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ABSTRACT10

The purpose of this work is to optimize systematically the maneuver required to identify the11

wind and calibrate the airspeed sensor of a subsonic aircraft using a GPS method. The optimization12

is based on sensitivity analyses that require a considerable number of flight simulations. To face13

this challenging computational effort, we adapted and parallelized a particle swarm optimization14

algorithm. We also introduced a new formulation of the sensor model in the Bernstein form.15

The results show stability using the selected formulation and bring out non-obvious aliasing and16

precision loss effects that depend on the maneuver configuration. The knowledge of these effects17

allowed us to fine-tune the maneuver in order to improve the estimation’s precision. Finally, we18

validated the method using the JSBSim flight simulator under calm and light turbulence conditions.19

INTRODUCTION20

Airspeed calibration is one of the most crucial processes to be performed during the flight testing21

of a new or modified airplane. The airspeed is for the pilot, not always human, the main variable to22

be known to perform a safe flight. Since the primary error contributor in the airspeed measurement23
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is the airstream alteration caused by the plane while flying, there is no easy way to perform the24

calibration on the ground. The accepted methods to calibrate the airspeed measurement system25

are enumerated in the circular AC 23-8C (FAA 2011), applicable to small subsonic airplanes. The26

list includes the speed course method, tower fly-by method, trailing bomb, airspeed boom, pace27

airplane, as well as the GPS (Global Positioning System) methods. GPS methods are also well28

suited for small airplanes, like small UAVs (Unmanned Aerial Vehicles) or ultralights, since the29

required instrumentation can be highly miniaturized.30

The GPS methods rely on evaluating the difference between the GPS measured trajectory and31

the one derived from the estimated model. Given that the wind during the test alters the trajectory,32

it should also be estimated, compensated, or ignored imposing a zero wind condition for the flight.33

Previous studies about airspeed calibration using GPS methods can be classified depending on34

the sensor model, the resolution method, and the flight maneuver. The sensor can be calibrated at35

individual points, as proposed by Niewoehner (2006) or using a function that represents the sensor’s36

transfer curve. The functions that are employed vary from one to three degrees of freedom. One37

degree of freedom in the form of a scaling factor is used by Cho et al. (2011), Zhang et al. (2021) and38

Hajiyev et al. (2020), and in the form of a bias factor by Park (2017). Two degrees of freedom, in39

the form of a linear function, are used by Korsun et al. (2017) and Taylor (2012), and in the form of40

non-linear functions by Foster and Cunningham (2010) and Martos et al. (2011). Korsun and Taylor41

also mention the convenience of a more complex sensor model like the quadratic polynomial that42

Martos also employed. The resolution methods applied in the cited studies are Kalman filters or the43

modified version of the Newton-Raphson algorithm included in the SIDPAC (System IDentification44

Programs for AirCraft) (NASA 2021). The studied maneuvers are the traditional 4-leg pattern,45

used by Niewoehner (2006) and Martos et al. (2011), a poligonal close path (Dabney 2012), or46

turns with some kind of speed variation. Taylor (2012) proposes a 180-degree turn with airspeed47

reduction. In contrast, Foster uses a two-speed step or a continuous acceleration. Rhudy et al.48

(2017) and Zhang et al. (2021) also suggest circular paths. Martos et al. (2011) studies circular,49

race-track, and 4-leg patterns with fixed and decreasing speeds. In a corner case, when the target50
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is to detect faults in the airspeed system instead of calibrating it, no specific maneuver is defined as51

in the work of Hansen and Blanke (2014).52

In this paper, we propose a non previously explored formulation of the sensor model in the53

Bernstein form (Cargo and Shisha 1966). We consider that a minimum of three degrees of freedom54

is needed to model the sensor curve. Although Foster and Cunningham (2010) propose curved55

formulations with two degrees of freedom, they cannot be used with a sensor where the curvature56

is in the opposite direction, like the curve represented in (Erb 2017). Furthermore, the Bernstein57

form provides more meaningful and stable coefficients than the canonical base.58

We also propose a new variant for the flight test maneuver consisting of a sinusoidal variation59

of the speed during a coordinated turn. The main contribution of the paper is the study of the60

maneuver using uni and bidimensional sensitivity analyses. This systematic analysis is not found in61

the previous literature, not only for this problem but also for other aircraft identification problems.62

The resolution methods used in the past for this kind of problems are not convenient due to the63

great number of calculations required by the systematic sensitivity analysis. Therefore, we propose64

a parallelized implementation of PSO (Particle Swarn Optimization) (Kennedy’ and Eberhart 1995)65

ready to be executed in a GPU (Graphics Processing Unit). This implementation developed ad-66

hoc for this work is based on the standard PSO algorithm (Shi and Eberhart 1998), but with a67

slight modification convenient for the parallel execution and which helps to control the explorative68

behavior of the swarm.69

Finally, we validated the method using the JSBSim (Berndt et al. 2021) simulator. This simulator70

can reproduce the flight test in an automatable manner with the aircraft, the initial conditions, the71

atmosphere, the turbulence model, and the flight control system defined in script files. We tested72

the proposed maneuver in calm conditions to check the correspondence with the sensitivity analysis73

and under light turbulence to evaluate the method’s precision in a real situation.74

STATEMENT OF THE PROBLEM75

The airspeed sensor of a subsonic aircraft derives its measurements from the dynamic pressure,76

i.e., the difference between the total and the static pressure. The primary source of error comes77
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from static pressure disturbances caused by the flow field around the aircraft. This error is not easily78

measured on the ground, so flight testing is needed to obtain an airspeed correction curve. This79

airspeed calibration curve includes the effects of the different angles of attack at different speeds80

for a steady level flight (no sideslip and 1 G load factor). Based on the typical shape of these curves81

(Niewoehner 2006), (Foster and Cunningham 2010), and (Erb 2017), a quadratic polynomial (382

degrees of freedom) is appropriate to approximate it. We decided to represent the polynomial in83

the Bernstein form scaling the independent variable with respect to the dynamic pressure 𝑞𝑚𝑎𝑥 at84

the VNE (Velocity Never Exceed) of the aircraft85

𝑞𝑚𝑎𝑥 =
𝜌0VNE2

2
, (1)86

where 𝜌0 it is the sea-level density in the ISA (International Standard Atmosphere) model.87

Let us define the intermediate variable 𝑡 as88

𝑡 = 𝑞/𝑞𝑚𝑎𝑥 , (2)89

and the sensor pressure error in the Bernstein form as90

Δ𝑞 = 𝐾1(1 − 𝑡)2 + 2𝐾2𝑡 (1 − 𝑡) + 𝐾3𝑡
2. (3)91

We promote the Bernstein form over the canonical one because it is more stable as does not92

concentrate all the defining parameters at the origin. Moreover, it provides more meaningful93

coefficients: 𝐾1 representing the adjustment at the origin, 𝐾2 the bend of the curve, and 𝐾3 the94

adjustment at the maximum aircraft speed.95

Once the sensor error model is established, it only remains to identify the 𝐾1, 𝐾2, and 𝐾396

parameters. In order to do that, we propose a flight test consisting of a horizontal level turn with97

sinusoidal changing speed. The turn should be coordinated (no sideslip), and the heading change98

rate fixed to a low enough value to not introduce a significant load factor. The proposed formulation99

does not require a zero wind condition, so we also need to estimate the wind speed𝑊𝑠 and the wind100
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direction𝑊𝑑 .101

During the flight, the following variables are measured and discretized: aircraft position 𝑥, 𝑦,102

heading 𝜓, static pressure 𝑃𝑠, outside air temperature 𝑇 , and dynamic pressure 𝑞. The variables 𝑥103

and 𝑦 represent the position in the horizontal flight plane with a cartesian reference system centered104

in the first aircraft location, the x-axis pointing to the geographic north and the y-axis pointing105

to the east. Aircraft positions are obtained in a geodetic reference system using a GNSS (Global106

Navigation Satellite System) and converted to local cartesian coordinates with the transformations107

explained in (Eurocontrol 2005). The heading can be obtained using an on-board AHRS (Attitude108

and Heading Reference System) and should also be referenced to the geographic north. The static109

pressure and outside air temperature are used to convert the indicated airspeed to true airspeed, and110

finally, the dynamic pressure is measured with the airspeed sensor in calibration.111

The 5-dimensional (𝐾1, 𝐾2, 𝐾3, 𝑊𝑠, and 𝑊𝑑) parameter determination problem can be solved112

using any global optimization algorithm able to find the parameter combination that maximizes the113

likelihood of the observables. In order to do that, given a random combination of the parameters,114

the discrete aircraft trajectory is calculated and derived a cost value as follows:115

First, the aircraft dynamic pressure is obtained from the measured dynamic pressure inverting116

the sensor model. The sensor output 𝑞 that includes the measurement error is:117

𝑞 = 𝑞𝑎 + Δ𝑞𝑎 = 𝑞𝑎 + 𝐾1

(
1 − 𝑞𝑎

𝑞𝑚𝑎𝑥

)2
+ 2𝐾2

𝑞𝑎

𝑞𝑚𝑎𝑥

(
1 − 𝑞𝑎

𝑞𝑚𝑎𝑥

)
+ 𝐾3

(
𝑞𝑎

𝑞𝑚𝑎𝑥

)2
, (4)118

where 𝑞𝑎 is the real dynamic pressure.119

The inverse function is obtained solving Eq. 4 for 𝑞𝑎:120

𝑞 = 𝑞𝑎 + 𝐾1 + 𝐾1
𝑞2
𝑎

𝑞2
𝑚𝑎𝑥

− 2𝐾1
𝑞𝑎

𝑞𝑚𝑎𝑥
+ 2𝐾2

𝑞𝑎

𝑞𝑚𝑎𝑥
− 2𝐾2

𝑞2
𝑎

𝑞2
𝑚𝑎𝑥

+ 𝐾3
𝑞2
𝑎

𝑞2
𝑚𝑎𝑥

,

𝐾1 − 2𝐾2 + 𝐾3

𝑞2
𝑚𝑎𝑥

𝑞2
𝑎 +

𝑞𝑚𝑎𝑥 − 2𝐾1 + 2𝐾2
𝑞𝑚𝑎𝑥

𝑞𝑎 + 𝐾1 − 𝑞 = 0,
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𝑞𝑎 =

− 𝑞𝑚𝑎𝑥−2𝐾1+2𝐾2
𝑞𝑚𝑎𝑥

±
√︂

(𝑞𝑚𝑎𝑥−2𝐾1+2𝐾2)2
𝑞2
𝑚𝑎𝑥

− 4𝐾1−2𝐾2+𝐾3
𝑞2
𝑚𝑎𝑥

(𝐾1 − 𝑞)

2𝐾1−2𝐾2+𝐾3
𝑞2
𝑚𝑎𝑥

.

Defining 𝜆 as the content of the square root and selecting the positive solution:121

𝜆 =
(𝑞𝑚𝑎𝑥 − 2𝐾1 + 2𝐾2)2 + 4(𝑞 − 𝐾1) (𝐾1 − 2𝐾2 + 𝐾3)

𝑞2
𝑚𝑎𝑥

, (5)122

therefore,123

𝑞𝑎 =

−𝑞𝑚𝑎𝑥+2𝐾1−2𝐾2
𝑞𝑚𝑎𝑥

+
√
𝜆

2𝐾1−2𝐾2+𝐾3
𝑞2
𝑚𝑎𝑥

,

𝑞𝑎 =
𝑞𝑚𝑎𝑥 (2𝐾1 − 2𝐾2 + 𝑞𝑚𝑎𝑥 (

√
𝜆 − 1))

2(𝐾1 − 2𝐾2 + 𝐾3)
. (6)124

The IAS (Indicated Air Speed) and the TAS (True Air Speed) are calculated from the aircraft125

dynamic pressure126

𝐼 𝐴𝑆 =

√︄
2𝑞𝑎
𝜌0
, (7)127

𝑇𝐴𝑆 =
𝐼 𝐴𝑆

𝛿
, (8)128

where 𝛿 is the density ratio with respect to the sea level, obtained as follows129

𝛿 =
288.15

𝑇 + 273.15
𝑃𝑠

1013.25
. (9)130

Based on the wind speed and direction 𝑊𝑠,𝑊𝑑 , the cartesian components of the wind velocity131

are determined132

𝑊𝑥 = 𝑊𝑠 sin𝑊𝑑 , 𝑊𝑦 = 𝑊𝑠 cos𝑊𝑑 . (10)133
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And using the aforementioned discrete variables, the aircraft trajectory is integrated, starting134

from the first measured location. Every location is calculated from the previous one as135

𝑥′𝑖+1 = 𝑥′𝑖 + (𝑊𝑥𝑖 + 𝑇𝐴𝑆𝑖 sin𝜓𝑖)𝑑𝑡, (11)136

𝑦′𝑖+1 = 𝑦′𝑖 + (𝑊𝑦𝑖 + 𝑇𝐴𝑆𝑖 cos𝜓𝑖)𝑑𝑡, (12)137

where 𝑖 is the sample index, 𝑥′, 𝑦′ the integrated trajectory coordinates, and 𝑑𝑡 is the sampling138

period.139

Finally, the cost function is calculated as the sum of the distances, in norm-1, between each pair140

of points of the integrated and the measured trajectories141

𝑍 =
∑︁
𝑖

(
|𝑥′𝑖 − 𝑥𝑖 | + |𝑦′𝑖 − 𝑦𝑖 |

)
, (13)142

Norm-1 is favored over euclidean distance as it is less sensitive to outliers, although there was143

no significant difference between them in the simulation tests.144

Based on this formulation, we have already defined the forward problem as computing the flight145

trajectory based on a combination of the model parameters (𝐾1, 𝐾2, 𝐾3, wind speed, and wind146

direction), and the measured variables (dynamic pressure, static pressure, outside air temperature,147

and heading). Therefore, we can define the inverse problem as determining the model parameters148

that best fit the observables (the GPS flight coordinates). This method is similar to the Output149

Error Method described by (Jategaonkar 2006) and (Klein and Morelli 2006), but minimizing the150

differences with the observables in norm-1 instead of norm-2 and using a different optimization151

method.152

PROBLEM SOLUTION WITH PARALLEL PSO153

A parametric study of the maneuver requires to simulate and solve a great number of synthetic154

flights. Besides this, nothing in the problem formulation precludes the existence of several local155

minimums. We selected Particle Swarm Optimization because it can be parallelized and configured156
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TABLE 1. Computational effort

Uni-dimensional analyses 4
Bi-dimensional analyses 6
Points per uni-dimensional analysis 200
Points per bi-dimensional analysis 441 (21x21)
Total space model points 3446
Total swarms 20676
Cost function evaluations ≈ 3.3x109

Execution time GTX 1050Ti 38.18 min
Execution time Tesla V100-SXM2 2.91 min
Estimated time GTX 1050Ti without parallelization ≈ 127 days

to be explorative enough to avoid getting trapped in local minimums. The required computational157

effort, summarized in Table 1, justifies the development of a parallel implementation of PSO158

ad-hoc for this work. Its source code for the CUDA (Compute Unified Device Architecture) is159

available in (Rubio-Sierra 2020). As demonstrated in (Fernández Martínez and García Gonzalo160

2008) enough explorative performance can be obtained using the standard PSO (Shi and Eberhart161

1998) formulation. However, to avoid thread locks in the parallel implementation and to ease162

adjusting the exploration of the swarm, a separate global best is stored for each particle. Although,163

in this case, the PSO parameters have been considered constant, any particle of the swarm could164

have its own PSO parameters chosen on the neighborhood of the second-order stability limit of165

the trajectories (Fernandez-Martinez and Garcia-Gonzalo 2011). This feature provides a higher166

exploration if needed.167

The position of a particle represents one combination of the estimated parameters168

𝒙 = {𝐾1, 𝐾2, 𝐾3,𝑊𝑠,𝑊𝑑}. (14)169

After random initialization of the particles in the search space, its movement is given by170

𝑣𝑘+1
𝑖𝑑 = 𝑐1𝑣

𝑘
𝑖𝑑 + 𝑐2𝑈 (0, 1) (𝑝𝑘𝑖𝑑 − 𝑥

𝑘
𝑖𝑑) + 𝑐3𝑈 (0, 1) (𝑔𝑘𝑖𝑑 − 𝑥

𝑘
𝑖𝑑), (15)171
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TABLE 2. Parallel PSO Configuration

Parameter Value
Inertia term 𝑐1 0.7
Local acceleration term 𝑐2 1.47
Global acceleration term 𝑐3 1.47
Information factor 𝜉 400
Particles per swarm 800
Iterations 200
Simultaneous swarms 6

𝑥𝑘+1
𝑖𝑑 = 𝑥𝑘𝑖𝑑 + 𝑣

𝑘+1
𝑖𝑑 , (16)172

where 𝑣 is the particle speed, 𝑥 its position, 𝑖 the particle index, 𝑑 the dimension, 𝑘 the iteration,173

𝑝 the best position explored by the particle, 𝑔 the best global, 𝑐1 the inertia term, 𝑐2 the local174

acceleration, and 𝑐3 the global acceleration.175

In each iteration, the best position explored by the particle (best local, 𝑝) and the best positions176

known for all the particles (best globals) are updated using the cost value from Eq. 13. Notice the177

existence of separated best globals 𝑔𝑘
𝑖
, which are updated in every iteration as the best position of178

a set of 𝜉 consecutive particles starting with itself.179

𝑔𝑘+1
𝑖 = best

{
𝑔𝑘𝑖 , 𝑔

𝑘
𝑖+1, ..., 𝑔

𝑘
𝑖+𝜉

}
. (17)180

Setting a small value for the 𝜉 parameter makes the swarm more explorative while using as181

value the total number of particles results in the standard PSO formulation.182

The configuration used is summarized in Table 2. The inertia and acceleration terms were183

selected to be well inside the deterministic stability region of the standard PSO algorithm, that is,184

the generalized PSO with Δ𝑡 = 1. This stability regions are well explained in (Fernández Martínez185

and García Gonzalo 2008). We used a great number of particles per swarm because there is186

no penalty in the execution time until the thread or memory resources of one multiprocessor are187
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Fig. 1. Convergence of the absolute error in the wind estimation. (a) Wind speed error. (b) Wind
direction error.

exhausted. The used GPU, GeForce GTX 1050 Ti, has 6 CUDA multiprocessors, so the number of188

simultaneous swarms was set to this number. The number of iterations was adjusted based on the189

convergence graphs shown in Fig. 1, Fig. 2, and Fig. 3. Finally, the information factor was set to a190

high value, the half number of the total particles, because as we already have many particles, we do191

not need to force the algorithm to be much more explorative than the standard PSO implementation.192

We checked the convergence simulating a typical flight and observing the absolute error in the193

estimated parameters. Wind speed and direction error converge very fast, as shown in Fig. 1. In194

contrast, convergence for the sensor parameters 𝐾1, 𝐾2, and 𝐾3 is much slower, as shown in Fig. 2,195

specially for 𝐾3. Although the 𝐾3 error graph prompts for an increase in the number of iterations, it196

is not necessary because the sensor parameters are an indirect measurement of the sensor precision.197

The purpose of calibrating the airspeed sensor is to neutralize its pressure measurement error,198

indeed the indicated speed error. The results of the same test for the mean absolute pressure199

error, the maximum pressure error, and the maximum indicated airspeed error present adequate200

convergence without increasing the number of iterations as shown in Fig. 3.201

MANEUVER ANALYSIS202

The proposed maneuver consists of a horizontal coordinated level turn. During the turn, the203

aircraft speed changes to obtain information at different points of the sensor error curve. This204

speed variation can be performed by the pilot adjusting the angle of attack and the throttle setting,205
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Fig. 2. Convergence of the absolute error in the sensor parameters. (a) Parameter 𝐾1, (b) Parameter
𝐾2. (c) Parameter 𝐾3.

Fig. 3. Convergence of the pressure and indicated airspeed errors. (a) Mean abs pressure error. (b)
Maximum abs pressure error. (c) Maximum abs airspeed error.

and it is modeled using a sinusoidal function. The heading change rate is fixed to a low value to206

avoid a noticeable increment of the load factor. Therefore, the maneuver has four parameters to be207

adjusted: the total turning angle, the mean aircraft speed, the maximum speed deviation, and the208

number of speed cycles.209

The environmental variables, which are the static pressure, the outside air temperature, and the210

wind conditions, can be adjusted in a real situation only up to a certain level. The static pressure211

and the air temperature can be tweaked by selecting the flight altitude and the wind selecting the212

flight altitude and the time of the day.213

The study of the maneuver is carried out systematically using unidimensional and bidimensional214

sensitivity analyses. The reference case needed to set the fixed variables is based on the Beechcraft215
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TABLE 3. Estimated Parameters Range and Reference Value

Parameter Minimum Maximum Reference
Wind speed (m/s) 0 30 15
Wind direction (deg) 0 359.9 180
Sensor K1 (Pa) -500 500 130
Sensor K2 (Pa) -500 500 -145
Sensor K3 (Pa) -500 500 -125

TABLE 4. Maneuver Parameters Range and Reference Value

Parameter Minimum Maximum Reference
Total turn angle (turns) 0.5 4.0 2.0
Mean aircraft speed (m/s) 20 40 30
Aircraft speed deviation (m/s) 0 15 9
Aircraft speed cycles 0.5 4 1.5

Bonanza. The airspeed error curve for this aircraft is available in (Niewoehner 2006) and 𝐾1, 𝐾2,216

and 𝐾3 are set to fit this curve. The speed function must be constrained so that it is always between217

the stall speed and the maximum horizontal speed of the airplane. The reference values and search218

limits used in the sensitivity analyses for the optimization of the maneuver are listed in Tables 3219

and 4.220

Environmental parameters correspond to a flight altitude of 3000 ft, high enough to avoid221

mechanical turbulence (assuming low altitude terrain), and low enough to get good aircraft perfor-222

mance. Moderate wind is also included in the reference case.223

After establishing the reference values, we performed the uni or bidimensional sensitivity224

analyses varying one or two of the maneuver parameters. We evaluated the precision according225

to the estimation’s error of: the wind speed, the wind direction, the sensor model parameters, and226

the derived pressure and airspeed measurements. The studied sensitivity cases comprise all the227

possible uni and bidimensional combinations for the four maneuver parameters. Each sensitivity228

analysis is performed following the next steps:229
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• Generate a list of combinations for the flight parameters. These combinations are the result230

of the cartesian product of a set for each varied variable (one variable in the uni-dimensional231

and two in the bi-dimensional analysis) and all the other variables in their reference values.232

• For each combination, calculate the aircraft trajectory and compute the measured variables:233

aircraft position, heading, static pressure, outside air temperature, and dynamic pressure.234

The aircraft trajectory is modeled as described in the Statement of the Problem section, and235

the errors of the sensor are added to the dynamic pressure.236

• Solve the inverse problem with the parallel PSO implementation described in the previous237

section.238

• Calculate the precision for each estimated parameter, the mean and maximum airspeed errors239

(given a suitable airspeed range for the aircraft), and the mean and maximum pressure error.240

The sensitivity analysis results for aircraft mean speed and speed deviation are represented in241

Fig. 4. Although some tendency can be observed for the aircraft’s mean speed, its error values are242

one order of magnitude lower than the ones of the speed deviation case. Therefore, we can neglect243

the effects of the aircraft mean speed and focus on the selection of the deviation speed. The speed244

deviation for the maneuver should be selected high enough to obtain samples at most of the span of245

the error curve. Based on Fig. 4 (b), a minimum deviation speed of 9 m/s is appropriate. Once the246

deviation speed is fixed, the mean aircraft speed can be chosen using an intermediate value between247

the aircraft stall speed and the maximum horizontal speed to perform the required speed variation.248

Regarding the number of heading turns and speed cycles, some complex interactions take249

place, affecting the precision of the wind and the sensor model estimation. These effects can be250

appreciated in Fig. 5, where we can see a lower precision when the number of the speed cycles is251

close to 1 or 2. These effects are a sort of aliasing problem. Let us suppose that the number of252

speed cycles is the same as the heading turns and that when the aircraft speed is maximum, the253

heading is towards the wind (therefore, when the aircraft speed is minimum exists tailwind). In this254

situation, an overestimation of the wind can be compensated by underestimating the sensor gain,255

resulting in different solutions with similar trajectories and similar costs. In the sensitivity tests, the256
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Fig. 4. Sensor maximum absolute error (Pa). (a) Sensitivity analysis for aircraft mean speed. (b)
Sensitivity analysis for aircraft speed deviation.

Fig. 5. Sensitivity analysis for maneuver speed cycles. (a) Wind speed error. (b) Wind direction
error.

reference parameter for the heading turns was set to 2, so the loss of precision displayed in Fig. 5257

occurs in the aforementioned situation and also when the number of turns is two times the number258

of speed cycles (second harmonic).259

After checking that the relative phase between the aircraft speed and heading functions does260

not affect the precision, we performed the corresponding bi-dimensional sensitivity analyses. The261

results of these analyses, represented in Fig. 6 and Fig. 7, indicate that the aliasing effects are more262

complex than previously described. In the wind speed estimation, Fig. 6, the loss of precision of263

the first harmonic appears where it was supposed to be, in a region with a slope of 2. However,264

the decrease in the precision at the fundamental frequency has a slope slightly lower than 1. In the265

estimation of the wind direction, Fig. 7, the loss of precision related to the fundamental frequency is266

at the same slope as in the wind speed estimation, but the second harmonic splits into two regions.267
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Fig. 6. Bidimensional sensitivity analysis: Wind speed estimation error vs heading turns and speed
cycles.

In all the cases, the loss of precision in the wind estimation displays straight zones, which means268

fixed ratios between the speed cycles and the heading turns, i.e., fixed ratios between the frequencies269

of the speed and heading functions.270

If this loss of precision in the wind estimation is caused by an aliasing effect, where the271

sensor model compensates the bad wind estimation, imprecisions are also expected for the sensor272

parameters in the same region. Fig. 8 represents the estimation error of the parameters 𝐾1, 𝐾2, and273

𝐾3. The expected regions are present and marked with crossed line. Not varying the aircraft speed274

during the maneuver thwarts the sensor model estimation because the flight test does not explore275

different points of the error curve. This was already analyzed when recommended a minimum276

deviation speed. Varying the aircraft speed extremely fast has the same effect because, in this case,277
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Fig. 7. Bidimensional sensitivity analysis: Wind direction estimation error vs heading turns and
speed cycles.

Fig. 8. Sensitivity analysis for maneuver speed cycles. In crossed line, the error regions that are
caused by an inaccurate wind estimation. In continuous line, the error regions affecting only the
sensor model. (a) Sensor 𝐾1 error. (b) Sensor 𝐾2 error. (c) Sensor 𝐾3 error.
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Fig. 9. Bidimensional sensitivity analysis: Sensor maximum pressure error vs heading turns and
speed cycles.

we can approximate small fragments of the trajectory as if they had traveled at the mean aircraft278

speed. Fig. 8 shows that the loss of precision caused by changing the aircraft speed too fast starts279

as soon as the speed function frequency is higher than the heading function frequency. This region280

is marked with continuous line in the image. In the sensitivity test, the number of aircraft turns was281

set to 2, and being beyond this value where the error increases.282

The consequences of the inaccuracies in the sensor model are errors in the measured dynamic283

pressure and, therefore, in the resulting indicated airspeed. The certification regulations for small284

airplanes FAR 23 (FAA 2020) and JAR 23 (JAA 2020) set for the airspeed sensor calibration a limit285

in the indicated airspeed error. Hence special interest is in analyzing the maximum pressure error286

and the maximum airspeed error. A bidimensional sensitivity analysis for the maximum pressure287
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Fig. 10. Bidimensional sensitivity analysis: Sensor maximum airspeed error vs heading turns and
speed cycles.

error is represented in Fig. 9. We can see that the combination of the previously described error288

regions results in a low error center zone. The precision degradation caused by a too fast aircraft289

speed variation is clearly represented in the frontier at the main diagonal. Regarding the maximum290

airspeed error, a similar result with a central high precision zone was obtained and represented291

as a surface in Fig. 10. This surface agrees with the theoretical analysis of the topography of292

the cost function and the effect of noise in linear and nonlinear inverse problems described in293

(Fernández Martínez et al. 2012), (Fernández-Martínez et al. 2014a)–(Fernández-Martínez et al.294

2014b).295

In summary, the flight test maneuver should have a minimum deviation speed and its aircraft296

mean speed can be selected freely without much impact in the estimation errors. The maneuver297

flight turns and speed cycles should be selected to be in the high precision valley shown in Fig. 10.298
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TABLE 5. Final Maneuver Configuration

Parameter Value
Mean aircraft speed (m/s) 30
Aircraft speed deviation (m/s) 9
Total turn angle (turns) 2.5
Aircraft speed cycles 2.0

We provide a proper maneuver configuration for the studied case in Table 5.299

It can be noticed that in the final maneuver configuration, the mean speed and deviation values300

are the same as those used as the reference in the sensitivity analyses. This is intentional, as we301

want the unidimensional sensitivity analysis to evaluate the loss of precision when one parameter302

changes with respect to the ideal maneuver.303

The extremely low error in the high precision valley is unrealistic for a practical situation where304

there are model deviations, maneuver variations, non-constant wind, turbulence, and measurement305

errors. A more realistic result is represented in Fig. 11, where we modeled the wind with a 1 m/s306

RMS (Root Mean Square) noise in the magnitude and 1 degree RMS noise in the direction. As the307

errors grow due to other factors, less advantage is obtained from a perfect tuning of the maneuver.308

However, starting with the right one, improves the final estimation precision.309

VALIDATION310

JSBSim (Berndt et al. 2021) is an open-source project that provides an FDM (Flight Dynamic311

Model) along with the aircraft, the atmosphere, and the control devices models needed to perform312

a complete flight simulation. This software is also used as the engine of other flight simulators313

and platforms, like the FlightGear Flight Simulator or the Mixed Reality Simulation Platform. We314

selected JSBSim because it can be executed in accelerated time mode, launched as a batch process315

with all the simulation and aircraft control defined in XML files. Considering that the proposed316

method is suitable for the subsonic regime and that a twin-engine configuration is more stable to317

fly with zero sideslip in the presence of throttle changes, we selected the Cessna 310 from the list318

of the JSBSim available models.319
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Fig. 11. Bidimensional sensitivity analysis including wind noise: Sensor maximum airspeed error
vs heading turns and speed cycles.

In batch mode, the autopilot should be able to fly the required maneuver. This maneuver consists320

of a coordinated turn at a constant altitude with a sinusoidal airspeed variation. For the autopilot,321

we choose the most straightforward strategy consisting of four independent control loops, each one322

controlling one maneuver variable (altitude, sideslip angle, heading, and airspeed), and each one323

adjusting one single control (elevator, rudder, ailerons, and throttle). For the sake of completeness,324

we included in Annex II the four control loops. The altitude control loop, Fig. 15, is the same as325

the one provided by JSBSim, but with an adjustment in the Kp and Ki parameters to obtain a faster326

response. The same can be said for the heading control loop, Fig. 16, which is adapted from the327

heading hold controller provided by JSBSim. For the rudder channel, instead of using the table-328

based yaw damper included in JSBSim, we used a direct PID (Proportional Integral Derivative)329

controller to maintain the sideslip angle near zero, Fig. 17. Finally, the airspeed variation is made330
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Fig. 12. Logged data from test flight with turbulence of severity level two. (a) Sideslip angle. (b)
Angle of attack. (c) Yaw angle. (d) Equivalent airspeed. (e) Ground speed. (f) Density altitude

handling the throttle by another PID controller, Fig. 14. In this last control loop, we included331

the transformation to model the error caused by the sensor in calibration. As aforementioned, the332

calibration curve includes the effects of the different angles of attack at different speeds for a steady333

level flight, so in this transformation, we only need to add the compensation for the sideslip angle334

(multiply only by cos 𝛽 and not by cos𝛼 cos 𝛽).335

We can observe the effectiveness of the control loops in the flight data represented in Fig. 12.336

This data corresponds to a flight that we made in turbulence conditions. The sideslip angle was in337

values close to zero Fig. 12(a), and altitude near the set value of 3000 ft, Fig. 12(f). The heading338

angle follows the expected saw tooth graph, Fig. 12(c), which corresponds to a constant increment339

of the heading angle. The aircraft airspeed follows the desired sinusoidal function, Fig. 12(d), with340

some noise produced by the atmospheric turbulence. The ground speed, Fig. 12(e), has a different341
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Fig. 13. Maximum airspeed error vs heading turns and speed cycles for a JSBSim test flight in air
calm conditions.

shape than the airspeed (and than the true airspeed) as the aircraft is affected by a constant wind.342

The angle of attack, Fig. 12(b), follows an inverse shape than the airspeed as expected, where a343

low angle of attack corresponds to a high airspeed and vice-versa. The angle of attack is also quite344

affected by the turbulence.345

After testing that the control loops can execute the maneuver in calm and turbulence conditions,346

the next step in the validation was to perform batch flights for combinations of different total turns347

and speed cycles. This test allow us to verify that the shape of the precission surfaces represented348

in Fig. 10 and Fig. 11, are also valid for a JSBSim simulated flight. The result is represented in349

Fig. 13, where we can see the loss of precission in the left region limited by the main diagonal and350

the lower error zone at the same zone that we obtained in the sensitivity analyses.351

Finally, we configured the maneuver according to the sensitivity analysis results to test the352
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TABLE 6. Flight tests error results

Calm conditions Turbulence severity 1 Turbulence severity 2
Mean abs airspeed error (m/s) 0.591 0.526 0.590
Maximum abs airspeed error (m/s) 2.733 2.441 2.671
Mean abs pressure error (Pa) 18.73 16.74 18.80
Maximum abs pressure error (Pa) 61.98 54.93 60.49
Wind abs magnitude error (m/s) 0.062 0.143 0.219
Wind abs direction error (deg) 0.173 0.261 0.312

precision depending on the turbulence conditions. The maneuver was set with the values indicated353

in Table 5, except the mean aircraft speed that was incremented up to 46.3 m/s (90 kn) to match the354

Cessna 310 speed range. The turbulence model in JSBSim was set to “ttMilspec”. This turbulence355

model is described in (Yeager 1998) and implements a Dryden spectrum model with parameters356

according to the document MIL-F-8785C (1980). Since flight tests for airspeed calibration are357

usually performed on calm days, we tested only for calm conditions and turbulence with severity358

levels 1 and 2. The correspondence of these levels to the turbulence amplitude is represented in the359

Fig. 7 of MIL-F-8785C (1980). This amplitude is around 1.14 m/s (3.75 ft/s) for severity 1 and360

2.13 m/s (7 ft/s) for severity 2. The magnitude of the discrete gusts also depends on the wind speed361

at 20 ft AGL (Above Ground Level) that was configured to 3.05 m/s (10 ft/s) for all of the tests.362

Table 6 shows the results of these tests. The pressure and airspeed errors were computed over the363

explored sensor range in the maneuver. There is no clear trend with the increase of the turbulence364

severity for the sensor mean and maximum errors. Therefore, the method proves to be robust, at365

least under light turbulence conditions. Regarding the wind estimation, we see a continuous loss366

of precision while the turbulence level increases, but with a very precise estimation in all the cases.367

CONCLUSION368

In this work, we presented a systematic study to optimize the maneuver required to identify369

the wind and simultaneously calibrate the airspeed sensor of an aircraft. The simulation results370

proved that the mathematical model is correct and that using the proposed formulation, accurate371

estimations can be obtained for the wind and the airspeed sensor. We modeled the sensor with a372
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three degrees of freedom function that, in the author’s opinion, is the minimum complexity in order373

to approximate a generic airspeed system. We used a slightly modified parallel PSO implementation374

as the resolution method. This method enabled performing the intensive computing required for the375

sensitivity analyses, and due to the random essence of the algorithm, it revealed the low precision376

zones in the analyses.377

As a result of this study, the circumstances that cause a loss of precision depending on the378

maneuver parameters were identified. This allowed us to configure the optimal maneuver for this379

case, but actually, this article presents a general methodology for maneuver optimization that can380

be applied to any other aircraft identification problem.381

With the help of the JSBSim simulator, we tested that the results of sensitivity analyses are382

congruent with the ones obtained with complete flight simulations. Finally, we evaluated the383

precision of the method in calm and light turbulence conditions.384

DATA AVAILABILITY STATEMENT385

Some or all data, models, or code generated or used during the study are available in a repository386

online in accordance with funder data retention policies.387

The complete results of the sensitivity analyses are available at the IEEE Dataport, acces-388

sible from (Rubio-Sierra 2021a). This dataset includes the four uni-dimensional and the six389

bi-dimensional possible analyses of the maneuver. Regarding the bi-dimensional analyses, we also390

included averaged versions that compact the results of the different swarms of the same parameter391

combination. Scripts in R language to reproduce the plots from the data are within the dataset.392

In the interest of facilitating further research and allowing to reproduce the experiments, we393

made open source the complete code. The CUDA PSO implementation is available in (Rubio-394

Sierra 2020) and the code that performs the simulations, written in Kotlin language, in (Rubio-395

Sierra 2021b). The JSBSim XML files needed to reproduce the validation section are also in this396

repository. Instructions for compile and launch the tests are within the code.397
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APPENDIX I. NOTATION398

The following symbols are used in this paper:399

𝑐1 = inertia term;

𝑐2 = local acceleration term;

𝑐3 = global acceleration term;

𝑔𝑖 = best global position;

𝐼 𝐴𝑆 = indicated airspeed (m/s);

𝐾1, 𝐾2, 𝐾3 = sensor model coefficients;

𝑃𝑠 = static pressure (Pa);

𝑝𝑖 = best local position;

𝑞 = dynamic pressure (Pa);

𝑇 = atmosphere temperature (C);

𝑇𝐴𝑆 = true airspeed (m/s);

𝑊𝑑 = wind direction (rad);

𝑊𝑠 = wind speed (m/s);

𝑊𝑥 ,𝑊𝑦 = wind velocity (m/s);

𝑥, 𝑦 = aircraft position (m);

𝑥𝑖 = particle position;

𝑣𝑖 = particle speed;

𝑍 = cost value;

𝛼 = angle of attack (rad);

𝛽 = angle of sideslip (rad);

𝛿 = density ratio;

𝜓 = aircraft heading (rad);

𝜌0 = atmosphere sea-level density (Kg/m³).

400
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APPENDIX II. FLIGTH CONTROL401

This appendix includes the diagrams of the control loops used in the JSBSim flight simulations.402

They consist of four independent control loops, each one controlling one aircraft command surface403

or the throttle.404

1. The airspeed control loop, represented in Fig. 14, adjusts the throttle control based on the405

airspeed setpoint and the measured dynamic pressure. The airspeed setpoint follows a406

sinusoidal function. This control loop also includes the sensor error model.407

2. The altitude control loop, represented in Fig. 15, has the mission of maintaining a constant408

altitude during the flight. It is similar to the one included by default in the JSBSim and sets409

the elevator position.410

3. The heading control loop, represented in Fig. 16, is an adaptation of the heading hold411

controller provided in the JSBSim simulator. It controls the aileron position to follow the412

saw tooth function that sets a continuous increment in the heading angle.413

4. The sideslip control loop, represented in Fig. 17 is a simple PID controller to maintain the414

sideslip angle near zero using the rudder control.415

Fig. 14. Speed control.
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Fig. 15. Altitude control.

Fig. 16. Heading control.

Fig. 17. Sideslip control.
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