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a b s t r a c t 

Background and objective: Training a deep convolutional neural network (CNN) for automatic image classi- 

fication requires a large database with images of labeled samples. However, in some applications such as 

biology and medicine only a few experts can correctly categorize each sample. Experts are able to iden- 

tify small changes in shape and texture which go unnoticed by untrained people, as well as distinguish 

between objects in the same class that present drastically different shapes and textures. This means that 

currently available databases are too small and not suitable to train deep learning models from scratch. 

To deal with this problem, data augmentation techniques are commonly used to increase the dataset 

size. However, typical data augmentation methods introduce artifacts or apply distortions to the original 

image, which instead of creating new realistic samples, obtain basic spatial variations of the original ones. 

Methods: We propose a novel data augmentation procedure which generates new realistic samples, by 

combining two samples that belong to the same class. Although the idea behind the method described 

in this paper is to mimic the variations that diatoms experience in different stages of their life cycle, it 

has also been demonstrated in glomeruli and pollen identification problems. This new data augmentation 

procedure is based on morphing and image registration methods that perform diffeomorphic transforma- 

tions. 

Results: The proposed technique achieves an increase in accuracy over existing techniques of 0.47%, 1.47%, 

and 0.23% for diatom, glomeruli and pollen problems respectively. 

Conclusions: For the Diatom dataset, the method is able to simulate the shape changes in different diatom 

life cycle stages, and thus, images generated resemble newly acquired samples with intermediate shapes. 

In fact, the other methods compared obtained worse results than those which were not using data aug- 

mentation. For the Glomeruli dataset, the method is able to add new samples with different shapes and 

degrees of sclerosis (through different textures). This is the case where our proposed DA method is more 

beneficial, when objects highly differ in both shape and texture. Finally, for the Pollen dataset, since there 

are only small variations between samples in a few classes and this dataset has other features such as 

noise which are likely to benefit other existing DA techniques, the method still shows an improvement 

of the results. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Training the necessary models to automatically classify samples 

equires large databases with images of already labeled samples. 

his is not a serious problem in some applications such as vehicle 

etection, face detection or scene recognition where there are large 
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atasets already available and people can easily label more sam- 

les if necessary. However, in other applications, collecting these 

atasets is difficult and requires an expert to correctly categorize 

ach sample. This is especially challenging in biology or pathology 

here only trained and experienced specialists can label the data. 

urthermore, in these cases, currently available databases can not 

olve the problem since they are too small to train deep learning 

odels. 

One of these challenging applications is diatom taxa identifica- 

ion. Diatoms are a group of microalgae (a type of phytoplankton) 
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Fig. 1. Diatom asexual reproduction. Cell size is reduced in successive generations 

except for the cell that conserves the original epitheca. Best viewed in color. 

Fig. 2. Size reduction in the life cycle of the Eunotia tenella . 
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hat are part of the aquatic ecosystem and thus, can be found in 

quatic environments such as oceans and rivers. 

In diatom identification, expert biologists take into account the 

ifferences in the morphometric characteristics (length, width, etc.) 

nd the frustule striae of the microalgae. However, these shape and 

exture features change during the so-called life cycle of the di- 

tom. Thus, the life cycle plays an important role in diatom identi- 

cation and biologists focus on identifying these changes [1] . 

Variations in the diatom life cycle are caused by its reproduc- 

ion. The reproduction process can occur by either sexual or asex- 

al methods and differs according to the diatom shape although 

he primary form of reproduction in diatoms is asexual [2] . It oc- 

urs by binary fission where the cell is divided in half, separat- 

ng its two valves. Later on, new siliceous valves are deposited on 

he naked sides. Both valves, called epitheca and hypotheca , of the 

other cell behave as the epitheca in the daughter cells. Thus, 

ew diatoms where the hypotheca behaves as epitheca are smaller 

hile the others retain the parental size (see Fig. 1 ). As a re-

ult, the average size of the diatom population decreases with suc- 

essive divisions. This phenomenon is known as the MacDonald–

fitzer hypothesis. Fig. 2 shows the life cycle of a diatom. 

As a result, the changes in texture and shape caused by the life 

ycle, the large number of diatoms per water sample, and the vast 

umber of species, make manual identification of these organisms 

 tedious task [3] . Moreover, some of the species are easily con- 

used (see Section 2.1.1 ). 

The existence of thousands of species makes deep learning 

echniques suitable to automatically perform the identification. 

owever, as explained before, the number of labeled images per 

lass is not enough [4] and the life cycle information should also 

e used to train the models [5] . 
2 
To alleviate the limitations of small datasets, Data Augmenta- 

ion can help reduce the class imbalance problem by oversampling 

he training dataset. Over the last few years, several Data Aug- 

entation approaches have been proposed [6] . A very basic Data 

ugmentation technique is to apply simple image manipulations 

o the input images such as: geometric transformations (flipping, 

otations, translations, crops...) [7] and simple image processing 

color space changes, noise injection...). Geometric transformations 

re the easiest to implement and are also the most used since they 

re included in popular deep learning frameworks such as Keras 

r PyTorch. They provide satisfactory results when positional bi- 

ses are present in the training data. The only aspect to be con- 

erned about is the fact that they do not always preserve the class 

abels after the transformation is applied. On the contrary, this is 

ot a problem when applying image processing modifications. For 

xample, noise injection can help the network learn more robust 

eatures [8] . 

Kernel filters have also been used to sharpen and blur train- 

ng images [9] . Intuitively, blurring adds robustness to motion blur 

nd non focused images. On the other hand, sharpening adds the 

ossibility of encapsulating small details of the objects. However, 

ernel filters can be added to the network architecture instead of 

eing applied directly to the dataset. In that case, the training will 

ptimize their weights along with the rest of the network weights. 

Random erasing [10] is another Data Augmentation technique 

nspired by the mechanisms of dropout regularization which, in- 

tead of using the output of a layer as input data, this output is 

irectly applied over the training dataset. Of course, this method 

lso presents issues when the part of the image that contains the 

ey discriminant information is erased. 

Mixing images together has also been used for Data Augmenta- 

ion. Mixing images can be as simple as averaging the pixel values 

f a pair of images or inserting part of an image into the other 

ne, or as complex as training and using a Generative Adversarial 

etwork (GAN) to generate mixed images. This is not as intuitive 

s the above approaches, but has been demonstrated to increase 

he performance of CNNs [11] . However, for specialist domains the 

esulting images may make no sense. 

In addition to mixing images, GAN-based methods have also 

een proposed to create artificial instances from a dataset fol- 

owing the sample distribution [12] . Although this method is very 

romising, if a GAN is trained on a given dataset, it will learn the 

nformation represented in that dataset and will generate data in 

he same space. Thus, a GAN is not adding any new information 

o the dataset although increasing the dataset size helps CNNs to 

eneralize. Moreover, in order to match the target domain distri- 

ution, GANs can artificially create image features which can lead 

o misdiagnosis in medical applications [13] . 

Adversarial training can be applied to improve the CNN perfor- 

ance [14] . In this case, the dataset is not updated with new sam- 

les and the artificial images are used to improve robustness to 

dversarial attacks. 

Other authors have proposed to learn spatial transformation 

rom a large class of diffeomorphisms [15] . The problem of this ap- 

roach is that it is class-dependendent and requires to model each 

lass in the dataset. Moreover, it was only demonstrated on MNIST 

nd using a very small CNN. 

Following the same line, diffeomorphic image transformations 

ave also been applied for data augmentation in MRI segmentation 

16] . In that case, the authors proposed to obtain a mean template 

rom the samples and then use the sampled transformations to al- 

er training data. To achieve that, they use a Hamiltonian Monte 

arlo (HMC) scheme. 

Wavelet and constant-Q Gabor transforms have also been ap- 

lied to perform data augmentation improving geometric and im- 

ge perturbation aprroaches [17] . 
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Table 1 

Number of images per class in the diatom dataset. 

Class #Total #Train #Val. #Test 

001 - Eunotia tenella 68 54 7 7 

002 - Fragilariforma bicapitata 90 72 8 10 

003 - Gomphonema augur 90 71 10 9 

004 - Stauroneis smithii 75 59 9 7 

005 - Gomphonema minutum 69 55 7 7 

006 - Luticola goeppertiana 74 61 6 7 

007 - Nitzschia capitellata 79 64 6 9 

008 - Nitzschia amphibia 49 38 6 5 

009 - Sellaphora pupula 40 32 4 4 

010 - Sellaphora obesa 72 58 7 7 

011 - Sellaphora blackfordensis 56 44 6 6 

012 - Sellaphora capitata 121 97 12 12 

013 - Sellaphora auldreekie 40 32 4 4 

014 - Sellaphora lanceolata 53 43 5 5 

Total 976 780 97 99 

Table 2 

Number of images in the polen dataset. 

#Total #Train #Val. #Test 

2591 1701 445 445 
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Finally, morphing has often been applied when dealing with fa- 

ial recognition problems, more specifically in morphing attacks, to 

mprove face recognition models but has not been applied to other 

atasets [14] . 

In this work, to cope with the problem of having small datasets, 

e use transfer learning and data augmentation techniques. Both 

ave been demonstrated to be effective in order to reduce overfit- 

ing and improve generalization [6] . The goal of our study is to per-

orm a data augmentation step that generates new realistic sam- 

les to help CNNs generalize and improve their results. For this 

urpose, we propose a procedure, inspired by the diatom life cycle, 

hat simulates samples in different stages by means of diffeomor- 

hic transforms. The proposed data augmentation method is then 

ased on: 

• Image morphing 
• Image registration 

– Stationary Velocity Field 

– Diffeomorphic Log-Demons 

– B-Spline Composition and Level Sets 
• Matching CNNs 

To the best of our knowledge, this is the first time these meth- 

ds are applied for data augmentation. 

In order to demonstrate the applicability of the proposed data 

ugmentation technique, three small datasets from different tasks 

ave been used: Glomerulosclerosis identification, diatom classi- 

cation and pollen classification. A comparison between the re- 

ults obtained with 6 CNN architectures with three existing data 

ugmentation methods (geometric transformations, noise injection 

nd artificial image generation with GANs) and our approach has 

een carried out. 

. Materials and methods 

.1. Datasets 

Three datasets from different domains have been employed in 

his work. The first one is composed of different diatom taxa. Al- 

hough there are other diatom datasets which are larger, to the 

est of our knowledge only the one used in this work ensures that 

ifferent stages of the life cycle are represented. 

The second dataset contains images from several classes of 

ollen. Although pollen species do not have a life cycle like di- 

toms, there is also high variability between samples. 

Finally, the third dataset contains normal and sclerosed 

lomeruli samples employed in nephropathology studies [18] . Like 

ollen, glomeruli do not have a life cycle but different cuts of this 

natomic structure can be seen as different stages of a life cycle. 

oreover, texture also plays an important role for identification in 

his case. 

.1.1. Diatom dataset 

The database used in this work is a collection of 976 diatom 

mages from 14 different species with between 40 and 121 im- 

ges 1 per class. Images from each class represent diatoms at dif- 

erent stages of their life cycle. 

Samples from Gomphonema minutum , Luticola goeppertiana , 

itzschia amphibia , and Nitzschia capitellata were obtained from 

he AQUALITAS project [19] . Images were captured with a Brunel 

P30 monocular microscope with standard Brunel DIN parfocal ob- 

ectives of 60 × (0.85 NA) and 100 × (1.25 NA) using a LED with 

hite light ( λ = 442 nm). A Brunel Digicam LCMOS 5 Mpixel cam- 

ra was used for image acquisition. The image resolution was 

,592 × 1,944 pixels. 
1 Images available in https://doi.org/10.6084/m9.figshare.18551300.v2 . 

3 
Eunotia tenella , Fragilariforma bicapitata , Gomphonema augur , 

nd Stauroneis smithii were obtained from the DIADIST dataset 

20] . 

The rest of the samples were captured using a digital cam- 

ra, Kodak MegaPlus ES1.O, with 1008 × 1018 pixels resolution 

21] . The camera was attached to an Axiophot photomicroscope 

Zeiss) with a 100 × apochromatic oil immersion lens (1.4 NA) and 

 ×1.6 Optivar magnification changer. Bright field optics were used 

hroughout the whole process. 

To validate and test the models obtained, the dataset has been 

andomly divided into 3 sets: training, validation, and test. Both 

alidation and test sets contain around 10% of the samples whereas 

he remaining 80% is used for training. Table 1 summarizes how 

amples are distributed across all classes and sets and Fig. 3 shows 

n example of each class. 

.1.2. Pollen dataset 

The identification of pollen grains is useful in honey quality 

ontrol, crime scene identification, and the study of the paleoen- 

ironment through fossils [22,23] . 

The pollen classification dataset employed in this work is 

OLLEN73S [24] plus two additional classes from POLEN23E, sya- 

rus and arecaceae [22] . 

POLLEN73S is composed of 2523 color images from 73 differ- 

nt categories with an average resolution of 512 × 512. All pollen 

amples belong to the Campo Grande City urban area in the Brazil- 

an Savannah. The microscope used to capture the images is a 

arl Zeiss Microimaging microscope equipped with 40 × objective 

enses. Images have been acquired at different angles. Each of the 

3 pollen types contains 35 samples except gomphrena sp which 

as 10, trema micrantha which has 34, and zea mays which has 

9. 

On the other hand, the two additional classes were collected 

rom the same area and under the same conditions. They also con- 

ain 35 samples per category. That leads to a total of 2593 samples 

rom 75 pollen types ( Table 2 ). 

Fig. 4 shows an example of each type. Similarly to the diatom 

ataset, training, validation and test sets contain 80%, 10%, and 10% 

f the samples respectively. 2 
2 Images available in https://doi.org/10.6084/m9.figshare.18587321.v1 . 

https://doi.org/10.6084/m9.figshare.18551300.v2
https://doi.org/10.6084/m9.figshare.18587321.v1


N. Vallez, G. Bueno, O. Deniz et al. Computer Methods and Programs in Biomedicine 219 (2022) 106775 

Fig. 3. Image samples from the dataset. a) Gomphonema minutum , b) Luticola goeppertiana , c) Nitzschia amphibia , d) Nitzschia capitellata , e) Eunotia tenella , f) Fragilariforma 

bicapitata , g) Gomphonema augur , h) Stauroneis smithii , i) Sellaphora pupula , j) Sellaphora obesa , k) Sellaphora blackfordensis , l) Sellaphora capitata , m) Sellaphora auldreekie , n) 

Sellaphora lanceolata . 

Table 3 

Number of images per class in the glomeruli dataset. 

Class #Total #Train #Val. #Test 

Sclerosed 502 350 76 76 

Normal 824 576 124 124 

Total 1326 926 200 200 
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.1.3. Glomeruli dataset 

Glomeruli are clusters of capillaries responsible for eliminating 

nnecessary substances from the human body. Glomerular lesions 

resent the so-called glomerulosclerosis, which is characterized by 

lomeruli with different degrees of sclerosis depending on how 

uch of their area is affected [18] . 

The dataset employed here is part of the AIDPATH kidney 

atabase acquired and digitized from three European institutions: 

astilla-La Mancha’s Healthcare services (Spain), Andalusian Health 

ervice (Spain) and Vilnius University Hospital Santaros Klinikos 

Lithuania) [18] . Tissue samples were collected with a 100 μm–

00 μm biopsy needle. Paraffin blocks were then prepared us- 

ng tissue sections of 4 μm and stained using Periodic Acid Schiff

PAS). Digital whole slide image (WSI) acquisition was performed 

ith the Leica Aperio ScanScope CS scanner at 20 × magnification. 

s a result, a dataset of 47 kidney WSIs was obtained 

3 . 

From the digital WSIs a set of 1326 annotated glomeruli 

as obtained including 502 sclerosed or semi-sclerosed sam- 

les and 824 normal samples. The average image resolution was 

50 × 250 pixels. Fig. 5 shows an example of each class and 

able 3 shows how the dataset is distributed across train, valida- 
ion and test sets. 

3 Images available in https://doi.org/10.6084/m9.figshare.18586565.v1 . 

p

t

r

4 
.2. Data augmentation 

The so-called data augmentation technique deals with the most 

requently reported problems of deep neural networks training: 

he lack of a sufficient amount of training images. This is also ag- 

ravated when the datasets are later reduced by partitioning them 

nto training, validation, and test sets. 

To deal with this problem, four different methods of data aug- 

entation have been tested and compared. The first one is based 

n the use of geometric transformations such as flips or rotations. 

his approach has been widely employed in the literature and can 

e used in general for any type of dataset. The second method is 

ased on noise injection. In some cases, noise can leverage the 

odel’s generalization ability. The third method uses a GAN to 

enerate new artificial samples. Finally, a novel data augmentation 

echnique that performs diffeomorphic transformations and gen- 

rates a set of intermediate images from every pair of samples 

hrough morphing and registration techniques is used. 

.2.1. Geometric transformations 

Among all the data augmentation techniques, applying geomet- 

ic transformations is the easiest way of enlarging a dataset. How- 

ver, not all transformations are suitable to be used for this pur- 

ose. Generated images should simulate real images taken under 

 limited set of possible conditions. Thus, the following operations 

ave been selected to carry out the data augmentation step: 

1. Horizontal flip 

2. Vertical flip 

3. Rotations between 0 ◦ and 90 ◦

The combination of these three transformations is randomly ap- 

lied each time a batch is requested during training. The valida- 

ion and test sets remain unaltered. After this process, images are 

esized to the network input size. Fig. 6 shows some examples 

https://doi.org/10.6084/m9.figshare.18586565.v1
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Fig. 4. Image samples from the pollen dataset. 1) Acrocomia aculeta , 2) Anadenanthera colubrina , 3) Arachis sp , 4) Arecaceae , 5) Arrabidaea florida , 6) Aspilia gracielae , 7) Bacopa 

australis , 8) Beladona , 9) Caesalpinia peltophoroides , 10) Caryocar brasiliensis , 11) Cecropia pachystachya , 12) Ceiba speciosa , 13) Chromolaena laevigata , 14) Cissus campestris , 15) 

Cissus spinosa , 16) Combretum discolou , 17) Cordia trichotoma , 18) Cosmos caudatus , 19) Croton urucurana , 20) Dianella tasmanica , 21) Dipteryx alata , 22) Doliocarpus dentatus , 

23) Erythrina mulungu , 24) Eucalyptus sp , 25) Faramea sp , 26) Genipa auniricana , 27) Gomphrena sp , 28) Guapuruvu , 29) Guazuma ulmifolia , 30) Hortia oreadica , 31) Hyptis sp , 32) 

Ligustrum lucidum , 33) Luehea divaricata , 34) Mabea fistulifera , 35) Machaerium aculeatum , 36) Magnolia champaca , 37) Manihot esculenta , 38) Matayba guianensis , 39) Mauritia 

flexuosa , 40) Mimosa ditans , 41) Mimosa pigra , 42) Mitostemma brevifilis , 43) Myracroduon urundeuva , 44) Myrcia guianensis , 45) Ochroma pyramidale , 46) Ouratea hexasperma , 

47) Pachia aquatica , 48) Palmeira real , 49) Passiflora giberti , 50) Paullinia spicata , 51) Piper aduncum , 52) Poaceae sp , 53) Protium heptaphyllum , 54) Qualea multiflora , 55) 

Ricinus communis , 56) Schinus sp , 57) Senegalia plumosa , 58) Serjania erecta , 59) Serjania hebecarpa , 60) Serjania laruotteana , 61) Serjania sp , 62) Sida cerradoensis , 63) Solanum 

sisymbrifolium , 64) Syagrus , 65) Syagrus romanzoffiana , 66) Symplocos nitens , 67) Tabebuia chysotricha , 68) Tabebuia rosealba , 69) Tapirira guianensis , 70) Tradescantia Pallida , 

71) Trema micrantha , 72) Trembleya phlogiformis , 73) Tridax procumbens , 74) Vochysia divergens , 75) Zea mays. . Best viewed in color. 

5 
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Fig. 5. Image samples from the glomeruli dataset. 
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4 The code can be found in https://github.com/noeliavallez/DiffeomorphicDA . 
f where these transformations are applied to the three datasets 

sed. 

.2.2. Noise injection 

The noise injection method refers to artificially adding noise to 

he CNN input data during training. This causes the training data 

o jitter in the feature space during training, making it harder for 

he CNN to find a solution that exactly matches the original train- 

ng dataset, reducing overfitting and improving generalization. The 

oise vector usually comes from a probability density function. In 

his case, we have added noise following a Gaussian distribution 

ith a mean of 0.1 and a standard deviation of 0.8. Fig. 7 shows

xamples of the noise added to the three datasets considered. 

.2.3. GAN-based image generation 

The architecture used in the Generative Adversarial Network 

GAN) is formed by a generator and a discriminator. The former 

s responsible for producing images as close as possible to those 

ontained in the training dataset. The latter takes both training set 

nd generator images, trying to score and discern whether they 

re real or not. In the training process, both networks are opti- 

ized at the same time. As a result, there is a competitive training 

cheme, in which the generator tries to trick the discriminator pro- 

ucing better real-like images, while the discriminator is continu- 

usly improving its ability to detect those images. After training a 

AN architecture with a dataset, it is possible to use the generator 

o artificially generate new samples. 
Fig. 6. General data augm

6 
In this work, we have used a generator composed of 5 blocks. 

ach one contains a batch normalization, a rectified linear unit ac- 

ivation and a transposed convolution with 512, 256, 128, 64 and 3 

lters (the last one produces the image, and therefore the 3 filters 

orrespond to the color channels). At the top of the generator, the 

atent vector (the features used as input for the network) is ini- 

ialized randomly, with a size equal to the input ( 128 × 128 × 3 = 

6 , 152 features). On the other side, the discriminator reproduces 

he same architecture, but inverted. For this purpose, each block 

ontains regular convolution layers and the output is a single neu- 

on to predict whether the input is real or fake. 

Fig. 8 shows images generated with each of the 3 GAN models 

btained. 

.2.4. Proposed methods 

We propose to add new samples that simulate intermediate 

hases of a diatom’s life cycle. To achieve this goal, a data augmen- 

ation approach based on image morphing and image registration 

as been followed. 4 

Image morphing and morphable 3D models have been fre- 

uently applied to generate synthetic face images for visual effects 

r face recognition problems [25] . A sequence is generated to ob- 

ain a transition between the two images. 

On the other hand, the aim of image registration is to find a 

patial transformation T such that: 

 1 ≈ I 0 ◦ T (1) 

here I 1 denotes the target image and I 0 , the source image. 

From each pair of samples, it is possible to generate samples in 

n intermediate state of the life cycle using both techniques. 

1. Morphing 

Given a pair of images I and J, the first step of morphing es- 

tablishes a pixel correspondence between each pixel (x i , y i ) in 

I and (x j , y j ) in J. Then, each pixel of the morphed image M,

(x m 

, y m 

) , is given by: 

x m 

= (1 − α) x i + αx j 
y m 

= (1 − α) y i + αy j 
(2) 

and the pixel intensity is obtained as: 

M(x m 

, y m 

) = (1 − α) I(x i , y i ) + αJ(x j , y j ) (3)
entation examples. 

https://github.com/noeliavallez/DiffeomorphicDA
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Fig. 7. Noise injection data augmentation examples. 

Fig. 8. GAN-based data augmentation examples. 
where α ∈ [0 , 1] is a parameter that controls how close M is to 

images I and J. When α is 0, M = I and if α is 1 M = J. 

To find the correspondence between all pixels, a set of key- 

points needs to be selected first. These points are pixels from 

I and J which are known to be correspondents. For example, 

in face morphing the center of the eyes are two keypoints that 

are usually selected in both images. In this case a total of 36 

keypoints are established around the diatom contour and the 

image border. These keypoints are: 
• The corners of the image 
• Three points equally distributed between each adjacent cor- 

ner pair 
• From the center of the image, the leftmost, rightmost, up- 

permost, bottommost points of the diatom contour 
• Four points between each of the previous adjacent pairs of 

the diatom contour 

The number of keypoints used have been selected empirically. 

Using less points does not obtain realistic enough images and 

using more points only increases the complexity of the method. 
7 
To extract the diatom contour, Elliptical Fourier descriptors 

(EFD) were used. These descriptors have demonstrated their 

suitability to describe the diatom contour [5] . The method em- 

ployed was presented in Kuhl and Giardina [26] and obtains the 

Fourier coefficients of a chain-encoded contour. Therefore, the 

first step in the algorithm is to obtain an initial contour image 

where the Freeman chain code is computed. This is achieved 

with image thresholding in this case. Once the initial chain- 

encoded contour is obtained, the changes in x and y projections, 

�x i and �y i , can be obtained as follows: 

�x i = sgn (6 − a i ) sgn (2 − a i ) (4) 

�y i = sgn (4 − a i ) sgn (a i ) (5) 

�t i = 1 + 

(√ 

2 − 1 

2 

)
( 1 − (−1) a i ) (6) 
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Fig. 9. Freeman chain code projections. 

Fig. 10. Keypoints and Delaunay triangulation. 

 

 

 

 

 

 

 

where a i is the i th element in the Freeman chain code obtained 

and �t i is the modulus of the segment between two adjacent 

points ( Fig. 9 ). 

Then, x (t) and y (t) functions (for the x and y projections re-

spectively) can be approximated as two Fourier series, and their 

corresponding Fourier coefficients, a n , b n , c n , and d n , can be ob-

tained through the following equations: 

a n = 

T 

2 n 

2 π2 

K ∑ 

p=1 

�x p 

�t p 

[ 
cos 

2 nπt p 

T 
− cos 

2 nπt p−1 

T 

] 
(7) 

b n = 

T 

2 n 

2 π2 

K ∑ 

p=1 

�x p 

�t p 

[ 
sin 

2 nπt p 

T 
− sin 

2 nπt p−1 

T 

] 
(8) 

c n = 

T 

2 n 

2 π2 

K ∑ 

p=1 

�y p 

�t p 

[ 
cos 

2 nπt p 

T 
− cos 

2 nπt p−1 

T 

] 
(9) 

d n = 

T 

2 n 

2 π2 

K ∑ 

p=1 

�y p 

�t p 

[ 
sin 

2 nπt p 

T 
− sin 

2 nπt p−1 

T 

] 
(10) 

where K is the number of harmonics used, n is the order of the 

harmonic coefficients and T is the perimeter. 

Finally, the amplitude of the n th harmonic is calculated as: 

amp n = 

1 

2 

√ 

a 2 n + b 2 n + c 2 n + d 2 n (11) 

Once the diatom contour is approximated, the aforementioned 

keypoints are selected in both images. Then, their correspond- 

ing position in the output image M is calculated as intermedi- 

ate points as shown in Eq. (2) . With all keypoints selected, the 

Delaunay triangulation is obtained for all 3 images ( I, J and M) 

using the keypoints as vertices for all the triangles that can be 

formed ( Fig. 10 ). The affine transforms between each triangle 

in M and the triangles in I and J that are formed by the same 

keypoints are computed. 

Finally, the process iterates over all pixels of M, determining 

which triangle the pixel belongs to, applying the correspond- 

ing affine transforms to find the coordinates of the same pixel 

in I and J, and calculating the pixel color as shown in Eq. (3) . 

Fig. 11 shows an example of the image sequence generated 

from a pair of samples. 

2. Stationary Velocity Field Algorithm 

Stationary Velocity Field (SVF) is a non-parametric image regis- 

tration technique used to estimate deformations between image 
8 
pairs [27,28] . For a given source-target image pair in a registra- 

tion problem ( I 0 , I 1 ), it obtains a spatial transformation, T , such

that I 0 ◦ T ≈ I 1 . The approach followed in this work is the one 

in Niethammer et al. [29] . 

Image registration algorithms are often expressed as an opti- 

mization problem: 

γ ∗ = argmin 

γ
λReg 

[
�−1 (γ ) 

]
+ Sim [ I 0 ◦ �−1 (γ ) , I 1 ] (12) 

where � is the deformation, γ parametrize �, λ > 0 , Reg[ ·] 
is a penalty that facilitates spatially regular deformations, and 

Sim [ ·, ·] is used to penalize differences between two images 

[27] . 

SVF is a fluid-type registration method where the deformation 

� is obtained via time-integration of a velocity field v (x, t) , 

which has to be approximated. The governing differential equa- 

tion is: �t (x, t) = v (�(x, t) , t) , �(x, 0) = �(0) (x ) , where �(0) is

the initial map. 

To obtain a diffeomorphic transform, the non-smoothness of 

the velocity field, v , is penalized: 

v ∗ = argmin 

v 
λ

∫ 1 

0 

‖ v ‖ 

2 
L d t + Sim [ I 0 ◦ �−1 (1) , I 1 ] , 

�−1 
t + J�−1 v = 0 and �−1 (0) = id (13) 

where J is the Jacobian, λ is a constant > 0 , Sim is the Normal- 

ized Cross Correlation similarity measure, and ‖ v ‖ 2 L = 〈 L † L v , v 〉
is a spatial norm defined by specifying the differential operator 

L and its adjoint L † . 

Since the vector-valued momentum, m , is equal to L † L v , ‖ v ‖ 2 L =〈 m, v 〉 . As a result, the authors proposed to formulate the prob-

lem to optimize it over the vector momentum, m 0 : 

m 

∗ = argmin 

m 0 

λ〈 m 0 , v 0 〉 + Sim [ I 0 ◦ �−1 (1) , I 1 ] , 

�−1 
t + D �−1 v = 0 , �−1 (0) = id and v 0 = 

(
L † L 

)−1 
m o 

(14) 

The method has been applied to each diatom pair in the 14 

diatom species. Thus, the registration problem considers each 

possible pair of images from the same species as the source and 

target images. 

Prior to applying the method to diatom images, the following 

steps were taken to prepare the data: 

(a) A pair of images is selected from the same class 

(b) The smallest image in the pair is then resized to the size of 

the largest one 

(c) A padding of sixteen pixels is added in both images since it 

improves the resulting deformations 

Fig. 12 shows some examples obtained with this method. 

3. Diffeomorphic Log-Demons Registration 

The concept of demons was first introduced by Maxwell in the 

19th century to illustrate a paradox in thermodynamics. Con- 

sider a semipermeable membrane that separates a gas com- 

posed of two types of particles. This membrane will contain a 

set of “demons”, which are able to distinguish between them 

and will diffuse one type of particle to one side of the mem- 

brane and the other type to the other side. This system contra- 

dicts the second principle of thermodynamics as it produces an 

entropy reduction. However, demons generate a large amount 

of entropy recognizing the particle type, thus solving the para- 

dox. 

In image registration, demons-based methods assume that the 

contour of an object inside an image is a membrane. Then, 

demons are scattered in the image contours. Demons registra- 

tion utilizes optical flow equation as basis forces with the pur- 

pose of finding tiny deformations. For a point p in space, let 
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Fig. 11. Example of data augmentation using morphing. a) and k) are images from the original dataset and b)–j) is the image sequence generated between them. 

Fig. 12. Example of data augmentation using registration through SVF algorithm. The first row corresponds to the source images, the second row to the target images, and 

the last row to the warped images. 

 

i 1 and i 0 be intensity values in target image I 1 and source im- 

age I 0 respectively. According to [30] , Eq. (15) can be used to 

compute the velocity, u , that matches the point p to its corre- 

sponding point in I1 . � f represents the internal edge force and 

is calculated as the gradient image of the target image, (i 0 − i 1 ) 

is the external force, and the term (i 0 − i 1 ) 
2 is added to make

the equation more stable and suitable for registration. 

u = 

( i 0 − i 1 ) �i 1 

| �i 1 | 2 + ( i 0 − i 1 ) 
2 

(15) 

Diffeomorphic Log Demons use a diffeomorphic transformation 

φ related to the exponential map of the velocity field ν : φ = 

exp (ν) . 

The method used in this work implements the demons algo- 

rithm described in Thirion [30] that employs the classical oper- 

ations from Demons algorithms, but the transformation applied 

to the source image is defined as an exponential velocity field. 

This concept is referred to as log-domain in Vercauteren et al. 

[31] . The general procedure consists of two steps. Whereas the 

first step looks for the unconstrained update for the velocity 

field, the second one applies a simple Gaussian smoothing fil- 

ter on the update transformation recently computed. 

The global energy equation used in this algorithm consists of 

two elements: a similarity criterion, E Sim 

which is used to mea- 

sure the likeness between the target image, I 1 , and the source 

image, I 0 , and a regularization energy component, E Reg , given by 

the spatial transformation applied: 

E = E Sim 

+ E Re g = 

∑ 

(I 1 − I 0 ) 
2 

+ 

∑ 

Jac 2 
(16) 
area area 

9 
where Jac corresponds to the Jacobian determinant of the ex- 

ponential velocity field and area is the size of the images in 

pixels. 

Finally, this method is characterized by using a multi-resolution 

registration procedure. The method starts by registering the 

source image with the lowest resolution given as an input pa- 

rameter. In this method, this input value, n , corresponds to the 

multi-resolution levels used. Then, the registration is applied 

again on the warped image obtained in the previous step, but 

using a higher resolution. The lowest possible image resolution 

is equal to 1 
2 n 

times the initial one. Therefore, this method dou- 

bles the image resolution each time the registration algorithm 

is applied. Fig. 13 shows an example of the registration applied 

with 3 levels of multi-resolution. 

The algorithm has been applied following these steps [32] : 

(a) Scale both images to the corresponding resolution given by 

the multi-resolution registration level. Since this is an itera- 

tive process, the scaling applied for each image is computed 

as described above, beginning with the lowest resolution. 

(b) Choose a starting spatial transformation, φ. The initial one 

corresponds to a neutral matrix transformation. 

(c) Apply the spatial transformation defined in the previous 

step to the source image I 0 and update its value. 

(d) Compute the normalized gradient, J, of the difference be- 

tween target and source images, di f f , and use them and the 

weights on the similarity term, σi , and spatial uncertainties, 

σx , to obtain the update ( Eq. (17) ). Then, the parameters to 

calculate the new velocity field are obtained as shown in 
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Fig. 13. Transformation matrices (a)–(c) and results (d)–(f) of a 3-level registration (each matrix is applied to their corresponding image below). The first column corresponds 

to the lowest level of resolution and the last column corresponds to the highest level. 

 

 

Eq. (18) where g x and g y represent the gradient of I 0 . 

upd ate = 

d i f f 

‖ 

J ‖ 

2 + d i f f 2 
σ 2 

i 

σ 2 
x 

(17) 

u x = g x · update u y = g y · update (18) 

(e) Perform the regularization of u x and u y parameters with a 

Gaussian smoothing filter ( Eq. (19) ), and compute the final 

spatial transformation ( Eq. (20) ). 

v ′ x = v x + σx · u x v ′ y = v y + σx · u y (19) 

φ = exp(v ) (20) 

Steps 3–5 are repeated until the algorithm reaches a max- 

imum number of iterations or the energy is below a toler- 

ance level. 

(f) Compute the global energy value and update the source im- 

age. The process is resumed from the first step if all multi- 

resolution levels have not yet been used. 

In this case, the artificial diatoms have been generated using a 

registration method with 5 levels of resolution. Furthermore, to 

increase the amount of samples obtained, new images are also 

generated from one of the original images and the artificial im- 

age generated from it. This allows us to obtain several artificial 

images just from a source and a target image using the inter- 

mediate sample as source or target, as appropriate. 

The method employed to assess the applied transformation is 

the normalized cross-correlation, which makes it possible to 

measure the differences between the source and the warped 

image. 

The following steps have also been accomplished to generate 

the new diatom samples: 
• Both images are padded and scaled to a size of 256 ×

256 pixels. 
• Registration is then applied and the resulting images are 

scaled to their original sizes. 
• The dimensions of the intermediate warped image are 

scaled to a size between the target and source images. This 

new size depends on the normalized cross-correlation val- 

ues between the warped and the source image ( ncc ) and 
S 

10 
between the warped and the target image ( ncc T ). Cross- 

correlation values are compared following Eq. (21) . 

sim = 

ncc 2 T 

ncc 2 
T 

+ ncc 2 
S 

(21) 

Therefore, when sim reaches values close to one, the warped 

image is scaled to a size close to that of the target image. 

Otherwise, the warped image maintains its dimensions close 

to the ones from the source. 

Examples of the generated images are shown in Fig. 14 . 

4. B-Spline Composition and Level Sets Registration 

Another registration approach used is a Free Form Deformation 

method (FFD) commonly used in non-rigid image registration 

(proposed in Chan et al. [33] ). In FFD methods, the source im- 

age is usually embedded in a B-spline object which is then de- 

formed. The spatial transformation of the image is described 

with the B-spline control points and the locations of these 

points are optimized to find the optimal transformation. How- 

ever, the approach selected presents an alternative procedure 

where both the spatial transformation and the image are rep- 

resented in terms of B-splines. The displacement field is then 

computed in each iteration of the registration procedure and 

the new update is composed using the previous transformation 

field. 

To measure the differences between the target and the source 

image the method uses the sum of square differences ( SSD ). 

However, to avoid problems that could lead to non-smooth 

transformations, T , a regularization term is added: 

E(T ) = SSD (I 1 , I 0 ) + σT Reg(T ) (22) 

In addition, to facilitate the optimization, a hidden variable is 

added, and the energy function, E, is defined in terms of two 

transformations ( C and T ) and three terms: 

E(C, T ) = SSD (I 1 , I 0 ◦ C) + σx dist(T , C) 2 + σT Reg(T ) (23)

where Reg(T ) is a regularization term, σT is the amount of reg- 

ularization, dist(T , C) = || T − C|| , and σx accounts for the spatial

uncertainty between C and T . 

In the method selected, the one provided in Chan et al. [34] , 

both the maximum number of iterations and the tolerance 
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Fig. 14. Examples of registered diatoms. First row corresponds to the source image, second row to the target image, and the last row corresponds to the warped image. 

 

2

t

s

t

m

value can be modified to stop the process. The tolerance pa- 

rameter, T OL , allows us to stop the registration process for 

each sample when the differences between the target and the 

warped images are low enough. In this case, the difference be- 

tween both samples, named residual value, is computed using 

the Euclidean norm as: 

E norm 

(I 1 , I 0 ) = 

√ 

N ∑ 

k =1 

| I 1 (k ) − I 0 (k ) | 2 (24) 

Therefore, the algorithm ends when one of the following con- 

ditions is fulfilled: 

E norm 

(I 1 , I 
′ 
0 ) 

E norm 

(I 1 , I 0 ) 
< T OL (25) 

E A norm 

− E B norm 

3 

< 

T OL 

0 . 05 

· 10 

−(4+ nl e v el −l e v el ) (26) 

where I ′ 
0 

is the updated source image, E A norm 

is the average of 

the last three residual values, E B norm 

is the average of the last 

three before the ones used to compute E A norm 

, nl e v el is the num-

ber of multi-resolution levels, and l e v el is the current one. 

The maximum number of iterations used in the tests was 10 0 0 

to avoid lengthy computations, and three different tolerance 

values were used: 1%, 5% and 50%. Additionally, the registra- 

tion process is repeated for each tolerance value. As a result, 

the method generates six new samples from each pair. Fig. 15 

shows new diatom samples obtained with this method. 

5. Matching CNNs for Registration 

Matching CNNs mimic the classical registration process by com- 

bining the descriptors extracted from each image, resulting in a 

set of correspondences that are evaluated to compute the trans- 

formation to be applied. In the case of CNNs, this process is 

replicated using neural networks. The features that define each 

image can be extracted using a CNN and then another network 

can estimate the spatial transformation needed to perform the 

matching. In this work we use the method described in Rocco 

et al. [35] , where the authors propose a neural network archi- 

tecture organized in three stages ( Fig. 16 ). These three stages 

are: 

(a) Feature extraction nets 

This first stage is composed of two identical VGG-16 net- 

works trained with ImageNet without their fully connected 

layers at the end. The output of both networks are three 
11 
dimensional matrices which represent the feature maps (or 

descriptors) of the introduced images. 

(b) Matching network 

Both feature maps are combined in this step to create a ten- 

sor that will be used in the subsequent regression stage. For 

each spatial location, this tensor contains all the similarity 

values between a specified feature in one image and all the 

features in the other. 

(c) Regression network 

Finally, the regression neural network computes the trans- 

formation applied to the source image. 

Even though the method is already prepared for registration 

tasks, the neural network provided [36] has been retrained 

for the current work. The original diatom dataset includes 780 

training and 97 validation samples. A simple data augmenta- 

tion process is used to increase the number of images in both 

groups. For each sample, a spatial transformation and a gaus- 

sian smoothing filter with different sigma values are applied. 

Thus, 6 samples are obtained for each image, increasing the 

sizes of the training and validation datasets. 

The architecture is trainable end-to-end. Thus, both the regres- 

sion and feature extraction stages can be trained simultane- 

ously. On the contrary, matching layers do not require training 

since they do not contain parameters to update. 

The resulting network was then used to generate new diatom 

samples using every possible pair of samples in each diatom 

species. As in the other methods, the smallest diatom of the 

pair is used as the source image while the other one is the tar- 

get image. 

Both images are resized to 227 × 227 pixels since this is the in- 

put size of the VGG-16 network. In addition, the source image 

is padded before being used as input to prevent the warped im- 

age going outside the image limits. In this case, only one artifi- 

cial sample is generated from each pair of diatoms. Some gen- 

erated examples are shown in Fig. 17 . 

.3. Invalid sample filtering 

Since the data augmentation process applies some transforma- 

ions that can deform the diatom contour or change the internal 

triae pattern leading to teratological samples with unnatural fea- 

ures, a process to distinguish between valid and invalid samples 

ay be required. This task can be seen as an image quality as- 
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Fig. 15. Example of data augmentation using B-Spline registration. The first row corresponds to the source image, the second row to the target image and the third row to 

the warped image obtained. 

Fig. 16. CNN architecture proposed in Rocco et al. [35] . 

Fig. 17. Example of data augmentation using registration through CNNs. The first row represents the source images, the second row the target images, and the third row the 

generated images. 

s

q

s

t

s

d

D

a

v

s

r

s

t

s

c

p

2

S

t

t

b

n

t

essment (IQA) process in which a method is used to measure the 

uality of the images in terms of their similarity with the valid 

amples. In this work, three quality metrics have been computed 

o extract features from each pair composed of one of the source 

amples and one of the artificial samples: Visual Information Fi- 

elity (VIF), Mean Structural Similarity (SSIM) and Singular Value 

ecomposition (SVD). The process is performed twice since there 

re two source images related to each artificial sample. The metric 

alues computed are then used to represent sample realism. 

This step is not carried out for glomeruli and pollen datasets 

ince the images obtained in these cases do not present unnatu- 

al features. Images from the pollen dataset have similar shapes 

o that the resulting artificial samples do not differ much from 
12 
he original ones. In case of glomeruli, they already have different 

hapes since it depends on where the cut of the specimen is lo- 

ated and how it is placed on the slide (pathology samples usually 

resent some degree of distortion). 

.3.1. Visual information fidelity (VIF) 

The visual information fidelity (VIF) metric is described in 

heikh and Bovik [37] . This method is based on modeling fea- 

ures captured by the human visual system (HVS) and the calcula- 

ion of two mutual information measures. Following this approach 

oth original and artificial diatom images are interpreted as sig- 

als which pass through the human HVS channel that interprets 

hem before reaching the brain. However, the artificial diatom im- 
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Fig. 18. VIF metric diagram. C is one of the samples from the original test set used to obtain the artificial sample. The artificial samples are considered as the output of a 

certain spatial transformation. 
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ge is considered to have passed through a distortion channel be- 

ore reaching the HVS channel. 

Therefore, three signals can be distinguished ( Fig. 18 ) and mu- 

ual information is calculated between signals C and R for the orig- 

nal image, and between C and W for the artificial image. Then, 

hese two quantities are used to determine the level of visual sim- 

larity. 

The algorithm employed follows a multiscale-based methodol- 

gy applied in four iterations. In each iteration, the dimensions of 

oth images are scaled to half their size, beginning at their original 

ize, and the following parameters being computed: 

1 = H(I O ) (27) 

2 = H(I A ) (28) 

μ1 
= H(I O · I O ) − μ2 

1 (29) 

μ2 
= H(I A · I A ) − μ2 

2 (30) 

μ1 μ2 
= H(I O · I A ) − μ1 μ2 (31) 

 = 

σμ1 μ2 

σμ1 
+ ε 

(32) 

 v = σμ1 
− g · σμ1 μ2 

(33) 

um = num + 

∑ 

log 10 (1 + 

g 2 
i 
σμ1 

s v 2 
i 

+ 2 

) (34) 

en = den + 

∑ 

log 10 (1 + 

σμ1 

2 

) (35) 

here I O and I A are the original and the artificial images respec- 

ively, the H(I) function represents a Gaussian filter applied in I, 

nd num and den values are updated each iteration, setting their 

nitial value to 0. 

Finally, the VIF metric is computed as shown in Eq. (36) . As a

esult, the similarity VIF metric is a value between 0 and 1, where 

 value of 1 means that both images are equal. 

 IF = 

num 

den 

(36) 

.3.2. Mean structural similarity index measure(SSIM) 

The structural similarity index measure ( SSIM ) is a perception- 

ased method which measures the similarity between two images. 

his method considers image degradation as changes in the struc- 

ural information. The comparison between the images is achieved 

hrough three main parameters: luminance ( l ), contrast ( c ) and 

tructure ( s ), defined as follows: 

(x, y ) = 

2 μx μy + c 1 

μ2 
x + μ2 

y + c 1 
(37) 
13 
(x, y ) = 

2 σx σy + c 2 

σ 2 
x + σ 2 

y + c 2 
(38) 

 (x, y ) = 

σxy + c 3 
σx σy + c 3 

(39) 

here μx , μy , σx and σy correspond to the mean and variance for 

ach image x and y , while c 1 , c 2 and c 3 are regularization variables

or low value denominators. 

Finally, SSIM is computed as: 

SIM(x, y ) = 

[
l(x, y ) α · c(x, y ) β · l(x, y ) γ

]
(40) 

here α > 0 , β > 0 and γ > 0 are parameters to adjust the impor-

ance of each component. 

The output value is constrained between 0 and 1, where a value 

qual to 1 means that both images are the same, and 0 means that 

hey are completely different. 

.3.3. Singular value decomposition (SVD) 

The singular value decomposition (SVD) image quality assur- 

nce method was proposed in Wang et al. [38] . It is based on 

he idea of decomposing the image into content-dependent and 

ontent-independent partitions. While the quality of the content- 

ependent part is measured by gradient and contrast similarities, 

he quality of the content-independent part is measured using a 

ormalized peak signal-to-noise ratio (PSNR). 

The algorithm is applied over an image pair composed of an 

riginal and an artificial image where the latter has been gen- 

rated by applying one of the data augmentation methods with 

he former sample and another original sample. Each image is 

hen treated as a matrix, X , and decomposed into three matrices 

hrough the SVD factorization as: 

 = U × � × V 

T (41) 

Then, the decomposition is used to obtain the images of the 

ontent-dependent part, R , and the least content-dependent (or 

ontent-independent) part, I, knowing that the structural compo- 

ent is dominated by the first basis images of the decomposition. 

As a result, the gradient similarity g(x, y ) between the content- 

ependent images obtained from the original, R O , and the artificial, 

 A , inputs is defined as: 

(x, y ) = 

2 G R O (x ) G R A (y ) + k 

G R O ( x ) 
2 G R A ( y ) 

2 + k 
(42) 

here G R O 
(x ) and G R A 

(y ) are the gradient values of the central pix-

ls of image blocks x and y , and k is a constant to avoid dividing

y 0. Four kernels are applied to compute the gradients in four 

irections and the maximum response over them is used as the 

agnitude value of the gradient. 

The contrast similarity c(x, y ) is obtained with a similar proce- 

ure following: 

(x, y ) = 

2 σR O (x ) σR A (y ) + k 

σR O ( x ) 
2 σR A ( y ) 

2 + k 
(43) 

here σR O 
(x ) and σR A 

(y ) are the standard deviations of image 

locks x and y . 
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Fig. 19. Examples of valid (b) and invalid (d) images generated with their metric 

values when they are compared with either the source or the target image (a) and 

(d). 
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Table 4 

Percentage of images accepted and rejected by the expert through data augmen- 

tation method (DA): Stationary Velocity Field (SVF), Matching CNNs (MCNN), Dif- 

feomorphic Log-Demons (DLD), B-Spline Composition and Level Sets (B-S&LS), and 

Morphing (MORPH). 

DA method % Accepted % Rejected 

SVF 86.60 16.40 

MCNN 40.55 59.45 

DLD 53.63 46.37 

B-S&LD 41.93 58.07 

MORPH 81.66 18.34 
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Finally, the PSNR value is computed from I O and I A as: 

 SNR (I O , I A ) = 

1 

k 
10 log 10 

(
L 2 

MSE(I O , I A ) 

)
(44) 

here MSE is the mean squared error and k is a constant used to 

ormalize the PSNR value into [0,1]. 

.4. Generated data and classifiers for invalid sample filtering 

A total of 29,550 artificial diatom samples have been generated 

ith 40 0 0–80 0 0 images per method. An expert diatomologist re- 

iewed these images and labeled them as valid or invalid accord- 

ng to how realistic they are, i.e., if they maintain the morpholog- 

cal features of their species or instead, if their contour or striae 

as been altered substantially. The metrics were then computed for 

ach sample generated. Fig. 19 shows the metric values for valid 

nd invalid artificial diatoms. 

With this data, classifiers such as support vector machines 

SVM), linear and quadratic discriminant classifiers (LDC and QDC), 

-nearest neighbor (kNN), and bagged trees (BT) were trained 

o discern between valid and invalid samples. The best results 

ere obtained with the bagged trees classifier and are shown in 

ection 3 . 

.5. Classification 

After removing the wrong samples, 6 CNN architectures were 

rained to compare the classification results obtained with general 

ata augmentation techniques and with the proposed data aug- 

entation method. The networks employed are ResNet18, AlexNet, 

GG11, SqueezeNet1.0, DenseNet121, and InceptionV3. All models 

ere initialized with the ImageNet weights to follow a transfer 
14 
earning procedure [39] . The number of epochs was set to 60 and 

he learning rate used was 0.001. All experiments were carried out 

n an NVIDIA Quadro P40 0 0 graphic card with 8 GB of memory 

nd were repeated 5 times. 

On the dataset side, the data augmentation methods were only 

pplied to the training samples. Thus, both validation and test sets 

nderwent none of these data augmentation processes and were 

he same across both data augmentation approaches to provide a 

air comparison. 

. Results 

.1. Diatom dataset results 

Before training the classification CNNs, an invalid image re- 

oval process have been carried out to check the influence of 

ncluding or removing the generated teratological samples in the 

lassifier performance and to know which of the proposed meth- 

ds is able to generate more realistic samples. 

.1.1. Invalid image removal 

After all generated samples were reviewed by the specialist, 

he number of both valid and invalid samples per group and data 

ugmentation method employed were obtained ( Fig. 20 ). The two 

ethods with the best results are Stationary Velocity Field (SVF) 

nd Morphing (MORPH) with 83.6% and 81.7% of valid samples 

enerated respectively ( Table 4 ). On the contrary, the Matching 

NNs (MCNN) method obtains the worst results with only 40.6% 

f the generated samples being valid. Notice that this method re- 

uires retraining the networks with the dataset to improve the re- 

ults but the diatom dataset is very small and this may lead to a 

erformance drop. 

By diatom class, 008-Nitzschia amphibia was the most difficult 

o generate samples from, with all methods except SVF generat- 

ng more invalid than valid samples. On the contrary, all methods 

enerate more valid than invalid samples for 001-Eunotia tenella, 

03-Gomphonema augur , and 007-Nitzschia capitellata classes. 

With the results obtained by the specialist, a set of classifiers 

as trained with the metrics extracted from the images generated. 

hese classifiers are: classification trees, linear and quadratic clas- 

ifiers (LDC and QDC), naive Bayes classifier (NBC), support vec- 

or machines (SVM), k-nearest neighbors (kNN), boosted trees, and 

agged trees. The training process follows a 5-fold cross-validation 

echnique. When each of the metrics is applied individually, the 

ccuracy obtained is 78.2% for VIF, 78.3% for MSS, and 76.4% for 

VD. Combining two of the metrics increases the accuracy result- 

ng in 79.1% of samples correctly classified for VIF + MSS, 80% for 

IF + SVD, and 80.2% for MSS + SVD. Finally, when all metrics are 

sed, results show an 81% accuracy with an area under the curve 

AUC) of 0.89 using Bagged Trees ( Fig. 21 ). 

If the classifier threshold is adjusted, it is possible to filter 97% 

f the wrong samples at the cost of accepting only 50% of the re- 
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Fig. 20. Comparison between the number of accepted and rejected samples by diatom species and data augmentation method (Stationary Velocity Field (SVF), Matching 

CNNs (MCNN), Diffeomorphic Log-Demons (DLD), B-Spline Composition and Level Sets (B-S&LS), and Morphing (MORPH)). 

Fig. 21. Confusion matrix and ROC from Bagged Trees classifier trained with valid an invalid samples generated by Morphing and Stationary Velocity Field data augmentation 

methods. 

15 
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Table 5 

Number of images per set and data augmentation (DA) method for Diatom dataset (without 

data augmentation (w/o-DA), geometric transformations (Geo-DA), noise injection (Noise-DA), 

artificial image generation with GANs (GAN-DA), proposed method with invalid image filter- 

ing (P-DA (filter)) and proposed method without the filter (P-DA)). 

#Train #Val. #Test 

w/o-DA Geo-DA Noise-DA GAN-DA P-DA (filter) P-DA 

780 46,800 46,800 28,780 15,532 29,550 97 99 

Table 6 

Diatom dataset average classification results per DA method (without data augmen- 

tation (w/o-DA), geometric transformations (Geo-DA), noise injection (Noise-DA), 

artificial image generation with GANs (GAN-DA), proposed method with invalid im- 

age filtering (P-DA (filter)) and proposed method without the filter (P-DA)). 

DA % Acc. validation % Acc. test 

w/o-DA 99 . 79 ± 0 . 24 98.82 ± 0.98 

Geo-DA 99.24 ± 0.60 96.97 ± 0.95 

Noise-DA 99.38 ± 0.17 98.05 ± 0.88 

GAN-DA 99.69 ± 0.34 98.55 ± 0.71 

P-DA (filter) 99 . 76 ± 0 . 15 99 . 26 ± 0 . 70 

P-DA 99.38 ± 0.50 99 . 29 ± 0 . 48 
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Fig. 22. Species that are sometimes confused due to their similarity. 

Table 7 

Average results by each DA method proposed filtering invalid samples (Stationary 

Velocity Field (SVF), Matching CNNs (MCNN), Diffeomorphic Log-Demons (DLD), B- 

Spline Composition and Level Sets (B-S&LS), and Morphing (MORPH)). 

Network % Acc. validation % Acc. test 

SVF 99.37 ± 0.63 98.77 ± 1.23 

MCNN 99 . 89 ± 0 . 33 98.93 ± 0.88 

DLD 99 . 77 ± 0 . 57 99 . 16 ± 0 . 79 

B-S&LS 99.37 ± 0.52 99 . 38 ± 0 . 86 

MORPH 99.71 ± 0.48 99.05 ± 1.07 
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listic ones. However, with the two methods chosen, it is possible 

o generate an initial set of artificial samples using a larger num- 

er of images, while keeping in mind that some of them may be 

ltered. 

.1.2. Classification 

A set of experiments was conducted varying the CNN architec- 

ure and data augmentation technique to automatically classify di- 

toms (see Section 2.5 ). All experiments used the same randomly 

elected train/validation/test partition and were run 5 times to ob- 

ain the average values. In this section both validation and test re- 

ults are shown. 

Table 5 shows the number of images per set and DA method: 

ithout data augmentation (w/o-DA), geometric transformations 

Geo-DA), noise injection (Noise-DA), artificial image generation 

ith GANs (GAN-DA), proposed method with invalid image filter- 

ng (P-DA (filter)) and proposed method without the filter (P-DA). 

The best results were obtained with the P-DA methods without 

emoving the invalid samples (Accuracy = 99.29% and STD = 0.48). 

he results obtained after applying the filter are very similar to the 

esults of not applying it with a difference of only 0.03% of accu- 

acy. Thus, the inclusion of teratological samples in the classifier 

raining does not affect its performance. However, it is worth not- 

ng that the models trained with these unrealistic samples could 

e less robust to adversarial attacks as it has been shown in the 

iterature [40,41] . 

The other three DA methods obtained worse results than train- 

ng the classifier without employing DA. A possible cause for Geo- 

A and Noise-DA is the addition of artifacts that are not present 

n the test distribution. On the other hand, when GAN-DA is used, 

he resulting images are all very similar, leading to training batches 

ith less feature variability. In addition, this dataset is already 

omposed of samples from different stages of the diatom life cycle, 

herefore, there is already some intrinsic variability in it ( Table 6 ). 

In most tests, the classes that are usually confused are 012- 

ellaphora capitata with 011-Sellaphora blackfordensis . Fig. 22 shows 

mages from these classes. These missclassications are caused by 

he great resemblance between these two species that are hard to 

istinguish even for the human eye. 
16 
When each of the DA methods proposed is applied individu- 

lly, all except for Stationary Velocity Field (SVF) achieve average 

ccuracies that outperform the results obtained with the rest of 

he methods ( Table 7 ). The largest improvement is achieved by B- 

pline Composition and Level Sets Registration (B-S) followed by 

iffeomorphic Log-Demons Registration and Morphing. 

.2. Glomeruli and pollen datasets results 

For the classificaton of Glomeruli and Pollen, only Morphing 

as applied for data augmentation. We have selected it since it 

s the fastest of the methods studied in this work (see Table 8 ),

s able to obtain good results and generates realistic samples for 

he diatom dataset (see Table 4 ). The 6 CNN architectures selected 

ere also trained and tested 5 times as done in the experiments 

ith the diatom dataset. The number of samples employed in each 

ase is shown in Table 9 . 
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Table 8 

Time, in seconds, to obtain an artificial image per DA method (Stationary Velocity 

Field (SVF), Matching CNNs (MCNN), Diffeomorphic Log-Demons (DLD), B-Spline 

Composition and Level Sets (B-S&LS), and Morphing (MORPH)). 

Time SVF MCNN DLD B-S&LS MORPH 

Time 14.41 0.31 0.48 4.16 0.02 

Table 9 

Number of images per set and DA method for Glomeruli and Pollen datasets (with- 

out data augmentation (w/o-DA), geometric transformations (Geo-DA), noise injec- 

tion (Noise-DA), artificial image generation with GANs (GAN-DA), proposed method 

with morphing (P-DA (MORPH))). 

Dataset #Train #Val. #Test 

w/o-DA Geo-DA Noise-DA GAN-DA 

P-DA 

(MORPH) 

Glomeruli 926 55,560 55,560 4926 21,878 200 200 

Pollen 1703 102,180 102,180 151,703 38,910 445 445 

Table 10 

Gomeruli dataset average classification results per DA method (without data aug- 

mentation (w/o-DA), geometric transformations (Geo-DA), noise injection (Noise- 

DA), artificial image generation with GANs (GAN-DA), proposed method with mor- 

phing (P-DA (MORPH))). 

DA % Acc. validation % Acc. test 

w/o-DA 97 . 95 ± 0 . 24 98.33 ± 0.57 

Geo-DA 97 . 87 ± 0 . 27 98 . 53 ± 0 . 40 

Noise-DA 97.88 ± 0.32 98.32 ± 0.45 

GAN-DA 94.57 ± 0.68 96.77 ± 1.08 

P-DA (MORPH) 97.37 ± 0.38 100 ± 0 
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Fig. 23. Examples of glomeruli that are correctly classified by our DA method but 

not by the others. Notice the shape difference of the gomerulus in a) and the simi- 

larity in texture between glomeruli b) and d). 

Table 11 

Pollen dataset average classification results per DA method (without data augmen- 

tation (w/o-DA), geometric transformations (Geo-DA), noise injection (Noise-DA), 

artificial image generation with GANs (GAN-DA), proposed method with morphing 

(P-DA (MORPH))). 

DA % Acc. Validation % Acc. Test 

w/o-DA 91.64 ± 0.36 90.42 ± 0.75 

Geo-DA 92.13 ± 0.57 91.36 ± 0.51 

Noise-DA 92 . 95 ± 0 . 49 91.45 ± 0.98 

GAN-DA 91.19 ± 0.55 89.52 ± 0.81 

P-DA (MORPH) 92.33 ± 0.40 91 . 68 ± 0 . 46 
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Results show an improvement of the proposed DA method 

ased on morphing between 1.47% and 3.23% over the rest of the 

ethods for the Glomeruli Dataset being able to correctly classify 

ll test samples ( Table 10 ). Glomeruli highly vary in texture and 

hape and these characteristics make the proposed method more 

uitable to solve the problem because it adds intermediate shapes 

nd textures that are not already present in the dataset but can 

e found in other samples. In this case, texture plays an important 

ole in the identification of a sclerosed or semi-sclerosed glomeru- 

us. 

In this case, G-DA obtains better results than not using DA, 

oise-DA obtains similar results and GAN-DA obtains the worst 

cores. This is caused by a problem called “model collapse” which 

ccurs when the generator finds a point in the data distribution 

here the discriminator fails and keeps generating images around 

his point. Since the dataset is small, the GAN is not able to find

ther points in the dataset distribution to generate artificial sam- 

les from them and trick the discriminator. 

Fig. 23 shows images that were correctly classified by our ap- 

roach but not by the others. 

For the Pollen dataset, results show an improvement between 

.23% and 2.16% over the rest of the methods when Morphing is 

pplied for DA (with an average accuracy of 91.68% and a STD of 
17 
.46) ( Table 11 ). In this case, both G-DA and Noise-DA outperforms 

ot using any DA technique because there is some noise already 

resent in the dataset and rotations can be seen in the dataset 

amples. Although the proposed DA method obtains the highest 

cores, the difference with other techniques is not as large as in 

he Glomeruli task due to the high similarity of the samples that 

elong to the same class. This leads us to think that the pro- 

osed method works better when samples show larger variability 

n their shape and texture. In fact, examining the different classes 

f pollen, accuracy increases the most for the classes with larger 

ariability in shape and texture ( Fig. 24 ). 

Fig. 24 shows images that were correctly classified by our ap- 

roach but not by the others. 
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Fig. 24. a), c) and e) are examples of pollen samples that are correctly classified by our DA method but not by the others. b), d) and f) are training samples from the same 

classes that shows the variability in shape, color and texture. 
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. Conclusions 

This work addresses the problem of automatically classifying 

bjects with highly variable shape and texture using CNNs on ex- 

remely small datasets.Given the difficulty of acquiring and label- 

ng additional taxa, particularly in problems that require expert la- 

eling, a novel data augmentation method based on Morphing and 

egistration is proposed. The method has been applied to three 

atasets representing three distinct scenarios: diatom, pollen and 

lomeruli identification, obtaining results that outperform tradi- 

ional methods for increasing dataset size. This was demonstrated 

y training and comparing six different CNN architectures with the 
18 
roposed DA method and with general DA methods. The proposed 

echnique improves accuracy by 0.47%, 1.47%, and 0.23% over exist- 

ng techniques for diatom, glomeruli and pollen problems, respec- 

ively. 

For the Diatom dataset, the method is capable of simulating 

he shape changes associated with various stages of the diatom 

ife cycle, resulting in images that resemble newly acquired sam- 

les with intermediate shapes. Indeed, the other methods com- 

ared produced results that were inferior to those obtained with- 

ut data augmentation. For the Glomeruli dataset, the method is 

apable of adding new samples with varying shapes and degrees 

f sclerosis (through different textures). This is the case where our 
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roposed DA method is more beneficial, when objects highly dif- 

er in both shape and texture. Finally, for the Pollen dataset, our 

ethod still improves the results, despite the fact that there are 

nly minor variations between samples in a few classes and the 

ataset contains additional features such as noise that are likely to 

enefit other existing DA techniques. 

Finally, to discard artificial diatoms with teratologies, a classifier 

as trained using bagging trees. The input variables of the bag- 

ing trees were the VIF, SSIM and SVD quality metrics calculated 

etween the two original images (source and target images) and 

he synthetic image generated from them. The classifier achieves 

n AUC of 0.86 although with threshold adjustment it is possible 

o obtain only 3% of false positive samples, and therefore an arti- 

cial dataset with 97% of valid samples. While removing or keep- 

ng these samples had no effect on the classifiers’ performance, it 

hould be considered if the model’s robustness to adversarial at- 

acks is critical. 
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