, although their difference is
minimal. This suggests the recommendation of exclusively
utilizing the single summation version due to its lower
shared memory requirement and best performance.

The accuracy achieved in double precision, with a rela-

tive error in the order of 10�15, is comparable to that of
production-grade astrodynamic software, as can be viewed
in Appendix B. The mixed precision version achieves a rel-

ative error in the range of 6:3� 10�8 to 4� 10�7, which can
be enough for many LEO propagations, as shown in the
next subsection.

It is worth noting that the underflow associated with the
Cunningham formulation does not significantly affect the
final accuracy, as appreciated in Fig. 7. The Cunningham
formulation does not present singularities or overflow
problems, although underflow in the V n;m and W n;m can
occur even for moderate degree orders at low colatitudes.
A common countermeasure for underflows is introducing
a scaling factor, making all the computation scaled up sev-
eral orders of magnitude and scaling down the final result.
Fig. 8 shows the underflow condition in any of the €xn;m; €yn;m,
or €zn;m terms for several colatitudes. These terms follow the
same underflow pattern as V n;m and W n;m according to Eqs.
(20)–(22). The graph also represents the underflow limits
for single and double precision.

The effect of the underflows in the computation of the
V n;m and W n;m terms is that once it happens, the following
terms in the same column are ignored as they will be mul-
tiplied by zero. Even if ignoring these terms, as they are
quite small, the effect on the final accuracy is not
significant.
5.2. Application of the mixed precision version in LEO

Given the reduction of the accuracy of the mixed preci-
sion version with respect to the double precision one, it is
of particular interest to assess its potential use in a practical



Fig. 7. Maximum relative errors as a function of the colatitude for the
mixed and double precision CUDA versions (note the different scales in
the OY axes).
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scenario. As accurate gravity evaluation is more relevant
for lower orbits, we checked the usability by means of
low-height satellite propagation. The selected satellite is
the IceSat (NORAD ID 27642), propagated from the
TLE at epoch Feb 19, 2003. The satellite follows a near-
circular orbit at a height of 598.7 km. The most common
perturbations were modeled using the Orekit framework.
These perturbations include the drag and radiation forces
using isotropic models, Sun and Moon attraction, solid
and ocean tides effect, relativity corrections, and the differ-
ent degrees and orders in the employed geopotential model
(EGM2008). The Orekit framework is executed on the
CPU, but using the POSIX queue mechanism (Kerrisk,
2010), it sends the requests to the reusable module that
computes the geopotential gradient on the GPU.

In Fig. 9 we represent the contribution to the distance
differences after four days of propagation by the different
perturbations. This graph is similar to the ones existing
in Vallado and McClain (2013). The double precision
geopotential models 12�12, 30�30, 100�100, and
200�200 calculate the difference comparing with its nearest
lower-degree geopotential case. The mixed precision mod-
els 12�12mp, 30�30mp, and 100�100mp calculate the dif-
ferences comparing with its counterpart in double
Fig. 8. Smaller acceleration terms for 0, 10, 45, and 90 degree colatitude
angles. The horizontal lines indicate the underflow limits for single and
double precision.
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precision. In other words, the 100�100mp line represents
the distance difference between the 100�100 double preci-
sion and the 100�100 mixed precision versions.

The differences introduced by the mixed precision ver-
sions are lower than the 100�100 geopotential perturba-
tion, which in turn is lower than the relativity effect. This
leads to the conclusion that the mixed precision version
with order 100�100 is precise enough to use in LEO prop-
agations with this time horizon, giving distance differences
in the fourth day of propagation about 1 m when com-
pared to the double precision version. As execution in
GPU is performed in warps of 32 threads, the execution
time is similar for 100�100 than for 126�126. Therefore,
a very interesting choice for GPU calculation is the mixed
or double precision version, depending on the desired accu-
racy, and single summation of degree/order 126�126.
6. Performance

The GPUs are much more effective in the computation
tasks that exploit their massive parallelism. However, in
the case of serial execution or low parallelism levels, they
are at a disadvantage with respect to the CPU.

In Fig. 10 are represented the single (one gradient com-
putation) execution times for the GPU and the GMAT,
GODOT, and Orekit CPU implementations. All CPU
implementations were executed using a single CPU core.
Regarding the GPU, the execution times encompass the
entire kernel execution, which reflects the computational
time of the algorithm itself. If the module is invoked from
an external CPU framework rather than from the GPU,
the slight additional latency required for transferring the
requests and responses can be computed as indicated in
Appendix D.

For the performance tests, the particular satellite posi-
tion r is irrelevant; therefore, all the computations use a
random one. As in Section 4, the details of the hardware
used for all the CPU and GPU tests are listed in the Appen-
dix A. The aforementioned algorithm complexities, O n2ð Þ
for CPU and O nð Þ for GPU, are visible as a quadratic curve
in the case of CPU and a linear trend in GPU. For low
geopotential degree/order, there is not enough parallelism
level to overcome the GPU’s lower clock speeds, the less
floating-point arithmetic throughput, and the extra mem-
ory transfers and latencies.

Fig. 11 shows an ampliation for the lower geopotential
degrees where we can see the cross points where the GPU
starts to be faster in the case of a single computation. Ore-
kit, implemented in the Java language, exhibits significantly
lower performance and greater variability compared to
GMAT and GODOT. Therefore, it may not be the most
suitable reference for time comparisons.

Using the GMAT and GODOT performances as a ref-
erence, we can see the cross point around degree/order
120 for the CUDA mixed precision version and around
160 for the CUDA double precision one. Hence, in the sce-



Fig. 9. Distance differences caused by the different perturbations to an
IceSat satellite numeric propagation. The 12�12mp, 30�30mp, and
100�100mp represent the difference caused by the mixed precision with
respect to the double precision CUDA versions of the same degree.

Fig. 10. Single geopotential gradient computation times. Measured as the
mean value of ten computations after a warm-up of another ten. The
CUDA versions were executed in a NVIDIA GeForce GTX 1050i.

Fig. 11. Single geopotential gradient computation times zoomed in the
low-degree region.
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nario of a single LEO propagation that needs a moderate
geopotential degree, the CUDA versions do not provide
performance improvement with respect to the highly opti-
mized CPU implementations. Nonetheless, as mentioned
in the Introduction, some missions require a high order
in the computation of the geopotential; for these scenarios,
our implementation is faster even for one single
computation.

The significant difference in performance occurs when
the parallelism level and occupancy are increased. This
can be made by increasing the degree/order and/or execut-
ing several simultaneous calculations. Tables 2,3 show the
achieved CUDA speed-up factors with respect to the aver-
age time between GMAT and GODOT for different geopo-
tential degrees. Their particular values are device-
dependant, although they show similar trends. Thus, in
Tables 2,3, we have considered a CUDA device of the
Ampere architecture, while in Appendix C, we present sim-
ilar tables but for the Pascal and Volta architecture devices.
The number of simultaneous computations and the degree/
Table 2
Execution times, occupancy, and speed-up factors with respect to CPU for
the mixed precision version. NVIDIA Ampere A100.

Degree
Order

Simultaneous
computations

Total time
(ms)

Occupancy Speed-up
factor

62 3456 0.53 0.47 328.3
94 3456 0.81 0.77 464.5
126 3456 1.22 0.84 645.6
158 3348 1.63 0.82 756.2

Table 3
Execution times, occupancy, and speed-up factors with respect to CPU for
the double precision version. NVIDIA Ampere A100.

Degree
Order

Simultaneous
computations

Total time
(ms)

Occupancy Speed-up
factor

62 3456 0.77 0.79 224.5
94 3456 1.21 0.82 311.9
126 3240 1.63 0.86 452.3
158 3132 2.15 0.84 537.3
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order were selected to maximize the GPU occupancy.
Hence, the tables illustrate the maximum expected speed-
up using our proposed implementation. For the suggested
126�126 single summation version and optimizing occu-
pancy on an A100 GPU device, we achieve speed-ups of
up to 450 for the double precision version and 645 for
the mixed precision one compared to the serial execution
in a CPU.

7. Conclusion

The Cunningham formulation is well suited to calculate
the geopotential gradient in GPU. It allows a forward-
column parallelization that requires a low amount of
shared memory. The algorithm is numerically stable, and
if carefully implemented, it provides enough accuracy even
when using mixed precision arithmetic, a hybrid that com-
bines single and double precision. In this paper, we pre-
sented the adapted formulation and the details needed to
obtain an effective GPU implementation. Additionally,
we worked out variants employing mixed and double pre-
cision arithmetic, as well as two different summation
schemes. Among these variants, the 126�126 single sum-
mation version stands out as a well-balanced compromise
between accuracy and performance.

We have developed the algorithm as a reusable module
that can be seamlessly integrated into a GPU framework or
invoked from external CPU software using the POSIX
queue mechanism with very minimal interconnection
overhead.

The algorithm accuracy using double precision arith-
metic is comparable to other CPU implementations, like
the ones used in GMAT, GODOT, or Orekit. Regarding
the mixed precision version, we checked its usability for
the lower orbits by means of a LEO propagation, compar-
ing its induced error with that of the other perturbations.
In terms of distance, after four days of propagation, the
difference between the double precision and the mixed pre-
cision variants is about 1 m, considering the most common
perturbations and a geopotential of degree/order 126 �
126.

In terms of execution speed, the GPU version is not
competitive with respect to the most efficient CPU imple-
mentations for low degree/order and one single computa-
tion. For high degree/order (above 120 for double
precision and 160 for mixed precision), the GPU version
is faster because the algorithmic complexity is reduced
from O n2ð Þ to O nð Þ. The use case where the GPU manifests
all its potential and clearly outperforms the CPU imple-
mentations is when calculating the geopotential gradient
for several points at the same time. We tested simultaneous
calculations in three different devices, each one correspond-
ing to one different CUDA architecture. The results
showed speed-up factors as high as 645 for the mixed pre-
cision version and 450 for double precision with only one
single device (NVIDIA A100 GPU) in the computation
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of about 3200 satellite positions with a geopotential
degree/order 126 � 126.
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Appendix A. Benchmark hardware specifications

The CPU tests were executed in a system with the fol-
lowing characteristics:

� CPU: AMD FX-4300 Quad-Core Processor. Clock fre-
quency 3.9 GHz. L2 cache size 4MiB. L3 cache size
4MiB. System memory 16GiB DDR3-1600 MHz.

The GPU performance tests were executed in the follow-
ing GPU devices:

� GPU 1: GeForce GTX 1050 Ti, rev 6.1. Architecture
Pascal. Stream multiprocessors 6. CUDA cores 768.
Clock frequency 1.392 GHz. Memory 4 GB GDDR5.

� GPU 2: Tesla V100-SXM2-16 GB, rev: 7.0. Architecture
Volta. Stream multiprocessors 80. CUDA cores 5120.
Base clock frequency 1.245 GHz. Boost clock frequency
1.38 GHz. Memory 16 GB HBM2.

� GPU 3: NVIDIA A100-SXM4-40 GB, rev: 8.0. Archi-
tecture Ampere. Stream multiprocessors 108. CUDA
cores 6192. Base clock frequency 1.095 GHz. Boost
clock frequency 1.41 GHz. Memory 40 GB HBM2e.

Appendix B. Accuracy plots

This appendix includes the accuracy plots of the four
proposed CUDA versions (mixed and double precision
and single and double summations). It also includes similar
plots for the geopotential gradient computations in
GMAT, Orekit, and GODOT. Each point corresponds to
a spherical grid with one-degree and ten-degree steps in lat-
itude and longitude angles. The grid points are on a spher-
ical surface that simulates a 500 km height satellite. The
geopotential was recreated from the EGM2008 Global
Gravitational Model (NGA, 2022) with degree/order
100�100. The relative errors are calculated according to
Eq. (45) (see Figs. B.12, B.13, B.14, B.15, B.16, B.17, B.18).



Fig. B.12. Relative errors of the double precision, single summation
CUDA version.

Fig. B.13. Relative errors of the double precision, double summation
CUDA version.

Fig. B.14. Relative errors of the mixed precision, single summation
CUDA version.

Fig. B.15. Relative errors of the mixed precision, double summation
CUDA version.

Fig. B.16. Relative errors of the GMAT implementation based in the
Pines formulation. Obtained with GMAT version R2020a.

Fig. B.17. Relative errors of the GODOT implementation based in the
Cunningham formulation. Obtained with GODOT version 0.8.0.
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Fig. B.18. Relative errors of the Orekit implementation based in the
Clenshaw summations variant described in the Holmes and Featherstone
paper. Obtained with Orekit version 10.3.1.

Table C.6
Execution times, occupancy, and speed-up factors with respect to CPU for
the mixed precision version. NVIDIA Tesla V100.

Degree
Order

Simultaneous
computations

Total time
(ms)

Occupancy Speed-up
factor

62 2560 0.44 0.70 288.4
94 2560 0.68 0.78 409.7
126 1280 0.54 0.81 534.8
158 960 0.60 0.87 594.6

Table C.7
Execution times, occupancy, and speed-up factors with respect to CPU for
the double precision version. NVIDIA Tesla V100.

Degree
Order

Simultaneous
computations

Total time
(ms)

Occupancy Speed-up
factor

62 2000 0.48 0.65 207.2
94 2000 0.95 0.69 230.9
126 1360 1.09 0.77 283.0
158 800 0.95 0.75 310.4
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Appendix C. Performance in Pascal and Volta GPUs

This appendix includes the results for simultaneous
computations in devices of the Pascal and Volta architec-
tures. The number of simultaneous computations is
selected to achieve the maximum occupancy in the GPU.
In the case of the GTX 1050i device, occupancy is con-
strained by the maximum blocks per SM limit. Addition-
ally, for the GTX 1050i, the occupancy of the double
precision versions is also restricted by the amount of shared
memory per multiprocessor (see Tables C.4, C.5, C.6, C.7).
Table C.4
Execution times, occupancy, and speed-up factors with respect to CPU for
the mixed precision version. NVIDIA GeForce GTX 1050i.

Degree
Order

Simultaneous
computations

Total time
(ms)

Occupancy Speed-up
factor

62 192 0.33 0.80 28.6
94 126 0.46 0.88 30.1
126 108 0.70 0.76 34.9
158 84 0.85 0.62 36.6

Table C.5
Execution times, occupancy, and speed-up factors with respect to CPU for
the double precision version. NVIDIA GeForce GTX 1050i.

Degree
Order

Simultaneous
computations

Total time
(ms)

Occupancy Speed-up
factor

62 150 0.65 0.71 11.5
94 102 0.89 0.76 12.5
126 78 1.14 0.59 15.6
158 60 1.39 0.44 16.0
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Appendix D. Integration aspects

This appendix introduces some aspects related to inte-
grating this specific module into existing astrodynamics
software. Calculating the gravitational gradient on a
GPU can be used to accelerate orbit integrations where
the numeric integration process runs on a CPU, resulting
in a hybrid CPU/GPU implementation, or it can be used
in software entirely developed on GPU.

The two key aspects to consider are the interconnection
of the new module into the existing software and determin-
ing in which cases its incorporation offers a better
performance.

D.1. Module integration on astrodynamic software

In the case of integrating the module into software
already developed on GPU, the solution is straightforward,
either by incorporating the proposed source code into
existing CUDA code or by making a kernel-to-kernel call.
The kernel-to-kernel launch overhead is minimal, on the
order of a few microseconds.

For the hybrid CPU/GPU solution, a highly effective
method is the utilization of POSIX queues (Kerrisk,
2010). This approach was employed in this study to execute
the propagations of Section 5.2 from Orekit calling to the
CUDA gravity module. The source code for managing
the queues from CUDA is also available in the repository
(Rubio, 2023) in the files middleware.c and middleware.h.
The latency added by this method is very small and almost
proportional to the number of inputs. This delay can be
approximated by a linear regression as illustrated in
Fig. D.19.



Fig. D.19. POSIX queue bi-directional latency vs number of inputs. Each
individual input represents a position for computing the gravity gradient.
The latency time includes the two necessary transfers, one for the request
and one for the response. This data was obtained with the CPU and the
GPU 1 described in Appendix A.

Fig. D.20. Thread splitting due combine parallelization levels 1 and 3.
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D.2. Expected performance gain

The performance gain depends greatly on the use case.
First, we must define the different levels of parallelization
that we can employ. The first level is object-level paral-
lelization, assigning a separate and independent execution
thread for each object propagation. The second level is
the integrator parallelization, where we can evaluate the
acceleration of the object at different points independently
and, therefore, in parallel during the integration of the
same trajectory. Finally, the third level is at the level of
the force/acceleration models, where we use multiple execu-
tion threads to evaluate the acceleration of the object at the
same point. This article describes the parallelized computa-
tion of the acceleration due to the gravitational field, mean-
ing it is parallelization at the third level. Another type of
third-level parallelization occurs in the case of multi-
faceted models for drag or SRP. In these cases, the contri-
bution to the total acceleration of each face can be com-
puted in parallel.

The three levels of parallelization can be combined
simultaneously. In the case of combining all of them, we
would have a series of m threads, one for the propagation
of each trajectory, which at some time during the numeric
integration process are splitted into n threads to calculate
the acceleration simultaneously at various points, and then
further separated into k threads when we reach a paral-
lelized force model at the third level. This splitting process
is illustrated in Fig. D.20 for a combination of the first and
third parallelization levels.

The strategies and performance improvements associ-
ated with integrating a third level parallelized module can
vary significantly depending on whether we are dealing
with a pure GPU implementation or a hybrid CPU/GPU
software.
15
D.2.1. Performance considerations for a pure GPU

implementation

The key factor here is the aforementioned thread split-
ting. Orbital propagation software implemented on GPUs,
such as CUDAjectory (Geda, 2019), is usually based on the
first parallelization level, meaning massive propagation of
independent trajectories. If the number of trajectories we
want to propagate is such that all available execution
threads on the GPU are utilized, we wouldn’t obtain any
performance increase due to the inability to perform the
required thread splitting. In contrast, for cases where we
have a smaller number of trajectories to propagate, we
would indeed achieve better performance using the pro-
posed module. Compared to results provided by other
authors of equivalent GPU implementations of geopoten-
tial gradient calculation (Martin and Schaub, 2020), the
gain with the proposed method is very significant, as
detailed in Section 6.

D.2.2. Performance considerations for a hybrid CPU/GPU

implementation

In the case of a hybrid CPU/GPU implementation, we
typically start with non-parallelized astrodynamics soft-
ware. In this scenario, the geopotential gradient calculation
module works as an accelerator for a specific computation
within the integration process. To achieve a performance
increase, as mentioned in Section 6 and illustrated in
Figs. 10 and 11, we either need a high degree/order or have
to compute multiple calculations simultaneously. Regard-
less of being able to have that multiplicity of calculations
propagating multiple objects simultaneously, for the hybrid
CPU/GPU solution, it is very beneficial to incorporate a
second-level parallelization, i.e., a parallelized numeric
integrator. Picard iterative integrators (Fukushima, 1999),
for example, allow for many parallel evaluations of acceler-
ation, thus allowing the exploitation of the performance
improvement offered by the proposed algorithm.
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