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Abstract

Dryocosmus kuriphilus (Hymenoptera: Cynipidae), the Asian chestnut gall wasp (ACGW), is an invasive pest that threatens 
native stands and orchards of European Sweet Chestnut (Castanea sativa Mill.). ACGW induces galls in stems, petioles, and 
midribs. These galls cause inhibition of tree growth and fruit production. An understanding of morphogenetic changes in 
host organs is important to evaluate how plant resources are redirected to galls. Structural divergences in C. sativa petioles, 
midribs, and respective galls were investigated. Larvae of D. kuriphilus are found in the central region of young petioles 
and midribs in the spring. They are positioned in the pith region of petioles and midribs, surrounded by vascular tissues. 
The increase in cell layers and volume is evident in the ground tissues of galls, i.e., parenchyma, collenchyma, and scle-
renchyma that originate from ground meristem. Gall formation causes the separation of the original vascular system into 
several collateral and amphicribral vascular bundles. The vascular web branching likely favors the redirection of resources 
from developing leaf blades to the galls by compensatory hydraulic mechanisms. The rapid growth rates of galls are likely 
supported by an increased water supply to gall sites. Cytoplasmically dense and metabolically active nutritive linings of the 
larval chambers are the sole source of food for larvae. Nutritive cells are maintained by a rich vascular supply. The redif-
ferentiation of mechanical tissue surrounding the nutritive tissue also requires energy and protects the D. kuriphilus larva 
until pupation. These vascular alterations impact the normal formation of tissues in distal regions of the leaf, which reduces 
the productivity of chestnut trees.

Keywords Cell hypertrophy · European Sweet Chestnut · Hyperplasia · Nutritive tissue · Vascular neoformation

Introduction

Most cynipids (Cynipidae, Hymenoptera) are not con-
sidered economic pests (Stone et al. 2002; Pujade-Villar 
2014), but a notable exception is Dryocosmus kuriphilus 
(Yasumatsu 1951), also known as Asian chestnut gall wasp 
(ACGW). This wasp is the most harmful pest of Castanea 
spp. (Fagaceae, Fagales), due to the severe loss of fruit yield 
caused by its galls on leaves and shoots (Aebi et al. 2006; 
Quacchia et al. 2008).

Galls are neoformed plant structures, induced by organ-
isms such as insects, mites, nematodes or microrganisms 
(Mani 1964). Gall inducers, especially insects and mites, 
are usually speciic to their host-plant species. The anatomy 
and metabolism of gall morphotypes are strongly related 
both to the species of gall inducer and the species of its host 

Handling Editor: Heikki Hokkanen.

 * Bruno G. Ferreira 
 bgf@biologia.ufrj.br

1 Facultat de Biologia. Departament de Biologia 
Animal. Avda. Diagonal, Universitat de Barcelona, 
645. 08028 Barcelona, Spain

2 Departamento de Botânica, Universidade Federal do Rio de 
Janeiro, Instituto de Biologia, Rio de Janeiro, RJ 21941-902, 
Brazil

3 Facultad de Biología, Departamanto de Biología Celular, 
Universidad de León, 08193 León, Spain

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

A
u

th
o

r
 P

r
o

o
f

http://orcid.org/0000-0001-7798-2717
http://orcid.org/0000-0003-2156-2988
http://orcid.org/0000-0002-1814-0293
http://crossmark.crossref.org/dialog/?doi=10.1007/s11829-021-09810-y&domain=pdf


U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 11829 Article No : 9810 Pages : 11 MS Code : 9810 Dispatch : 2-3-2021

 J.-L. Jara et al.

1 3

plant (Stone and Schönrogge 2003; Ferreira et al. 2019a). 
We still know little about the process of gall initiation and 
how cynipid inducers control plant growth. Some signaling 
molecules are known to cause initial modiications in plant 
cell development; however, no gene transference has been 
observed (Ferreira et al. 2019a; Cambier et al. 2019; Hearn 
et al. 2019). Galls are induced to provide both nutrients and 
shelter for the developing larva, and may also provide pro-
tection against natural enemies and harsh environmental 
conditions (Price et al. 1987; Stone and Schönrogge 2003; 
Álvarez et al. 2009), and the same occurs in galls of D. 

kuriphilus.
The ACGW is native to China and was accidentally intro-

duced irst into Japan (Shirakami 1951; Yasumatsu 1951) 
and other countries in Asia, then into the USA (Payne et al. 
1975). More recently, ACGW invaded Europe (Brussino 
et al. 2002), reaching Catalonia (Spain) in 2012 (Pujade-
Villar et al. 2013). It has now spread throughout the entire 
Iberian Peninsula (Jara-Chiquito et al. 2016), where it infests 
native stands and orchards of European Sweet Chestnut 
(Castanea sativa Mill.).

The invasive D. kuriphilus and its galls cause serious 
damage and economic loss. Up to 75% of fruit production 
can be lost (Payne et al. 1975; Brussino et al. 2002) because 
heavy galling inhibits shoot development, reduces foliage 
photosynthetic area, and suppresses loral sprouting. Heavy 
galling has even led to tree mortality (Aebi et al. 2006).

The life cycle of Dryocosmus kuriphilus begins when 
adults lay eggs inside the winter buds in May-July (Itô et al. 
1962; Warmund 2013). The eggs are deposited in the young-
estleaf primordia. The larvae hatch 30 to 40 days after ovi-
position but remain in the buds until the next spring, when 
the buds begin to grow (Brussino et al. 2002; Viggiani and 
Nugnes 2010). During the winter, the buds are covered with 
densely matted, small white trichomes, and infected buds 
cannot be detected (Warmund 2013). After budbreak in the 
spring, larvae develop in synchrony with the development of 
the buds. They feed for 20 to 30 days inside the leaf primor-
dia or the stem apical meristem and induce the formation of 
visible leaf galls on the petioles and midribs of leaves or on 
stems (Fig. 1). Each gall consists of green or red swellings 
5–40 mm in length. The larvae are fully grown by the mid-
dle of spring (Warmund 2013). The adults leave the mature 
galls in early summer and oviposit in new chestnut buds. By 
autumn, the abandoned chestnut galls senesce, but remain on 
the tree for one to two more years, while the tips of galled 
branches die. Because of this dieback, galled branches do 
not produce chestnuts in the following year (Quacchia et al. 
2008; Warmund 2013).

The location and number of larval chambers in cynipid 
galls are inluenced by maternal oviposition, whereas gall 
initiation and maintenance are inluenced by oviposition 
and larval feeding (Folliot 1977; Reale et al. 2014; Cambier 

et al. 2019). Since galls are formed entirely of plant tissues, 
gall initiation and growth are inluenced by host-plant traits 
and by environmental factors (Bailey et al. 2009). Normal 
plant development follows the morphogenetic patterns deter-
mined by plant meristems, which are changed by the galling 
stimuli, whereas the rearrangement of gall tissues begins in 
meristematic tissues such as protoderm, ground meristem 
and procambium, leading to overdiferentiation and/or inhi-
bition of some anatomical structures, and sometimes to cell 
rediferentiation (Ferreira et al. 2019a; Hearn et al. 2019).

Layers of nutritive tissue that line the larval chamber 
begin forming soon after the galls are initiated. Nutritive 
tissues in galls are formed by specialized parenchyma, with 
dense cytoplasm, prominent nucleus, and accumulation of 
primary metabolites, near the feeding sites (Schönrogge 
et al. 2000; Ferreira et al. 2017). An increase in the amount 
of nutritive substances in ACGW gall tissues is thought to 
occur, even though the histological changes that lead to the 
loss of plant vigor are unknown (Warmund 2013; Reale et al. 
2014). A sclerenchyma sheath usually develops around the 
nutritive layers, as larval feeding continues and the gall 
matures (Warmund 2013; Ferreira et al. 2019a). The inner-
most layers lining the larval chambers are morphologically 
similar in all cynipid galls. Generation- and species-speciic 
gall structures result from variation in the development of 
the outer parenchyma and dermal-system tissues (epidermis 
and/or periderm) (Shorthouse and Rohfritsch 1992; LeBlanc 
and Lacroix 2001; Stone et al. 2002; Stone and Schönrogge 
2003; Bragança et al. 2020).

Vascular tissues within galls are connected to those of 
the host organ, and the vascular web is usually increased by 
hypertrophy or hyperplasia in vascular tissue, and by vas-
cular neoformation. The vascular web of galls and ungalled 
plant organs is located within the layers of parenchyma or 
sclerenchyma, since procambial strands are surrounded 

Fig. 1  Chestnut galls induced by Dryocosmus kuriphilus showing a 
midrib gall (1) and a petiole gall (2). The dashed white lines indicate 
transverse sectioning orientation for the histological study. Scale bar 
= 1 cm
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by ground meristem tissues in developing plant organs 
(Rohfritsch 1992). Therefore, the rearrangement of vascular 
tissues in gall formation may also be inluenced by changes 
in growth rate during the phase of growth and development 
(Isaias et al. 2018; Ferreira et al. 2019a; Bragança et al. 
2020). When the gall tissues are diferentiated, the larvae 
continue to feed until they complete their development and 
leave the galls, and gall growth ceases (Folliot 1977).

Studies of gall anatomy began in earnest in the 1800s 
with researchers such as Lacaze-Duthiers (1853), Beijerink 
(1883), and Fockeu (1889), who used classical histological 
techniques to show changes from gall initiation to maturity. 
A resurgence of these techniques occurred in the late 20th 
Century, when researchers such as Bronner (1975, 1977), 
Meyer and Maresquelle (1983), Pujade-Villar (1987), 
Shorthouse and Rohfritsch (1992), Brooks and Shorthouse 
(1998), Arduin and Kraus (1995), Kraus and Tanoe (1999), 
and Souza et al. (2000) made important contributions to 
the ield. Probably the irst major gall studies are those of 
Houard (1904) and Ross (1932). Notable studies of cyn-
ipid gall histology include examinations of Biorhiza pallida 
by Rey (1966, 1967, 1969, 1971), Plagiotrochus suberi by 
Garbin et al. (2005), and gall morphotypes of several species 
by Harper et al. (2004).

The present study assessed changes in the histological 
features induced by D. kuriphilus in leaves of C. sativa, by 
comparing the anatomy of mature galls induced on peti-
oles and midribs with corresponding ungalled structures. 
Because the anatomical and vascular rearrangement may 
indicate the role of gall anatomy in the redistribution of 
water and photoassimilates, we concentrated on changes 
in the vascular system. The results may be useful in future 
studies of source-sink relationships in C. sativa, which could 
afect leaf development and reduce plant productivity. This 
contribution describes histological features of ACGW galls 
on C. sativa, observations complementing those of War-
mund (2013), who studied initial morphological and physi-
ological changes during gall induction by D. kurphilus in 
Castanea mollissima Blume.

Materials and methods

Fresh ungalled, recently expanded leaves (midribs and peti-
oles), along with galled petioles and midribs (n = 5 each) 
were randomly collected from lower branches of the host 
Castanea sativa in May 2018, when the galls contained 
full-grown larvae (Warmund 2013). Collected galls were 
mature (Fig. 1), containing full-grown larvae that were still 
actively feeding. Collections were made from diferent natu-
ral stands of chestnuts located in Catalonia (Spain). The host 
trees were growing close to mixed forests that contained 
native species of oak (Jara-Chiquito et al. 2019). Samples 

(1  cm2) of ungalled leaf midribs and petioles (controls), and 
galls were ixed in FAA formalin ixative (formaldehyde, 
acetic acid and 70% ethyl alcohol, 1:1:18). Following the 
procedures described by Álvarez et al. (2009), samples were 
dehydrated in an increasing ethanol series and embedded in 
Paraplast®, using isoamyl acetate as an intermediate liq-
uid medium. Parain blocks were sectioned at 12 µm in a 
rotary microtome and the sections were aixed to micro-
scope slides. After deparainization with xylol, sections 
were stained with Safranin-Fast Green, dehydrated, and 
mounted permanently in Entellan® on microscope slides. 
Additional sections were stained with Lugol to detect the 
presence of amyloplasts, and others were double-stained 
with Hematoxylin-Eosin for cytological study. Additional 
sections were permanently mounted without staining. Slides 
were examined with a Nikon E600 compound microscope 
under brightield, epiluorescence, and polarized light condi-
tions and photographed with a coupled digital camera.

Results

Histology of ungalled leaves (Fig. 2)

Midrib (from adaxial to abaxial side) (Fig. 2a, c)

The midribs of recently expanded leaves are encased with 
a single layer of epidermis on the adaxial (upper) surface, 
with small cubic cells covered externally with a thin cuti-
cle. A layer of approximately 7–11 cortical cells is present 
outside the vascular system, with a mean of 8.37 layers of 
cells. The cortical layer of the midrib is composed of 3–6 
layers of subepidermal annular collenchyma, followed by 
5–8 layers of homogeneous storage parenchyma. The corti-
cal layers encase a vascular system that appears circular in 
transverse section (Fig. 2a). The entire vascular system is 
encased externally with a bundle sheath composed of the 
innermost layer of storage parenchyma. Three to six cylin-
drical layers of developing pericycle ibers (still deposit-
ing secondary cell walls) (Fig. 2c) encase the vascular 
system. The vascular system is organized in three portions 
that appear arched in transverse section (hereafter: arcs) 
(Fig. 2a, c). The adaxial vascular arc is convex and is com-
posed of, from the upper to lower layers: adaxial phloem, 
procambial cells, diferentiating metaxylem, and protox-
ylem, and is considered bicollateral (the phloem portion 
is positioned on the adaxial and abaxial sides of the xylem 
portion). Four to six layers of storage parenchyma separate 
one arc from the next. The two abaxial vascular arcs are 
concave, bicollateral, and composed of, from the upper 
to lower layers: protoxylem, diferentiating metaxylem, 
procambial cells, and phloem (Fig. 2c). Diferent stages 

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 11829 Article No : 9810 Pages : 11 MS Code : 9810 Dispatch : 2-3-2021

 J.-L. Jara et al.

1 3

of vessel elements are found in the vascular arcs, from the 
procambium to the mature metaxylem cells. A remain-
ing procambium (smallest cells without secondary wall) 
between the xylem and phloem diferentiates additional 

young vessel elements (large cells without a secondary 
wall or with little secondary wall), and mature vessel ele-
ments already have ligniied secondary walls and are dead 
at maturity (Fig. 2c).
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The lower midrib cortex comprises 4–6 layers of homoge-
neous storage parenchyma, followed by 4–6 layers of annular 
collenchyma. The latter is encased with an abaxial single 
layer of epidermis with small cubical or papillose cells, cov-
ered with a thin lower cuticle. Sparse multicellular glandular 
trichomes (Fig. 2d) are present. Amyloplasts are uncommon 
in the cortical parenchyma cells. Druses are found in the 
parenchyma, in smaller numbers in the cortical cells (the 
largest ones) than in the parenchyma between the vascular 
arcs, where the smallest druses are present.

Petiole (from adaxial to abaxial side) (Fig. 2b, c)

The petiole is covered with a single layer of small cubi-
cal epidermal cells, covered with a thin cuticle. The peti-
ole cortex is encased by the epidermis and comprises 4–6 
layers of annular collenchyma, followed by 4–10 layers of 
homogeneous storage parenchyma. About 8–12 cell layers 
of collenchyma and parenchyma occur in the petiole cortex, 
with an average of 10.00 layers of cells.

A continuous cylinder of diferentiating bundle-sheath 
ibers surrounds the entire vascular system. The vascular 
system is divided into three collateral vascular arcs, with 
xylem opposed to phloem cells, as seen in transverse sec-
tions, separated by the storage parenchyma (Fig. 2b). The 
adaxial vascular arc is convex and is sometimes fused with 
the abaxial vascular arc, forming a cylinder. From the upper 
to lower layers, the adaxial arc is composed of phloem, 
procambium, metaxylem and protoxylem. A storage paren-
chyma with homogeneous cells separates the vascular arcs. 
The two abaxial vascular arcs are also collateral, but the 
protoxylem is adaxial, followed by metaxylem, procambial 
cells, and abaxial phloem. The abaxial layers of the petiole 
are composed of 5–8 layers of homogeneous storage paren-
chyma, followed by 3–6 layers of annular collenchyma 
(Fig. 2b). The abaxial epidermis is a single layer composed 

of lat cells covered with a thin cuticle. Multicellular glan-
dular trichomes (Fig. 2d) are common.

Druses are abundant in the parenchyma outside the bun-
dle sheath, and in the innermost cells, with the largest druses 
occurring outside the sheath. Amyloplasts occur sparsely in 
the cortical parenchyma.

Leaf blade (from adaxial to abaxial side) (Fig. 2e)

The adaxial side of the leaf blade is covered with a sin-
gle layer of epidermis, with large lat cells and a thin upper 
cuticle. The mesophyll is dorsiventral, with 2–3 layers of 
palisade parenchyma containing chloroplasts, followed by 
3–4 layers of chlorophyllian aerenchyma with a small mea-
tus. The abaxial epidermis is a single layer of small cubical 
cells, stomata, and some multicellular glandular trichomes. 
Numerous large druses occur in the aerenchyma cells. No 
amyloplasts were observed.

Galls of Dryocosmus kuriphilus (Fig. 3)

Midrib gall (Figs. 1, 3a)

The galls are covered with a single layer of epidermis with 
small lat cells on the outside, covered with a thin cuticle. 
Some multicellular glandular trichomes (Fig. 2d) are pre-
sent. Annular or laminar collenchyma (2–3 layers) occurs 
in the subepidermal layers, with hypertrophied cells and 
slightly thickened cell walls, adjoining a homogeneous stor-
age parenchyma with hypertrophied cells. About 26–37 lay-
ers of large cells (mean 30.14 layers) compose the cortical 
region of the galls. The vascular system is divided into small 
vascular bundles within the cortical storage parenchyma, 
surrounding the ovoid larval chamber (Fig. 3a). The major-
ity are open collateral vascular bundles (Fig. 3c), i.e., with 
the phloem facing outward and a remaining procambium 
between the xylem and phloem. Some vascular bundles are 
amphicribral (i.e., the phloem surrounds the xylem) (Fig. 3d) 
and surrounded by bundle-sheath ibers on the phloem side 
(Fig. 3e). Storage parenchyma closest to the vascular bun-
dles has abundant medium-sized druses, but these druses 
are smaller than those in the outermost storage parenchyma. 
Amyloplasts were not observed in gall tissues.

The innermost cell layers of the gall usually surround a 
single larval chamber, but sometimes more than one larval 
chamber is found per gall. About 15 layers of sclereids under 
the cortical storage parenchyma form a mechanical tissue 
(sclerenchyma sheath), which surrounds each larval cham-
ber (Fig. 3f). Internally, a 5-layered nutritive tissue lines the 
larval chamber and is encased by the sclerenchyma sheath 
(Fig. 3g, h). The nutritive tissue consists of large, basophilic 
cells, with porous-appearing cytoplasm, a large nucleus 

Fig. 2  Anatomy of control leaf of Castanea sativa Mill. (Fagaceae). 
a Cross section of leaf midrib. Note the three vascular arcs from the 
adaxial face to the abaxial face; in the irst, phloem (ph)/xylem (x); in 
the second, xylem/phloem; and in the third, xylem/phloem. The three 
arcs are surrounded by bundle sheath ibers (i). Note the parenchyma 
cells between the irst and the second vascular arcs, and between the 
second and the third. b. Transverse section of petiole. As in the mid-
rib, there are three vascular arcs surrounded by bundle sheath ib-
ers (i), and two sets of parenchyma cells (pa) between the vascular 
arcs. c. Detail of the vascular arcs. Note the procambium between the 
phloem (ph) and the xylem (x). d. Multicellular glandular trichome 
on midrib. e. Leaf lamina with chlorophyll palisade parenchyma (pp) 
in adaxial region and aerenchyma (ae) in abaxial region. Stains: a, 
b, c. Safranine-Fast Green. Microscope illumination: a, b, c. Bright-
ield. d, e. Epiluorescence. Abbreviations: ae aerenchyma, bu bundle 
sheath ibers, co collenchyma, e epidermis, LA leaf lamina, pa: paren-
chyma, ph:phloem, pp chlorophyll palisade parenchyma, pr procam-
bium, s stoma, t trichome, x:xylem. Scale bars: a, b = 500 μm; c = 
200 μm; d, e = 50 μm
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Fig. 3  Anatomy of galls induced by Dryocosmus kuriphilus (Yasu-
matsu 1951) (Hymenoptera: Cynipidae) on leaves of Castanea sativa 
Mill. (Fagaceae). a Midrib gall with a single larval chamber. Each 
circle indicates a vascular bundle, with the portions illed in black 
indicating the phloem position. Note that the larval chamber (CH) 
is surrounded by scattered vascular bundles, with the phloem fac-
ing outward. b Portion of multilocular gall (with three larval cham-
bers) induced in the petiole. The three larval chambers (CH) are sur-
rounded by scattered vascular bundles where the phloem is arranged 
peripherally. c Open collateral vascular bundle. d Amphicribral vas-
cular bundle. e Collateral vascular bundle with bundle sheath ib-

ers (i) outside the phloem (ph). f Nutritive cells (nc) lining a larval 
chamber, and adjoining layers of sclerenchyma (sc). g Sclereids (sc) 
near the nutritive cells (nc) have thickened secondary walls. h Nutri-
tive cells with characteristic granulose cytoplasm and prominent 
nuclei. Stains: a, b, c, g. Safranin-Fast Green. h Hematoxylin-Eosin. 
Microscope illumination: a, b, c, g, h. Brightield. d Epiluorescence. 
e, f Polarizing. Abbreviations: bu bundle sheath ibers, CH larval 
chamber, LA leaf lamina, LV larva, n nucleus, nc nutritive cells, pa 
parenchyma, ph phloem, pr procambium, sc sclereids, x xylem. Scale 
bars: a, b = 2 mm; c, d, e, g = 100 μm; f = 500 μm; h = 20 μm
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with abundant euchromatin, and a conspicuous nucleolus 
(Fig. 3g).

Petiole gall (Fig. 3b)

Petiole galls are covered with a single layer of epidermis 
with periclinally elongated rectangular cells, covered with 
a thin cuticle. Multicellular glandular trichomes are found 
on the epidermis, similar to those occurring on the control 
petiole (Fig. 2d). A subepidermal collenchyma with 2–3 
layers is sometimes present, all with slightly thickened cell 
walls. A homogeneous storage parenchyma is present, with 
hypertrophied polyhedral or obliquely elongated cells. The 
cortical region of the gall (collenchyma and parenchyma) 
has 23–40 layers of these hypertrophied cells (33.88 cell lay-
ers on average). Amyloplasts and druses were not observed 
in gall tissues.

A set of small vascular bundles is encased in the stor-
age parenchyma, usually arranged in a circle, parallel to 
each larval chamber. Sometimes they are open (i.e., with a 
remaining procambium) collateral (i.e., the phloem is only 
on the abaxial side of the xylem) bundles (Fig. 3c) (almost 
always with the phloem outward), and sometimes amphicri-
bral bundles (Fig. 3d). The vascular bundles are sometimes 
encompassed by ibers in the outer region (Fig. 3e). The 
innermost cell layers are composed of a mechanical tissue, 
with 5–15 layers of sclereids (Fig. 3f, g). A nutritive tissue 
with basophilic and granular cytoplasm, and a large nucleus 
and nucleoli, lines the larval chambers (Fig. 3g), surrounded 
by the mechanical tissue (Fig. 3h). Most petiole galls have 
1–3 larval chambers.

In cases where the galls coalesce, the larval chambers are 
separated by several layers of storage parenchyma. When the 
larval chambers are close together, the mechanical layers 
commonly fuse, and lack vascular bundles in the fusion area. 
When the larval chambers are contiguous, they merge into a 
large lobed chamber with a continuous sclerenchyma ring.

Discussion

Impacts of galls on structures of host organs

The observations on leaf anatomy reported here agree with 
those of Pinto et al. (2011) and may explain how the inducer 
larvae change the meristematic activity in the developing 
petioles and midribs. A diferential arrangement of the vas-
cular system occurs in the petiolar and midrib galls, and may 
be explained by the intense cell hypertrophy and prolifera-
tion of ground tissues (collenchyma and parenchyma). The 
vascular web is increased inside the gall, due to the intense 
cell proliferation in meristematic tissues, leading to the seg-
regation of the vascular arcs into separate vascular bundles. 

Branching of the vascular web and hypertrophy of vacu-
olated parenchyma likely result in diversion of water and 
photoassimilates to the gall rather than the ungalled distal 
portions of the leaf. Hydraulic compensation mechanisms 
would favor water accumulation in galls, and consequently 
their growth. Histological changes observed during gall for-
mation likely lead to changes in source-sink strength, afect-
ing the continuity of growth in the afected branches and the 
production of chestnut fruit.

The irst-instar larvae induce alterations in epidermal 
cells after the eggs hatch. At this stage, alterations occur in 
surface cells, with proliferation and stratiication of epider-
mal cells surrounding the larva, forming a cup-shaped larval 
chamber (Reale et al. 2014). The leaf primordia epidermis 
may be distinguished in this stage, with glandular trichomes 
already present (Reale et al. 2014). First-instar larvae over-
winter in the dormant buds, and in the spring, the galls grow 
and mature (Itô et al. 1962).

Alterations in dermal and ground tissues in galls

Our results showed that the larvae occupy the central region 
of young petioles and midribs after the dormancy period, 
forming gall chambers encased by procambial tissues, and 
leading to changes in the arrangement of vascular tissues. As 
the epidermis is already diferentiated in young leaf primor-
dia, similar epidermal structures are found on the galls. The 
gall epidermis remains a single layer, but the cell expansion 
patterns are slightly modiied, becoming periclinally elon-
gated and non-papillose. This alteration is due to cell hyper-
trophy and hyperplasia in the ground-system cells, increas-
ing the gall volume. The epidermal cells are elongated to 
accommodate the increased surface area, as is common 
in galls of other species (Álvarez et al. 2009; Isaias et al. 
2011; Ferreira and Isaias 2013, 2014; Oliveira et al. 2016). 
Compared to the ground and vascular tissue systems, the 
dermal system shows fewer alterations in gall development, 
since the protoderm diferentiates into epidermis earlier than 
the other primary meristems (Raman 2011; Nobrega et al. 
2021), as occurs in the galls studied here. More-complex 
alterations in the epidermis relect the complexity of the 
gall, with changes in the density, size, and morphology of 
trichomes and stomata, and other epidermal specializations 
(Ferreira et al. 2019a; Nobrega et al. 2021). Complex cyn-
ipid galls may have sticky, spiny, or resinous surfaces, due 
to the neoformation of emergences (indumentum formed by 
dermal and subepidermal tissues) in galls, and function as 
barriers against parasitoids and other natural enemies (Stone 
and Schönrogge 2003).

Although only minor changes occur in the epidermis, 
the tissues beneath this layer undergo substantial ana-
tomical changes, involving the appearance of new tissues, 
including a layer of sclerenchyma, nutritive cells, and a 
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rearrangement of the vascular system. These changes cat-
egorize the gall as the prosoplasmatic histioid type (see 
Ferreira et al. 2019a), as is typical for galls of other spe-
cies of cynipids (Rohfritsch 1992; Brooks and Shorthouse 
1998). Galls of cynipids are considered the most structur-
ally complex (Rohfritsch 1992; Brooks and Shorthouse 
1998; Ferreira et al. 2019a).

Extensive cellular hyperplasia and hypertrophy occur 
in the ACGW gall, as is typical for the galls of most spe-
cies (Mani 1964; Rohfritsch 1992; Brooks and Short-
house 1998; Bronner 1992; Ferreira et al. 2017, 2019a). 
Hyperplasia and hypertrophy are extensive in ground tis-
sues during gall development. Hyperplasia results in an 
increase in the number of layers of cortical cells (from 
8.37 to 30.14 in control midribs compared to midrib galls; 
and from 10 to 33.88 in ungalled petioles compared to 
petiole galls). Collenchyma cells also enlarge, with a con-
comitant decrease in the thickness of cell walls. Druses 
or other crystal types are usually more abundant in galls 
than in galled organs (Dias et al. 2013; Guimarães et al. 
2014; Jankiewicz et al. 2017; Ferreira et al. 2019b; Álva-
rez et al. 2021). The galls studied here showed a reduction 
or absence of druses, which can be also detected in other 
gall morphotypes, depending not only on the host-plant 
species but also on the species of gall inducer (Álvarez 
et al. 2009).

The inner layers of the ground tissues are also altered in 
ACGW galls. The mechanical tissue is formed by cell redif-
ferentiation of parenchyma into several layers of cells with 
thicksecondary walls, the sclereids, which lend rigidity to 
the structure (Ferreira et al. 2019a). Sclerenchyma layers or 
mechanical tissues are commonly observed in galls of cyn-
ipids (Hymenoptera) (Rohfritsch 1992; Brooks and Short-
house 1998). Sclerenchyma diferentiation occurs during the 
gall maturation phase, after the growth and development 
phase (Rohfritsch 1992), as observed by Warmund (2013) 
for ACGW galls. The amount of sclerenchyma in these galls 
was negatively correlated with the number of parasitoids per 
gall, as observed by Cooper and Rieske (2010), probably 
due to the rigid secondary cell walls, which protect larvae 
in mature galls from oviposition by parasitoids (Stone and 
Schönrogge 2003).

The innermost layers of ACGW galls have cells with 
a dense cytoplasm, relatively large nucleus, and nucleoli, 
which indicates that these are metabolically active nutritive 
cells (Brooks and Shorthouse 1998; Ferreira et al. 2017, 
2019a). Nutritive tissues are common in galls induced by 
larvae with a chewing feeding habit, and usually accumulate 
lipids and proteins important for insect nutrition (Bronner 
1975, 1977, 1992; Brooks and Shorthouse 1998; Isaias et al. 
2018; Ferreira et al. 2019a). Lipid bodies, mitochondria, and 
fragmented vacuoles were observed by Warmund (2013) in 
nutritive tissues of ACGW galls on C. mollissima.

Changes in vascular web of ACGW galls and possible 
role in reducing host-plant vigor

The processes of cell proliferation and hypertrophy in the 
ground tissues lead to the separation of the original vascular 
arcs of ungalled petioles and midribs into several vascular 
bundles, arranged in circles parallel to larval chambers. We 
assume that the branching of the vascular system around 
the gall chambers enhances the supply of water and pho-
toassimilates to the gall. Even though most of the vascu-
lar bundles of the galls are open (i.e., contain a remaining 
procambium that diferentiates into new vascular elements) 
and collateral (adaxial xylem and abaxial phloem), some 
of them are amphicribral (i.e., the phloem surrounds the 
xylem), indicating that the ACGW has altered the pattern of 
procambium diferentiation. The occurrence of procambial 
neoformation, together with the branching of the vascular 
system, may explain the diferent patterns and sizes of the 
vascular bundles embedded in the gall parenchyma.

Changes in hormonal balance resulting in vascular neo-
formation were shown in galls of Agrobacterium tumefas-

ciens (Aloni et al. 1995; Dodueva et al. 2020), afecting 
the transport of nutrients, water, and photoassimilates. The 
apparent reduction of the vessel element diameter in neo-
formed vascular bundles of ACGW galls may be related to 
increased pressure in the gall xylem, reducing the hydraulic 
conductivity. In this situation, compensatory mechanisms 
may lead to transport of water to adjacent cell walls and 
vacuoles of the cortical parenchyma (Bragança et al. 2020). 
This hydraulic compensation may enhance gall growth, since 
increased vacuolar turgidity is essential in cell hypertrophy 
and proliferation. Therefore, the hydraulic compensation 
could increase water absorption due to the altered vascu-
lar web, afecting water distribution in ungalled portions 
of the leaf and petiole. The reduced hydraulic conductiv-
ity increases the hormonal supply and the sink strength 
in galls of A. tumefasciens (Aloni et al. 1995; Ullrich and 
Aloni 2000), which likely negatively impacts the growth of 
ungalled portions of the galled branches.

Conclusion

Dryocosmus kuriphilus induces changes mainly in the 
ground and vascular system tissues of leaf primordia, lead-
ing to alterations in the arrangement of vascular tissues. 
Changes in the organization of the vascular system are 
caused by the intense hyperplasia and hypertrophy in the gall 
parenchyma and collenchyma, leading to a branched vascu-
lar web around the larval chamber. The histological changes 
reported here will help to decipher the possible metabolic 
developmental pathways, supporting future investigations 
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of the signal patterns and gene expression manipulated by 
inducers to redirect resources to their own beneit.
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