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ABSTRACT
Remotely sensed data are increasingly used together with National Forest Inventory (NFI) data to 
improve the spatial precision of forest variable estimates. In this study, we combined data from the 
4th Spanish National Forest Inventory (SNFI-4) and from the 2nd nationwide Airborne Laser 
Scanning (ALS) survey to develop predictive forest inventory variables (total over bark volume 
(V), basal area (G), and annual increase in total volume (IAVC)) and aboveground biomass (AGB) 
models for the eight major forest strata in the region of Extremadura that are included in the 
Spanish Forest Map (SFM). We generated maps at 25 m resolution by applying an area-based 
approach (ABA) and 758 sample plots measured with good positional accuracy within the SNFI-4 in 
Extremadura (Spain). Inventory performance is mainly influenced by spatial scale and vegetation 
structure. Therefore, in this study, we conducted a comparative analysis of statistical inference 
methods that can characterize forest inventory variables and AGB uncertainty across multiple 
spatial scales and types of vegetation structure. Predictions at pixel level were used to produce 
county, provincial, and regional model-based estimates, which were then compared with design- 
based estimates at different scales for different types of forest. We developed and tested both 
methods for forested area (cover, 19,744.15 km2), one province (9126.78 km2), and two counties 
(1594.42 km2 and 2076.76 km2, respectively) in Extremadura. The resulting relative standard error 
(SE) for regional level forest type-specific model-based estimates of V, G, IAVC, and AGB ranged 
from 3.34%–14.46%, 3.22%–12.50%, 4.46%–16.67%, and 3.63%–12.58%, respectively. The perfor
mance of the model-based approach, as assessed by the relative SE, was similar to that of the 
design-based approach at regional and provincial levels. However, the precision of SNFI model- 
based estimates was higher than that of estimates based on only the plot observations in small 
areas (e.g. at county level). The standard errors (SE) for model-based inferences were stable across 
the different scales, while SNFI design-based errors were higher due to the small sample sizes 
available for small areas. The findings indicate that SNFI-model based maps could be used directly 
to estimate forest inventory variables and AGB in the major forest strata included in the Spanish 
Forest Map, leading to potentially large economic savings.
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Introduction

Large-scale forest resource assessments based on 
National Forest Inventory (NFI) data are essential for 
supporting national and regional forest planning stra
tegies, especially in the context of climate change 
(Ene et al. 2013). NFI sampling schemes aim to collect 
field-based information, from which it may be possi
ble to obtain reliable estimates at different planning 
scales (Tomppo et al. 2008). At smaller scales, the 
need for forest information requires downscaling of 
estimates obtained from NFI data, under the 

assumption that adaptations are required regarding 
the data and the inference approaches used in order 
to produce reliable estimates. Two main methodolo
gical approaches can be used for this purpose: (1) 
a design-based approach in which only field based 
estimates at the estimation scale are used and (2) 
a model-based approach in which spatially explicit 
information is used together with field data in order 
to increase the efficiency of statistical inference and to 
enable generation of spatial outcomes (Persson and 
Ståhl 2020; Lister et al. 2020). These two approaches 
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are very different in terms of the inferential framework 
and SE estimation. In design-based methodologies, 
the SE is estimated on the basis of the variability in 
the study variables in the sampling plots and the 
sample size in the estimation domain (Kangas 2006). 
By contrast, in model-based methodologies, SE esti
mation depends on the performance of a model fitted 
with data (regarding the variable of interest) esti
mated from auxiliary variable(s) measured over the 
study area and the associated variability over the 
estimation domain (McRoberts 2006). These metho
dological differences lead to difficulty in interpreting 
the estimates when working at different scales, even 
for the same data source (NFI).

Remotely sensed data have been widely used in 
recent years for mapping and estimating forest inven
tory variables and biomass (White et al. 2016; Chirici 
et al. 2020; Saarela et al. 2020). Among remote- 
sensing based techniques, active remote sensing is 
widely used nowadays due to its capacity to precisely 
describe the three-dimensional (3D) structure of for
ests (Wulder et al. 2012; McRoberts, Andersen, and 
Næsset 2014). The development of forestry applica
tions has mainly focused on the use of airborne laser 
scanning (ALS) and the implementation of area-based 
methods (ABA) to estimate forest attributes 
(McRoberts, Andersen, and Næsset 2014). In ABA, 
the area under study is discretised in grid cells and 
sampled with field plots whose locations are chosen 
on the basis of probability sampling. One common 
application involves developing models that are 
applied over the entire forest area of interest (Guerra- 
Hernández, Tomé, and González-Ferreiro 2016; 
Guerra-Hernández et al. 2019) and the subsequent 
use of model-based or model-assisted inference 
approaches to produce estimates at the desired 
scale. The increasing availability of remotely sensed 
data has recently challenged the traditional method 
of performing forest inventories and has led to inter
est in these inference techniques (Ståhl et al. 2011; 
McRoberts, Næsset, and Gobakken 2013; Ståhl et al. 
2016; Saarela et al. 2018). Like traditional design- 
based inference (Saarela et al. 2015), model-based 
inference provides regional estimates of total and 
mean values and also large scale mapping of forest 
characteristics. Methods used to produce extensive 
maps and to calculate small-area estimates of forest 
inventory variables are becoming essential in most 
sophisticated NFIs (Breidenbach and Astrup 2012; 

Mauro et al. 2017; Breidenbach et al. 2018; Hill, 
Mandallaz, and Langshausen 2018; Chirici et al. 2020; 
Vega et al. 2021), as it can be difficult to obtain precise 
direct estimators of forest attributes within relatively 
small areas with a few sample plots.

Maps representing the distribution of a variable of 
interest across a study area are a valuable outcome of 
forest monitoring systems. Some specific applications 
require maps with very low uncertainty, which 
requires great effort from a methodological point of 
view. However, in most studies, characterization of 
the uncertainty of mapped or estimated forest inven
tory variables has depended on either sample-based 
root mean square error or bias, both of which provide 
average measures of uncertainty for plot-related pre
dictions and are therefore limited to uncertainty ana
lysis of mean estimates of forest inventory variables 
for the whole study area (Chen et al. 2016). Thus, it is 
important to calculate the magnitude of mapping 
errors, in order to determine the reliability, usage, 
and interpretation of the map, because map users 
and producers are interested in the quality of maps 
(Persson and Ståhl 2020). On the other hand, while 
error analysis for NFI-based maps has mainly been 
conducted at stand scale (e.g. (Nilsson et al. 2017; 
Rahlf et al. 2021)), the errors in NFI-model-based ALS 
map estimates has not been studied relative to 
design-based estimates at lower spatial scales. If the 
stratum-level SE of NFI-model based maps is stable at 
different scales and forest type, it could easily be used 
in smaller areas, such as county level, in which the 
design-based NFI approach will perform less well due 
to the small sample size.

In this study, the above-mentioned methodologies 
were used in order to combine NFI and ALS data to 
predict forest inventory variables in the region of 
Extremadura, a Mediterranean forest area in Spain 
(Guerra-Hernández et al. 2019; Pascual et al. 2020; 
2021). The Spanish National Forest Inventory (SNFI) 
requires upgrading of ground positioning protocols 
to improve data records. In the case of Extremadura, 
new true positions for samples from the 4th SNFI are 
enabling the use of remote sensing data for spatial 
estimation of forest attributes (Guerra-Hernández 
et al. 2019; Pascual et al. 2020; 2021). To the best of 
our knowledge, country-level experiences in the 
Mediterranean forest type have not yet been reported 
in regard to improving the positional accuracy of SNFI 
plots and spatially and temporally coincident 
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discrete-return ALS data for a variety of types of for
ests. Hence, estimation of Mediterranean forest popu
lation parameters and rigorous calculation of the 
associated uncertainties are essential to produce con
sistent estimates at different scales from SNFI data. 
Second, the SE associated with design-based inven
tory and model-based inventory have never been 
compared in Mediterranean countries at different 
scales and for different types of forest. Furthermore, 
this work aimed to extend knowledge about the per
formance of the SE as a function of the spatial scale 
and different forest types using NFI-model based 
maps and estimates from a design-based SNFI 
approach.

The main objectives of the current study were as 
follows: (i) to construct large scale estimates of forest 
inventory variables for a large test area (i.e. 
27,300 km2) in the region of Extremadura (Spain) by 
combining SNFI plot data and remotely sensed ALS 
data as auxiliary information for mapping growing 
stock volume (V, m3 ha−1), basal area (G, m2 ha−1), 
annual increase in total volume (IAVC, m3 ha−1 year−1), 
and aboveground biomass (AGB, Mg ha−1) at fine 
spatial resolution (25 × 25 m); and (ii) to compare 
the performance of model-based and design-based 

approaches at regional, provincial and county scales 
in terms of relative SE for the eight major forest strata 
included in SNFI plots.

Materials and methods

Study area

The study area is located in the region of Extremadura 
(Spain), which has a total forested area of 
19,744.15 km2 (Figure 1). The Spanish Forest Map of 
Spain (SFM) (E: 1:25,000) (MAPA 2018) and the sam
pling design of the Spanish National Forest Inventory 
(SNFI) were used to cover as much of the whole spec
trum of forest structure in the study area as possible 
(MAGRAMA 2017). The most recent versions of the SFM 
are based on photointerpretation of aerial photogra
phy and digitization of polygons that are classified in 
relation to the vegetation present in the area. We 
selected the following eight Mediterranean forest 
types: Dehesas: sparse old-growth oak forests (Quercus 
spp.) with low tree density; Encinares: sparse oak forest 
(Quercus ilex subsp. ballota (Desf.) Samp); Pinaster: 
even-aged forests of Pinus pinaster subsp. mesogensis 
Aiton; Quejigares: Mediterranean deciduous oak forests 

Figure 1. Study area location (Orange lines), province location (dashed blue lines), the counties of Villuercas and Siberia (red and 
purple lines, respectively) and Forest map of Spain for the region of Extremadura showing the eight forest types (colored areas) 
assessed using the Spanish National Forest Inventory (SNFI) sample plots (black dots).
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dominated by Quercus faginea and Quercus pyrenaica; 
Eucalyptus: commercial forests of Eucalyptus spp., 
dominated by Eucalyptus camaldulensis Dehn., used 
to produce pulpwood; Alcornocales: dominated by 
cork oak (Quercus suber L.), from which cork is obtained; 
Pinea: even-aged forests of Pinus pinea L. managed for 
cone production; and Riparian forest: composed of 
a mixed mature forest of riverine species. These eight 
ecosystems cover an area of 18,335.41 km2 in 
Extremadura, i.e. 92.91% of the whole forest area.

NFI data

The design-based inference method used data from 
1808 concentric circular plots with 25 m of radius 
included in the SNFI-4 (Table 1). In the model-based 
inference approach, 758 of these plots, corresponding 
to well-georeferenced sample plots were used for 
model fitting. Field data were collected during 2017 
according to the SNFI protocol (Álvarez-González 
et al. 2014). Forest inventory variables were computed 
at tree-level using equations from the NFI protocol 
and were then expanded to units per surface area, by 
aggregation of the values to plot level. In the case of 
AGB, the species-specific tree-level allometric equa
tions used by the SNFI were used (Montero, Ruiz- 
Peinado, and Munoz 2005; Ruiz-Peinado, González, 

and Del Rio 2012; Ruiz-Peinado, del Rio, and 
Montero 2011). For more details about the SNFI-4 
field data and processing, see (Álvarez-González 
et al. 2014) and (Alberdi et al. 2017).

The following stand variables were calculated from 
the tree variable measurements by using tree expan
sion factors: growing stock volume (V, m3 ha−1), basal 
area (G, m2 ha−1), annual increase in total volume 
(IAVC, m3 ha−1 year−1), and aboveground biomass 
(AGB, Mg ha−1). The variables estimated for the 2129 
sampled plots used for design-based inference are 
listed in Table 1. During field measurement of SNFI- 
4, the data recording uncertainty was addressed by 
using commercial grade global navigation satellite 
systems (GNSS) to upgrade positioning information 
on new samples established in forest areas under 
expansion and on the set of previously existing 
SNFI-4 sample plots. The coordinates were measured 
with a handheld data collection system (TRIMBLE 
Juno 5B handheld, Trimble Inc. USA) (error range 1– 
2 m of positioning error after post-processing).

Airborne laser scanning acquisition and processing

Data from two ALS point clouds were used in the 
study: the first ALS dataset was collected between 
October 2018 and March 2019 and covers northern 

Table 1. Summary of ground data collected in the 4th National Forest Inventory (NFI) for the eight forest types considered. Plot-level 
estimates are presented for growing stock volume (V, m3 ha−1), stand basal area (G, m2 ha−1), annual increase in total volume 
(IAVC, m3 ha−1 year−1), and aboveground biomass (AGB, Mg ha−1).

Forest type No. of plots design-based inference Statistic
V 

(m3 ha−1)
G 

(m2 ha−1)
IAVC 

(m3 ha−1 year−1)
AGB 

(Mg ha−1) No. of plots model-based inference

Dehesa 593 Mean 15.33 6.47 0.22 42.82 239
Min 1.17 0.68 0.02 2.93
Max 62.56 26.77 0.95 239.01

Encinar 275 Mean 15.12 4.75 0.22 24.65 90
Min 1.19 0.39 0.02 1.59
Max 108.46 31.25 2.01 138.68

Pinaster 279 Mean 127.60 20.41 5.73 70.99 82
Min 1.56 0.40 0.02 0.73
Max 452.71 75.80 21.00 263.54

Quejigares 142 Mean 61.36 12.62 1.42 65.37 38
Min 1.77 0.44 0.06 1.15
Max 261.58 41.84 4.85 285.65

Eucalyptus 187 Mean 44.65 7.56 1.25 42.07 78
Min 2.13 0.56 0.03 2.02
Max 396.52 47.79 10.28 362.70

Alcornocal 116 Mean 28.94 9.34 0.49 32.62 45
Min 0.99 0.40 0.03 1.17
Max 156.52 33.53 2.11 136.10

Pinea 165 Mean 62.63 13.67 2.91 56.33 52
Min 2.16 0.44 0.12 1.47
Max 426.80 64.14 15.95 273.14

Riparian Forest 51 Mean 55.99 12.28 1.33 78.52 37
Min 0.85 0.40 0.03 2.15
Max 304.87 42.95 5.02 262.35
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Extremadura, whereas the second was collected 
between October 2018 and July 2019 and covers 
southern Extremadura. The datasets correspond to 
the second round of countrywide ALS measurements, 
which are publicly available in Spain through the 
National Plan for Aerial Orography (hereafter referred 
to as PNOA). Square ALS blocks of 2 km side, covering 
the whole region of Extremadura were obtained from 
the CNIG (Centro Nacional de Información Geográfica) 
computer server (http://centrodedescargas.cnig.es/ 
CentroDescargas/index.jsp) to cover the province of 
Badajoz. The scanning sensors used to collect the ALS 
data in the study area were a RIEGL LMS-Q1560 for 
Extremadura-North (EXT-N) and a LEICA ALS80 for 
Extremadura-South (EXT-S). The nominal laser pulse 
density varied between 2 points m−2 for EXT-N and 1 
point m−2 for EXT-S.

The methodology used to filter, process, and gen
erate extensive maps at regional level for each forest 
strata is summarized in Figure 2. The ALS data were 
first processed using LAStools software (Isenburg 
2020), and the resulting set of 23 ALS statistics 
(Table 2) were computed for each sample plot. 
A detailed description of the software parametrization 
and the workflow involved in processing the ALS 
point cloud is given by (Pascual et al. 2020). In the 

final step, wall to wall maps were produced at the 
SFM forest strata level. For this purpose, the lasclip 
command was used to clip the normalize point cloud 
for each forest stratum in the Spanish Forest Map 
(SFM) (E: 1:25,000) (MAPA 2018). The lascanopy tool 
was then used to generate the raster metrics at the 
level of forest strata. Finally, V, G, IAVC, and AGB ALS- 
based models were applied at 25 m pixel level using 
the Raster package in R software (Hijmans et al. 2015).

Modeling forest inventory variables

Power-function models were used to establish the 
relationships between forest inventory variables 
derived from field measurements and ALS variables. 
The general expression for the models is as follows: 

yi ¼ f Xi; βð Þ ¼ β0 � Xβ1
1;i � Xβ2

2;i � . . . � X
βp
p;i þ εi (1) 

where yi is the objective forest inventory variable for 
the plot i; X1;i; X2;i: . . . ; �Xp;i are the potential explana
tory ALS-derived variables belonging to the metrics of 
height distributions or measurements related to 
canopy density (Table 2) for plot i; β0, β0, . . ., βp are 
the model parameters to be estimated by non-linear 
regression analysis; and εi is a zero-mean additive 
random residual. The first step used in the modeling 

Figure 2. Workflow based on LAStools software and R routines used to process the ALS data and generate model-based estimates and 
extensive maps under the area-based approach (ABA) for each forest stratum.
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phase was to select the optimal set of predictor vari
ables to use in estimating the forest inventory vari
ables. The R package “leaps,” (Lumley and Miller 2017) 
was used to select the significant predictors of the 
regression. Two predictor variables were used to esti
mate the parameter from the models. Collinearity 
between regressors was prevented by checking the 
variance inflation factor (VIF), and regressors with VIF 
above 10 were disregarded (Belsley, Kuh, and Welsch 
2005). The models were fitted using the nls function 
implemented in the R package BASE (R Core Team 
2020).

Finally, the model efficiency (Mef, Eq 2), the 
overall root mean square error (RMSE, Eq. 3), and 
the relative root mean square error (rRMSE, Eq. 4) 
were computed to determine the accuracy of ALS- 
derived models for estimating forest inventory vari
ables. The adjusted R2 was not considered 
a suitable goodness-of-fit statistic, as the modeling 
was conducted in non-linear space. We therefore 
used the Mef statistic, which provides a simple 
index of performance on a relative scale, where 
a value of one indicates a “perfect” fit, a zero 
value reveals that the model is no better than 
a simple average, and negative values indicate 
a poor model (Vanclay and Peter Skovsgaard 
1997). In addition, leave-one-out cross-validation 
was performed for each potential regression 
model using R routines (R Core Team 2020). 

Mef ¼ 1 �
n � 1ð Þ

Pn
i¼1 yi � ŷið Þ

2

n � pð Þ
Pn

i¼1 yi � �yð Þ
2

 !

(2) 

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ŷi � yið Þ
2

n

s

(3) 

rRMSE ¼
RMSE

�y
� 100 (4) 

where n is the number of plots; yi is the field- 
estimated variable of interest for the plots i; �y is the 
mean value for the field-estimated variable of interest 
over the n plots; ŷi is the estimated value of variable of 
interest derived from the non-linear regression 
model; and p is the number of parameters in the 
model.

Statistical inference for estimation of forest strata 
at regional-provincial-county- scale

Model based estimation
For estimation of species-specific V, G, IAVC, and 
mean AGB, model-based inferential methods that do 
not require probability sampling were used (Table 1, 
No. of plots model-based inference). The available 
well-georeferenced SNFI samples were considered to 
have been selected by non-probability, purposive 
sampling. The model-based unbiased estimator of 
the species-specific V, G, IAVC, and AGB mean was 
based on McRoberts (2006): 

μ̂ ¼
1
N

XN

i¼1

μ̂i (5) 

where μ̂i is the predicted value of the variables of 
interest V, G, IAVC, or AGB from ALS-based model 
(Eq. 1) for the ith population unit (pixel, map unit), 
and N is the total number of population units for each 
forest type for which ALS-based V, G, IAVC, and AGB 
models were applied.

The corresponding estimator of the standard error 
(SE) was computed as follows: 

bSEμ̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N2

XN

i¼1

XN

j¼1

ZT
i σ̂2 β̂
n o

Zj

v
u
u
t ð6Þ

where zij= @f Xi; βð Þ=@βj are the elements of vector 
Zi, βj are the parameters of the model (Eq. 1), and 

σ̂2 β̂
n o

is an estimator of the parameter variance- 

Table 2. Set of statistics derived from airborne laser scanning 
data used as candidate predictor variables to construct models 
for V, G, IAVC, and AGB.

Metrics Description

(A) Height metrics

(A.1) Metrics measuring the central tendency of ALS echo height 
distribution
hmean Mean
qav Quadratic mean height

(A.2) Metrics measuring the dispersion of ALS echo height distribution
hstd Standard deviation
hmax,hmin Maximum and minimum

(A.3) Metrics measuring the shape of ALS echo height distribution
hSkw Skewness
hKurt Kurtosis
CRR Canopy relief ratio ((hmean – hmin)/(hmax – hmin))

(A.4) Percentiles of the ALS echoes height distribution
h01,h10 

. . . . . . h99

5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 
80th, 90th, 95th, 99th percentiles

(B) Canopy cover metrics

(B.1) Cover metrics (cover_cutoff: 2 m)
CC Percentage of first returns above 2.00 m over total 

first returns
PARA2 Percentage of all returns above 2.00 m over total all 

returns

GISCIENCE & REMOTE SENSING 691



covariance matrix as described in McRoberts, Næsset, 

and Gobakken (2013). The elements σ̂2 β̂
n o

states for 

the partial derivative of the model in the i position 
(number of parameter) regarding the j parameter. As 
Eq. (6) was often computationally intense, 10% of the 
total number of population units (pixels) were used 
for the computation through random sample selec
tion. This is consistent with the method used by 
McRoberts, Næsset, and Gobakken (2013), who 
demonstrated that using a systematic subsample of 
the population did not have adverse effects on the 
variance. In addition, absolute error and relative error 
were computed as follows: 

ε ¼ t: bSEμ̂ (7) 

bSEμ̂ %ð Þ ¼
bSEμ̂

μ̂
� 100 (8) 

where t is the critical value of the t-student distribu
tion with N-1 degrees of freedom for a 95% confi
dence level.

Design-based estimation
The SNFI-4 in Extremadura established permanent 
plots that were systematically distributed at the 
intersections of a 1 km x 1 km grid in areas identi
fied as forest land in the SNFM. The total samples 
for design-based inference method at different 
scales were: 1808 plots for regional level, 802 
plots for provincial level, 268 for Siberia county 
level, and 166 plots for Villuercas county level. 
The design-based estimator of the species-specific 
V, G, IAVC, and AGB mean was based on the 
following: 

�Y ¼
Pn

i¼1 yi

n
(9) 

where yi is the field-estimated variable of interest for 
the plot i, and n is the number of plots. The following 
is an estimator of the variance of �Y (omitting finite 
population correction): 

cVar �Yð Þ ¼
s2

y

n
(10) 

where 

s2
y ¼

Pn
i¼1 yi � �Yð Þ

2

n � 1
(11) 

The corresponding estimator of the standard error 
was computed as follows: 

bSE�Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cVar �Yð Þ

q

(12) 

In addition, absolute and relative errors are computed 
as indicated in the model-based approach (Eq. 7, 
Eq. 8). Although the estimators shown above are not- 
unbiased when applied to systematic samples 
((Gregoire and Valentine Harry 2008), p 55), they are 
widely used and are conservative in the sense of 
producing greater variance in estimating the popula
tion mean (Steen et al. 2020). For calculation of 
design-based estimates, data were included for all 
plots with centers in the stratum regardless of 
whether the plots included part of the area outside 
of the corresponding stratum.

Results

Regional ALS-based models using SNFI plots

The models selected for each variable of interest and 
forest type are shown in Appendix A, Table A.1, and 
scatter plots of observed against predicted values for 
variables with ALS-based models are shown in 
Figure 3. The performance of the models selected on 
the basis of density and height metrics differed 
between the forest type and the variable of interest 
(Figure 3, Appendix A Table A.1). The Mef values for 
the resulting regional forest type-specific ALS-based 
models for predicting V, G, IAVC, and AGB ranged 
from 0.29–0.89, 0.30–0.80, 0.13–0.74, and 0.27–0.86, 
respectively (Table A.1, Figure 3). The variation, in 
terms of rRMSE, for more even-aged Pinea forest to 
Quercus dominated forest type, ranged from 28.80%- 
63.12% for V, 29.21%-50.64% for G, 41.03%-94.84% for 
IAVC, and from 27.22% −51.63% for AGB. In general, 
regional IAVC-based models were the least accurate 
models in terms of Mef and rRMSE than V, G, and AGB 
models at the level of each forest type, except for V in 
Alcornocales which was slightly worse in terms of Mef. 
In terms of Mef, we also found the same pattern in 
Riparian forest where IAVC-based model was better in 
terms of Mef than G and AGB models. For the vari
ables modeled using cross-validation, as expected V, 
G, IAVC, and AGB always yielded the worst goodness- 
of-fit statistics for all forest types, and the associated 
conclusions were similar.
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Wall-to-wall mapping at regional level

The strata from SFM and the models from 
Appendix A (Table A.1) were applied to metrics 
derived from ALS to construct a regular 25 m 
resolution V, G, IAVC, and AGB map at the 

regional scale (Extremadura) (Figure 4). 
Regarding the V and AGB for the different species, 
forest production was higher in the central north
ern counties (Urdes and Gata) and western coun
ties (Siberia and Villuercas) and lower in the 
interior areas in the province of Badajoz.

Figure 3. Scatter plots of the values derived from field measurements (observed) against the most accurate model-estimated values of 
the forest inventory variables (predicted) in the sample plots for each forest type.
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Comparison of model-based and design-based 
inference at regional, provincial and county scale

The results for model-based and design-based estima
tion of forest inventory variables in terms of relative SE 
(%) are shown in Figure 5, whereas the overall results in 
terms of estimate, standard error (SE), absolute error 
relative (ε), and relative SE (%) – expressed on a per 
hectare basis by forest type at regional, provincial, and 
county scale – are shown in Appendix B. Regarding the 
estimated values, the model-based approach generally 
yielded lower values than the design-based approach. 
In terms of errors, the regional model-based results are 
similar to those obtained for the corresponding design- 
based estimates from SNFI plots (MITECO 2020) 
(Appendix B, Table B1). The ALS-based models of 
IAVC that performed less well for some formations 
(i.e. Encinares; Mef = 0.16 and Quejigares; 0.26) yielded 
higher relative values of SE (%) than the design-based 

methodology at regional, province, and county scale 
(Figure 5(b, d)). By contrast, the estimation stabilized, 
with errors below 10% in homogeneous coniferous 
forest formations (Figure 5(c, g)) and based on more 
accurate ALS-based models for all forest inventory vari
ables. This relative values of SE (%) was also stable for 
Dehesas formations, where ALS-based models per
formed less well but the models were fitted with 
a higher representative sample size than the other 
Quercus-dominated forests (Encinares, Quejigares, and 
Alcornocales). The relative SE increased gradually from 
regional to county scale for the estimates from the 
design-based approach, as we expected (Figure 5, 
Table B3 and B4). This effect was more pronounced 
for less representative formations across provincial and 
county scales, especially for Quejigares, Riparian forest 
(Figure 5(d, h)), and P. pinea forest in the county of 
Villuercas (Figure 5g). On the other hand, it is important 
to note that estimates are not provided by official 

Figure 4. Maps (25 m spatial resolution) of (a) growing stock volume (V, m3 ha−1), (b) stand basal areal G, (m2 ha−1), and (c) annual 
increase in total volume IAVC (m3 ha−1 year−1) and aboveground biomass (AGB) (Mg ha−1).
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design-based SNFI aggregated statistics at provincial 
and county administrative levels (MITECO 2020). The 
official design-based SNFI provides aggregated statis
tics at regional level.

Discussion
The main of objectives of this study were (i) to 
demonstrate that it is possible to produce extensive 
spatial estimates of the most important forest 

Figure 5. Model-based and design-based estimates of forest inventory variables associated relative SE (%) for Dehesas (a), 
Encinares (b), P. pinaster (c) Quejigares (d), Eucalyptus (e), Alcornocal (f), P. pinea (g), and Riparian (h) at regional, provincial, and 
county scales.
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inventory variables, even in large Mediterranean for
ests, by using field data and model-based inference 
based on predictors obtained using auxiliary ALS vari
ables and (ii) to understand the performance of the 
model-based and design-based approaches using 
SNFI and ALS data at different spatial scales.

Regarding the first objective, the performance of 
new regional forest type-specific ALS-based models 
for predicting V, G, IAVC, and AGB from SNFI data 
confirmed the limitation of ALS-based models in dif
ferentiating AGB and characterizing vegetation struc
ture under sparse canopy cover conditions as in 
Dehesas and Encinares (Mef forest inventory models 
ranging from 0.22–0.29 and 0.16–0.61 in Dehesas and 
Encinares, respectively). In the case of Quejigares, the 
performance of ALS-based models, as indicated by 
Mef (range 0.26–0.54), was also not satisfactory, prob
ably because (i) the data were acquired under leaf-off 
conditions during the winter in northern Extremadura 
(Sophie, Donoghue, and Galiatsatos 2020) and (ii) the 
stand structure of Q. pyrenaica forest is characterized 
by complex multi-layered, uneven-aged stands. 
According to the results obtained, the set of models 
strengthened the idea that the combination of height 
and vertical canopy structure metrics provides 
a sufficient and concise quantitative description of 
a homogeneous vertical structure in Mediterranean 
areas, as in coniferous (P. pinea and pinaster forma
tions) and Eucalyptus spp forests. In this study, much 
better goodness-of-fit statistics were obtained than in 
previous studies carried out with the same type of 
data in Spain for the main productive forest species 
(Spanish NFI and laser pulse density of 0.5 points/m2) 
at the regional level in La Rioja (Pinus sylvestris L.) 
(Esteban et al. 2020; Fernández-Landa et al. 2018), 
Aragon (P. halepensis) (Montealegre et al. 2016), 
Murcia (P. halepensis) (Tomé-Morán et al. 2017; 
Durante et al. 2019) and Galicia-Asturias (E. globulus, 
P. pinaster, and P. radiata) (Novo-Fernández et al. 
2019) (Table 3). In general, the performance of the 
models, as measured by Mef and rRMSE, was slightly 
better than in previous studies, for three main rea
sons: (i) more precise geolocation of the SNFI plots in 
our study, (ii) SNFI coincide temporarily with the ALS 
data, and (iii) higher density of the ALS data in the 
present study (1–2 pulses m2) than in Novo- 
Fernández et al. (2019) and Fernández-Landa et al. 
(2018) (0.5 points/m2). The Mef associated with ALS- 
based models (Eucalyptus spp., P. pinaster, and 

P. pinea) for predicting IAVC, V, and AGB ranged 
from 0.63 to 0.74, from 0.72 to 0.89, and from 0.76 
to 0.86, respectively. The values obtained in the pre
sent study were higher than those reported by Novo- 
Fernández et al. (2019), with Mef for the IAVC, V, and 
AGB models for the three forest species (E. globulus, 
P. pinaster, and P. radiata) ranging from 0.51 to 0.69, 
from 0.71 to 0.83, and from 0.71 to 0.82, respectively. 
In terms of rRMSE, the values for IAVC, V, and AGB 
ranged from 41.03 to 46.95%, 28.80% to 46.5%, and 
from 27.22% to 43.64%, respectively. The accuracy of 
the ALS-derived forest inventory models was slightly 
better (except for Eucalyptus spp.) than that obtained 
by Novo-Fernández et al. (2019) (V, IAVC, and AGB 
ranged from 30.71% to 40.81%, 34.24% to 44.09%, 
and from 31.59% to 42.28% respectively). The V and 
IAVC models used by Tomé-Morán et al. (2017) in 
Murcia yielded rRMSE values of, respectively, 47.2% 
and 44.4% for P. halepensis forests and rRMSE values 
of, respectively, 45.8% and 43.9% for mixed stands of 
pines (P. nigra, P. halepensis, and P. pinaster). 
(Fernández-Landa et al. 2018) reported similar rRMSE 
values and slightly lower Mef values than those 
obtained in the present study for coniferous forest in 
V modeling (R2 = 0.75 and rRMSE = 26.1 for 
P. sylvestris) and beech forest (R2 = 0.75 and 
rRMSE = 26.1–32.3 for Fagus sylvatica L.). The study 
findings confirmed that the IAVC models performed 
poorly for all the formations at regional scale (Novo- 
Fernández et al. 2019; Tomé-Morán et al. 2017).

Regarding the second objective, several studies 
have reported large area forest inventory variables 
and AGB estimates using models and remotely sensed 
data (Chen et al. 2016; Esteban et al. 2020; Chirici et al. 
2020). At regional scale, our results in terms of relative 
SE using model-based inference (ranged from 3.34– 
14.46%) are in concordance with those reported by 
(Esteban et al. 2020) who reported relative SE ranging 
from 2% to 11% using Random forest (RF)-SNFI mod
els to calculate uncertainties in V estimates for the 
main forest species of La Rioja (Spain). (Esteban et al. 
2020) also found model-based stabilities were less for 
P. halepensis and P. nigra formations for which field 
plot sample sizes were smaller. Our values of relative 
SE are slightly higher than (Chirici et al. 2020) who 
estimated V using NFI field plots and remotely sensed 
data (Landsat and SAR data) for a large area in Italy. 
Their SE estimates varied from 2% to 4%, although SE 
estimates were not reported for specific forest 
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species. It is well known that uncertainty in the esti
mation of different vegetation strata mapsaffects the 
determination of the volume stocks, but in practice its 
effect has been mostly ignored (Margolis et al. 2015; 
Neigh et al. 2013; Yanjun et al. 2016). Previous studies 
assessing this source of error have shown very signifi
cant accuracy losses for forest stock variables at dif
ferent scales (Xue et al. 2017; Esteban etal. 2020; Räty 
et al. 2020; Breidenbach et al. 2021). In our study we 
have not considered this source of uncertainty, but 
we assume that it will cause a loss of accuracy for all 
alternatives studied. It remains for future studies to 
assess whether the loss of accuracy would be of dif
ferent importance for the inference methodologies 
considered in this study.

Several conclusions can be drawn from the second 
part of this study. First, the errors associated with model- 
based estimates by forest types were comparable to 
those associated with the design-based estimates at 
regional scale (Figure 5). At provincial and county levels, 
the SNFI model-based inference method produced 
more accurate estimates than the SNFI design-based 
estimates in small areas. The study findings 

demonstrated the limitation of SNFI design-based for 
smaller regions and especially for less representative 
forest formations area that may contain few plots. 
Second, the results confirmed that the downscaling 
potential of model-based approach depends on the 
statistical strength between field inventory variable 
and ALS auxiliary variables and also on the structural 
complexity of the forests (Chen et al. 2016; Vega et al. 
2021). The relative SE for the model-based method was 
stable across different spatial scales, reaching 
a maximum value of 33.51% for IAVC in Quejigares forest 
at county level. For the other formations and forest 
attributes, the estimation stabilized, with errors gener
ally below 25%. Third, model-based estimators benefit 
from sample sizes for larger areas when used to smaller 
subsets of the larger areas as long as ALS-based models 
were fitted with a representative sample size as Dehesas 
formations which field plot sample sizes were higher 
than the others Quercus-dominated forests in the 
Region (McRoberts, Næsset, and Gobakken 2013). The 
results indicate that greater stability in the sample size 
forest species formations produces less uncertainty in V, 
G, IAVC, and AGB estimates from model-based.

Table 3. Summary of studies at regional level using countrywide ALS-PNOA coverage and SNFI plots in Spain using a point density of 
0.5 points/m2.

Region Sensor Formations
Number of  
plots SNFI Model Variable

Accuracy field 
vs ALS (R2)

Accuracy of Extended 
attributes RMSE, (rRMSE) Reference

Galicia- 
Asturias

RIEGL LMS-Q680 
and Q680i

E. globulus 477 Random 
forest (RF)

V 0.83 30.71% Novo-Fernández 
et al. 2019IAVC 0.67 34.24%

AGB 0.82 31.71%
P. pinaster 760 RF V 0.73 38.17%

IAVC 0.55 42.33%
AGB 0.73 39%

P. radiata 191 RF V 0.79 37.23%
IAVC 0.69 36.67%
AGB 0.80 38.27%

Rioja LEICA ALS50 Pinus sylvestris L. 79 (23) GLM V 0.75 66.7(26.1%) Fernández-Landa 
et al. 2018G 0.58 3.3 (8.8%)

Fagus sylvatica L. 81(20) GLM V 0.64 53.6(24.5%)
G 0.39 6.9 (21.15%)

Pinus sylvestris L 199 RF V 0.93 75.27 (33.43%) Esteban et al. 
2020Pinus nigra 82 RF V 0.96 35.76 (25.97%)

Pinus halepensis 35 RF V 0.77 31.20 (38.72%)
Quercus ilex 136 RF V 0.86 27.74 (52.43%)
Quercus faginea 

&pyrenaica
272 RF V 0.91 32.94 (36.47%)

Fagus sylvatica 182 RF V 0.98 63.89 (33.27%)
Murcia LEICA ALS50 Pinus halepensis 930 (103) RF V 47.24% Tomé-Morán 

et al. 2017G 44.01%
IAVC 44.37%

Quercus ilex 22 RF V 51.08%
G 51.31%
IAVC 21.17%

Pinus halepensis 242 RF AGB 0.69 15.50 (27.18%) Durante et al. 
2019

Aragon LEICA ALS60 Pinus halepensis 
Mill.

45* Linear  
regression

V 0.89 22.29 (22.29%) Montealegre 
et al. 2016G 0.89 2.40 (18.18%)

Growing stock volume (V, m3 ha−1), stand basal area (G, m2 ha−1), annual increase in total volume (IAVC, m3 ha−1 year−1), and aboveground biomass (AGB, Mg 
ha−1). In brackets, Independent error assessment using SNFI plots. * not SNFI plots.
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In the case of Extremadura, admissible relative SE 
(%) for sampling design of V (species with vocation for 
timber production, i.e. Pinaster and Eucalyptus spp) 
and G (species for protection, recreational, silvopas
toral (i.e. Dehesas and Encinares) objectives) are 15% 
and 30%, respectively. These values from future forest 
management plans legislation are referred at stand 
scale (named as “cuarteles”) by grouping forest man
agements units with the same objective. It is impor
tant highlight that model-based relative SE (%) for 
Eucalyptus spp., P. pinaster, and P. pinea was lower 
than 15% of admissible relative SE (%) of V in 
Extremadura and lower than 30% of G for Dehesas 
and Encinares at county level. The results obtained 
from this work open the door for the use of SNFI- 
model based maps at stand scale and forest type and 
to calculate small-area estimates of forest inventory 
variables. The use of the SNFI-model based map 
would thus generate considerable economic savings 
by eliminating or reducing the need for field plot 
measurement. Based on the estimates of accuracy 
reported in the tables in Appendix B, the practical 
response is that the accuracy of the model-based 
estimates is greater than that of the traditional SNFI 
design-based estimates at county level.

Conclusions

The potential regression models exhibited no ser
ious lack of fit to the ALS-forest inventory and 
biomass models, except in regard to characterizing 
vegetation structure under sparse canopy cover. 
The comparison demonstrated that design-based 
SNFI plot errors increased for smaller areas while 
model-based relative standard errors were stable 
across the different scales, as long as ALS-based 
models were appropriate and fitted with 
a representative sample size. The proposed model- 
based approach may be useful in cases where 
model-assisted inference cannot be applied either 
because models have been developed from an 
independent dataset or matching of the samples 
for model development and application cannot be 
fully achieved, as in the case of Extremadura where 
not all SNFI plots have well-georeferenced posi
tions. Finally, the model-based approach could be 
used operationally to generate stable forest 

inventory predictions at different scales in the 
region of Extremadura.
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Appendix A

Table A.1. Summary of the forest inventory prediction models and plot-level accuracy assessment obtained for each forest types. In 
brackets, the number of well-georeferenced SNFI plots used for fitting and validation purposes by forest type.

Parameters Regression leave-one-out cross validation

Forest type Model β0ðaÞ β1ðbÞ β2ðcÞ Mef RMSE rRMSE Mef RMSE rRMSE

Dehesas (239) V (m3 ha−1) a � hb
05�CCc 1.1339 0.4324 0.6144 0.29 6.74 46.56 0.28 6.88 48.70

G (m2 ha−1) a � hb
10�CCc 0.5545 0.4773 0.5411 0.30 2.65 42.96 0.29 2.77 46.23

IAVC (m3 ha−1 year−1) a � hb
05�CCc 0.0237 0.1334 0.6028 0.22 0.11 51.99 0.21 0.12 60.01

AGB (t ha−1) a � hb
20�CCc 3.0084 0.6914 0.4910 0.2720.49 49.75 0.24 20.93 51.85

Encinares (90) V (m3 ha−1) a � hb
95�CCc 0.3176 0.4107 0.883 0.4410.79 62.71 0.23 12.71 75.04

G (m2 ha−1) a � hb
70�CCc 0.1451 0.9714 0.5679 0.55 2.64 49.91 0.29 2.77 52.77

IAVC (m3 ha−1 year−1) a � hb
95�PARA2c 0.0067 1.0620 0.4589 0.16 0.24 94.84 0.04 0.26 102.29

AGB (t ha−1) a � hb
70�PARA2c 0.5052 1.3263 0.5442 0.6114.54 51.48 0.24 20.93 76.33

Pinaster (82) V (m3 ha−1) a � hb
10�PARA2c0.60826 0.63408 1.0870 0.8336.59 33.87 0.68 50.98 39.64

G (m2 ha−1) a � hb
20�PARA2c 0.2082 0.39851 0.9836 0.74 6.33 35.85 0.55 8.24 40.38

IAVC (m3 ha−1 year−1) a � hb
10�PARA2c 0.0398 0.5207 0.9419 0.68 1.62 46.51 0.66 1.72 50.34

AGB (t ha−1) a � hb
20�PARA2c 0.5183 0.5460 0.9959 0.7922.17 35.74 0.62 29.58 39.69

Quejigares (n = 38) V (m3 ha−1) a � hb
99�CCc 0.5352 1.3591 0.3089 0.4039.37 63.12 0.28 42.88 82.40

G (m2 ha−1) a � hb
99�CCc 0.3174 1.0143 0.2784 0.39 6.54 50.64 0.29 7.04 64.89

IAVC (m3 ha−1 year−1) a � hb
99�CCc 0.0521 0.6907 0.4065 0.26 0.91 63.77 0.13 0.99 82.84

AGB (t ha−1) a � hb
99�CCc 0.4144 1.6248 0.2073 0.5435.28 51.63 0.45 38.47 66.50

Eucalyptus spp. (n = 78) V (m3 ha−1) a � hb
70�PARA2c 0.2438 1.4131 0.5437 0.7219.47 46.5 0.68 3.28 41.31

G (m2 ha−1) a � hb
70�PARA2c 0.0895 0.9853 0.6175 0.65 3.28 46 0.58 3.56 44.83

IAVC (m3 ha−1 year−1) a � hb
70�PARA2c 0.0054 1.5190 0.5378 0.74 0.56 46.95 0.71 0.59 44.13

AGB (t ha−1) a � hb
70�PARA2c 0.1923 1.3494 0.6351 0.7617.06 43.64 0.71 20.61 45.74

Alcornocales (n = 45) V (m3 ha−1) a � hb
90�CCc 0.7276 −1.3189 1.6893 0.6415.47 54.32 0.44 19.36 67.95

G (m2 ha−1) a � hb
30�CCc 0.1125 0.4438 1.0194 0.74 2.79 33.82 0.63 3.337 40.42

IAVC (m3 ha−1 year−1) a � hb
90�CCc 0.0053 0.3868 1.4137 0.72 0.18 42.06 0.56 0.23 51.59

AGB (t ha−1) a � hb
40�CCc 0.0962 0.6913 1.2831 0.84 9.26 31.01 0.80 10.39 34.81

Pinea (n = 52) V (m3 ha−1) a � hb
20�PARA2c0.11753 1.1515 1.1207 0.8914.74 28.80 0.85 16.78 32.19

G (m2 ha−1) a � hb
30�PARA2c 0.0542 0.65215 1.09996 0.80 3.62 29.21 0.78 3.88 30.89

IAVC (m3 ha−1 year−1) a � hb
50�CCc 0.0018 0.6985 1.3492 0.63 1.10 41.03 0.60 1.15 43.02

AGB (t ha−1) a � hb
30�PARA2c 0.1593 0.988 1.0759 0.8613.46 27.22 0.81 15.65 31.12

Riparian Forest n = 37 V (m3 ha−1) a � hb
50�PARA2c 0.7725 1.5520 0.3514 0.8328.84 55.41 0.74 35.84 67.94

G (m2 ha−1) a � hb
50�PARA2c 0.3671 0.9711 0.4773 0.48 8.79 73.87 0.42 9.59 83.29

IAVC (m3 ha−1 year−1) a � hb
70�PARA2c 0.0254 1.2711 0.3299 0.64 0.77 64.94 0.58 0.97 79.06

AGB (t ha−1) a � hb
50�CCc 1.4655 1.0762 0.5235 0.5356.47 79.03 0.45 66.47 88.59
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Appendix B

Table B.1. Model-based (MB) and design-based (DB) estimates for forest inventory variables of interest by forest type at the regional 
scale.

Forest Estimate SE ε SE (%) Forest Estimate SE ε SE (%)

MB DB MB DB MB DB MB DB MB DB MB DB MB DB MB DB

Dehesas V 12.29 15.33 0.41 0.41 0.80 0.80 3.34 2.64 Eucalyptus spp. 39.81 44.65 2.01 3.84 3.94 7.57 5.05 8.59
G 5.28 6.47 0.17 0.16 0.32 0.31 3.22 2.41 5.13 7.56 0.34 0.50 0.68 0.99 6.63 6.65
IAVC 0.18 0.22 0.01 0.01 0.01 0.01 5.56 2.64 0.85 1.25 0.06 0.10 0.11 0.19 7.06 7.86
AGB 35.55 42.82 1.29 1.23 2.52 2.42 3.63 2.88 27.59 42.07 1.69 3.62 3.31 7.14 6.13 8.60

Encinares V 13.68 15.12 1.07 0.87 2.10 1.72 7.82 5.77 Alcornocales 25.49 28.94 3.46 2.41 6.78 4.77 13.57 8.32
G 4.85 4.75 0.26 0.24 0.52 0.46 5.36 4.96 6.72 9.34 0.33 0.62 0.66 1.24 4.91 6.68
IAVC 0.18 0.22 0.02 0.01 0.04 0.03 11.11 5.97 0.37 0.49 0.03 0.04 0.07 0.07 8.11 7.26
AGB 21.14 24.65 1.47 1.26 2.89 2.49 6.95 5.13 24.37 32.62 1.08 2.43 2.11 4.81 4.43 7.44

Pinaster V 101.80 127.60 4.20 6.14 8.30 12.08 4.13 4.81 Pinea 48.85 62.63 1.81 4.52 3.56 8.93 3.71 7.22
G 16.79 20.41 0.78 0.88 1.53 1.73 4.65 4.30 11.08 13.67 0.45 0.81 0.88 1.59 4.06 5.90
IAVC 4.48 5.73 0.20 0.26 0.39 0.50 4.46 4.46 2.23 2.91 0.14 0.19 0.27 0.38 6.28 6.53
AGB 58.89 70.99 2.36 3.20 4.62 6.31 4.01 4.51 45.97 56.33 1.66 3.39 3.26 6.69 3.61 6.02

Quejigares V 43.71 61.36 6.32 4.13 12.43 8.16 14.46 6.72 Riparian Forest 56.47 55.99 4.41 9.01 8.65 18.10 7.81 16.10
G 9.04 12.62 1.13 0.70 2.21 1.39 12.50 5.56 12.23 12.28 1.45 1.50 2.84 3.01 11.86 12.22
IAVC 0.96 1.42 0.16 0.09 0.31 0.17 16.67 6.09 1.23 1.33 0.13 0.17 0.25 0.34 10.57 12.75
AGB 48.90 65.37 6.10 4.39 11.90 8.68 12.47 6.71 79.26 78.52 9.97 10.17 19.54 20.43 12.58 12.95

Table B.2. Model-based (MB) and design-based (DB) estimates for forest inventory variables of interest by forest type at provincial 
scale.

Forest Estimate SE ε SE (%) Forest Estimate SE ε SE (%)

MB DB MB DB MB DB MB DB MB DB MB DB MB DB MB DB

Dehesas V 13.43 17.04 0.41 0.62 0.80 1.21 3.05 3.62 Eucalyptus spp. 38.70 46.44 1.90 6.10 3.80 12.09 4.91 13.13
G 5.72 7.18 0.16 0.24 0.32 0.48 2.80 3.37 5.00 7.58 0.34 0.76 0.67 1.51 6.80 10.04
IAVC 0.19 0.23 0.01 0.01 0.01 0.02 5.26 3.54 0.81 1.26 0.05 0.15 0.11 0.30 6.17 11.85
AGB 38.37 49.37 1.25 1.97 2.45 3.88 3.26 3.99 26.67 43.66 1.63 5.75 3.20 11.39 6.11 13.16

Encinares V 11.97 15.72 1.08 1.49 2.12 2.96 9.02 9.48 Alcornocales 28.20 21.86 3.83 3.39 7.50 6.89 13.58 15.52
G 5.75 4.68 0.27 0.37 0.53 0.73 4.72 7.86 7.09 7.13 0.34 1.05 0.67 2.14 4.80 14.77
IAVC 0.17 0.21 0.02 0.02 0.04 0.04 11.76 8.78 0.39 0.40 0.04 0.06 0.07 0.12 10.26 15.22
AGB 18.40 23.44 1.46 1.89 2.86 3.76 7.93 8.08 25.98 25.65 1.12 4.21 2.19 8.54 4.31 16.41

Pinaster V 112.30 130.78 4.50 10.32 8.80 20.55 4.01 7.89 Pinea 49.82 64.11 1.83 5.03 3.59 9.95 3.67 7.85
G 18.54 20.40 0.81 1.46 1.59 2.91 4.37 7.17 11.17 13.94 0.45 0.88 0.89 1.73 4.03 6.28
IAVC 4.94 5.49 0.21 0.41 0.40 0.82 4.25 7.49 2.76 3.00 0.14 0.20 0.27 0.40 5.07 6.79
AGB 64.91 74.48 2.48 5.58 4.87 11.11 3.82 7.49 46.83 57.14 1.69 3.76 3.30 7.44 3.61 6.58

Quejigares V 43.98 29.01 7.92 11.75 15.53 37.39 18.01 40.50 Riparian Forest 52.52 35.81 4.22 10.02 8.27 20.61 8.04 27.99
G 10.03 6.57 1.51 2.39 2.95 7.59 15.05 36.29 12.04 8.59 1.42 1.79 2.79 3.69 11.79 20.88
IAVC 1.29 0.72 0.24 0.34 0.47 1.08 18.60 47.10 1.15 1.00 0.12 0.21 0.24 0.43 10.43 20.88
AGB 43.07 25.49 6.33 7.37 12.42 23.45 14.70 28.91 78.48 53.30 9.88 11.54 19.37 23.71 12.59 21.64
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Table B.3. Model-based (MB) and design-based (DB) estimates for forest inventory variables of interest by forest type at county scale 
(Siberia).

Forest Estimate SE ε SE (%) Forest Estimate SE ε SE (%)

MB DB MB DB MB DB MB DB MB DB MB DB MB DB MB DB

Dehesas V 10.28 15.54 0.44 2.16 0.87 4.45 4.28 13.87 Eucalyptus spp. 38.43 36.79 2.03 7.18 3.99 15.41 5.28 19.53
G 4.43 6.20 0.18 0.76 0.36 1.56 4.06 12.21 6.50 6.95 0.35 1.20 0.68 2.56 5.38 17.21
IAVC 0.15 0.22 0.01 0.03 0.01 0.06 6.67 12.92 1.10 1.13 0.06 0.21 0.11 0.45 5.45 18.70
AGB 29.31 38.15 1.40 5.00 2.74 10.33 4.78 13.12 36.00 36.00 1.75 7.04 3.42 15.10 4.86 19.56

Encinares V 14.60 19.90 1.13 3.15 2.22 6.38 7.74 15.85 Alcornocales 49.53 41.86 5.94 5.64 11.64 13.34 11.99 13.48
G 4.92 5.15 0.29 0.70 0.56 1.42 5.89 13.65 10.45 12.26 0.55 1.95 1.07 4.60 5.26 15.87
IAVC 0.20 0.26 0.02 0.04 0.04 0.08 10.00 14.60 0.65 0.84 0.06 0.12 0.12 0.29 9.23 14.94
AGB 20.93 23.03 1.41 3.00 2.75 6.08 6.74 13.04 41.18 48.70 1.98 9.02 3.88 21.33 4.81 18.52

Pinaster V 118.80 143.01 4.60 11.25 9.00 22.45 3.87 7.87 Pinea 60.55 72.85 1.95 6.02 3.82 11.92 3.22 8.26
G 19.53 22.04 0.82 1.59 1.61 3.18 4.20 7.22 13.01 15.32 0.47 1.03 0.93 2.05 3.61 6.75
IAVC 5.20 5.93 0.21 0.45 0.41 0.89 4.04 7.52 2.44 3.28 0.11 0.24 0.22 0.48 4.51 7.42
AGB 68.59 81.05 2.54 6.07 4.97 12.12 3.70 7.49 56.21 63.43 1.78 4.44 3.48 8.80 3.17 7.00

Quejigares V 42.61 8.34 16.34 19.57 Riparian Forest 43.06 4.13 8.09 9.59
G 9.80 1.60 3.20 16.33 10.31 1.42 2.79 13.77
IAVC 1.30 0.27 0.53 20.77 0.95 0.12 0.23 12.63
AGB 39.45 5.77 11.31 14.63 66.92 9.77 19.14 14.60

Table B.4. Model-based (MB) and design-based (DB) estimates for forest inventory variables of interest by forest type at county scale 
(Villuercas).

Forest Estimate SE ε SE (%) Forest Estimate SE ε SE (%)

MB DB MB DB MB DB MB DB MB DB MB DB MB DB MB DB

Dehesas V 11.29 16.68 0.42 2.44 0.83 5.07 3.72 14.66 Eucalyptus spp. 36.50 51.52 2.30 6.09 4.40 12.62 11.82 36.50
G 4.87 6.61 0.17 0.75 0.34 1.56 3.49 11.36 6.16 9.24 0.37 1.04 0.72 2.17 11.31 6.16
IAVC 0.16 0.25 0.01 0.04 0.01 0.09 6.25 17.89 1.04 1.63 0.06 0.21 0.13 0.44 13.08 1.04
AGB 32.69 41.45 1.33 4.81 2.60 9.97 4.07 11.59 33.77 49.22 1.91 6.00 3.74 12.45 12.20 33.77

Encinares V 13.51 17.01 1.06 3.34 2.07 6.76 7.85 19.62 Alcornocales 29.86 39.48 3.58 11.06 7.02 23.89 28.01 29.86
G 4.83 4.92 0.27 0.89 0.52 1.80 5.59 18.05 8.38 10.73 0.37 2.57 0.73 5.56 23.99 8.38
IAVC 0.20 0.22 0.02 0.04 0.04 0.09 10.00 19.11 0.45 0.61 0.04 0.15 0.07 0.33 25.04 0.45
AGB 21.75 23.95 1.50 4.11 2.93 8.32 6.90 17.15 32.10 42.70 1.25 11.13 2.46 24.05 26.07 32.10

Pinaster V 103.60 176.65 4.30 19.14 8.30 38.86 4.15 10.84 Pinea 62.62 81.40 1.94 26.00 3.81 66.84 31.94 62.62
G 17.09 28.19 0.78 2.95 1.53 5.98 4.56 10.45 13.73 19.49 0.47 5.84 0.92 15.01 29.96 13.73
IAVC 4.55 8.10 0.20 0.88 0.39 1.78 4.40 10.81 1.57 4.22 0.12 1.32 0.24 3.39 31.23 1.57
AGB 59.57 96.30 2.37 9.95 4.64 20.19 3.98 10.33 58.72 74.13 1.78 22.53 3.48 57.91 30.39 58.72

Quejigares V 37.69 51.32 6.10 8.61 11.96 17.90 16.18 16.77 Riparian Forest 53.44 40.88 4.68 13.42 9.17 42.71 32.82 53.44
G 8.70 10.90 1.20 1.51 2.30 3.15 13.79 13.89 11.96 9.54 1.50 2.48 2.93 7.91 26.03 11.96
IAVC 1.04 1.15 0.18 0.18 0.36 0.37 17.31 15.43 1.17 1.14 0.13 0.38 0.26 1.22 33.51 1.17
AGB 37.57 51.70 4.99 9.58 9.78 19.91 13.28 18.52 77.25 43.15 10.32 10.31 20.22 32.81 23.90 77.25
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