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Advances in Nanoplasmonic biosensors for clinical applications
Elba Mauriz1*, Priyanka Dey2 and Laura M. Lechuga2

1 Department of Nursing and Physiotherapy, Universidad de León, Campus de Vegazana, s/n, 
24071 León, Spain

2 Nanobiosensors and Bioanalytical Applications Group, Catalan Institute of Nanoscience and 
Nanotechnology (ICN2), CSIC, BIST, and CIBER-BBN, Campus UAB, 08193 Barcelona, 

Spain.

Abstract Biomarkers are unquestionable biological indicators for diagnosis and therapeutic 

interventions providing appropriate classification of a wide range of health disorders and risk 

factors. Nonetheless, detection and quantification of biomarkers need to be tested with sufficient 

reliability by robust analytical methods in order to assure clinical performance in health care 

settings. Since the analytical performance is determined by the sensitivity and specificity of the 

method employed, techniques have been intensively refined in order to avoid misinterpretation of 

results and undesirable bias. Although biomarkers can be detected with the existing analytical 

techniques, to reproducibly quantify them in decentralized settings or remote locations with the 

required accuracy is still a challenge. Currently, only a few point-of-care devices for biomarkers 

evaluation are commercially available. Thus, more focused research efforts are needed to 

overcome those limitations in order to provide universal patient-centered care platforms.

To this end, plasmonic biosensors can be conveniently used as portable diagnostic devices for 

attaining timely and cost-effective clinical outcomes. The development of enhanced performances 

based on nanoplasmonics technology opens the way for sensor miniaturization, multiplexing and 

point of care testing. This review covers recent advances and applications of plasmonic and 

nanoplasmonic biosensors intended for biomarker diagnosis in the clinical practice, including 

cancer, cardiovascular and neurodegenerative diseases. The review specially focuses on: (i) recent 

progress in plasmonics developments including the design of singular nanostructured surfaces, 

(ii) novel chemical functionalization strategies for the appropriate incorporation of the 

bioreceptors and (iii) plasmonic applications as real operative devices in the clinical field. Future 

prospects in the use of nanoplasmonic sensor platforms for personalised quantification and 

management of biomarkers directly in body fluids will also be discussed.

1. Introduction

Biomarkers in body fluids are commonly utilized in clinical practice as diagnostic or prognostic 

indicators for the onset, progression and remittance of diseases.1, 2 Biomarkers provide objective 

quantification of normal or pathological diagnostic outcomes and aid to predict the biological 

response after exposure to therapeutic drugs or environmental agents. The variety of biomarkers 
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that can be tested ranges from protein, gene expression profiles to blood and urine concentrations 

of drugs.1, 3-6 In general, the classification of biomarkers relies on the sequence of events from 

exposure to disease onset, categorizing them as either diagnostic or monitoring markers. 

Diagnostic biomarkers allow the identification of a medical condition via genetic and 

pathophysiologic parameters while monitoring biomarkers assess the extent and progression of a 

disease by testing drug concentration or toxicity effects (FDA-NIH Biomarker Working Group). 

Diagnostic or prognostic biomarkers allow for early detection of diseases and have been at the 

spotlight for researchers, especially for cancer biomarkers2 as it promises significant  

improvement in chances of survival. Biomarker-based disease diagnostics relies on detecting the 

specific biomarkers associated to a disease and their presence in body fluids like blood, urine, 

saliva, sputum, cerebrospinal fluid (CSF), among others.1, 3, 4 These biomarkers can exhibit a 

significant and specific concentration deviation (up/down regulation) in disease conditions 

compared to healthy conditions, followed by accurate and specific determination of concentration 

of the specific biomarker. This requires collection of body fluids, preferentially in a minimally 

invasive manner. 

The phases of clinical diagnosis can be summarized as shown in Fig. 1. The usual laboratory 

procedures involve sample collection, sample pre-processing (for example, pre-concentration, 

DNA/RNA replication, growth incubation for pathogens, etc.), laboratory analytical test by expert 

technicians (to evaluate the biomarker concentration) and analysis of the data (comparison of the 

outcome to healthy condition). A summary of the complete procedure is then delivered to the 

medical team who decides the appropriate treatment. Though this analytical procedure provides 

reliable outcomes, an inherent limitation is its’ inaccessibility at decentralized clinics, 

ambulatories, ambulances or hospitals itself, requiring in most cases an outsourced laboratory 

and, thereby, delaying critical care, particularly for cases like sepsis7, 8 and other infections. Thus, 

medical diagnostics need a transformation towards portable diagnostic devices with quick 

turnaround time such that regular health biomarkers can be tested as point-of-care, at the doctor´s 

office, emergency rooms, ambulances, hospitals and even at home. This can be achieved by 

combining the sample pre-processing and the analytical test and read-out all into one simple-

functioning, easy to-use, direct read-out point-of-care (POC) device platform. 9-11 This concept 

has been summarized in Fig. 1, where the research focus lies in POC device development.
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Fig. 1. Overview of the flow in clinical diagnostics in present and in the near future.

To accomplish this transformation, analytical methods can take advantage of biosensing-based 

platforms. Biosensors enable simultaneous and real-time detection of multiple biomarkers. They 

provide a measurable signal that can be quantitatively related to the amount of biomarker in the 

body fluids. An ideal biosensor for clinical diagnostics12, 13 should fulfill the following 

characteristics: (a) be able to detect a specific biomarker in its clinically relevant range with a low 

limit of detection (LOD) and a minimum signal-to-noise (S/N) ratio >2 for high accuracy, (b) 

have a detection with high specificity (no cross-reactivity) and provide sensor-to-sensor 

reproducibility, (c) able to provide multiplexed analysis of several biomarkers related to the same 

disease, which would not only reduce the cost per test, but also will assure diagnostics accuracy, 

(d) minimal patient body-fluid (sample) required, (e) minimal operational complications and 

minimal additional reagents required, (f) fast testing turnaround times (potentially in minutes), 

(g) sensing instrument fairly compact and portable, as well as user-friendly and cost-effective, (h) 

sensor chips or substrates with a long shelf-life and stability in a wide working range of 

temperature and humidity.

An IDTechEx research report titled “Biosensors for Point-of-Care Testing: Technologies, 

Applications, Forecasts 2017-2027”, predicts biosensors for point-of-care testing market will 

grow to $33 billion by 2027, with molecular diagnostic devices as the main driver for this growth. 

The role of biosensors as clinical analytical tools has already been proven in the health care sector. 
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One of the most relevant examples that have popularized POC biosensor devices is the 

electrochemical based glucometers14 that measure glucose levels from a drop of blood with digital 

read-out which is a must-have instrument for diabetic patients at home now-a-days.  The other is 

pregnancy strips providing a visual color-based positive or negative read-out,based on gold 

nanoparticles changing colour due to aggregation upon interaction with pregnancy hormones. 

Products that are more recent utilize a smartphone as the read-out device, non-invasive wearable 

sensors15, while others employ an injectable sensor material making the POC devices smarter and 

more lucrative.

Enzyme-linked immunosorbent assay (ELISA)16 has been the gold standard in biomarker sensing 

with dominating market presence for laboratory-based technologies. Recently, with the drive 

towards POC devices, ELISA has been upgraded to lab-on-chip system by utilizing microfluidic 

technologies. Although ELISA has advantages of being a robust platform, it still requires long 

incubation and washing times along with the necessity of a detection label. Although plasmonic 

biosensing technology utilizes similar sensing principles as ELISA where the bioreceptor is 

immobilized onto a surface and the captured biomarker is detected, it is label-free and does not 

require extensive incubation/washing steps nor is labor-intensive. This in addition to the 

plausibility of plasmonic biosensor miniaturization, makes it an ideal technology for developing 

POC devices for clinical settings. Optical biosensors have thus gained immense limelight due to 

their capability of biomarker detection in real-time and significantly faster turnaround times with 

lower manual handling time. Recent reviews3, 5, 12, 13, 17 justify the importance of optical 

nanobiosensors for biomarker detection.

A quick evaluation of the scientific community´s effort in the field of nanoplasmonic biosensors 

is portrayed in Fig. 2, which shows the publication contribution, in the past decade, of advances 

in nanoplasmonics covering all aspects of nanoplasmonic sensor substrate and/or associated 

optical technologies including Surface Plasmon Resonance (SPR), Localized Surface Plasmon 

Resonance (LSPR) and Surface enhanced Raman scattering (SERS). In order to gain a better 

understanding of specific technologies that have moved towards clinical biomarker detection, we 

analyze the above publications in two categories: “general” (all and any advances) and “biomarker 

sensing” (publications which demonstrate some clinically relevant studies). Fig. 2 (right-most bar 

for % translation) clearly depicts that SPR and LSPR technologies have moved into clinical 

applications for biomarker detection while overall nanoplasmonic and SERS domains are 

predominantly in the research phase. 
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Fig. 2. Statistics of published papers in the last decade (2007-onwards) demonstrating the higher 
translation of SPR/LSPR technologies employed for biomarker sensing applications. Here, 
“nanoplasmonics” refers to the work done in the overall area of plasmonic sensors and their 
applications in various optical technologies. Source: Web of Science. 

This review contains a critical discussion of the recent advances in clinical biomarker evaluation 

employing nanoplasmonic biosensors. Special attention has been focused on SPR and LSPR 

biosensor devices employed as diagnostic, predictive, prognostic or monitoring tools for assessing 

cancer, cardiovascular, autoimmune and neurodegenerative diseases. Current progress in the 

analytical performance of biomarker evaluation in biological media has also been discussed. 

Finally, we consider different approaches in multiplexing and miniaturization of plasmonic 

biosensors as steps towards designing fully-automated POC instruments.

2. SPR and LSPR biosensors: working principles

SPR. Both SPR and LSPR are examples of surface plasmon (SP) based sensors. When an incident 

light interacts with a noble metal, photons induce a collective oscillation of the free electrons in 

the conduction band of the metal generating surface plasmon polaritons (SPP), a form of 

electromagnetic (EM) waves, propagating at the sensor metal-dielectric interface. It is important 

to note that only a p-polarized electromagnetic or transverse magnetic wave is able to sustain 

SPPs. The simplest geometry sustaining SPPs is that of a flat interface between a metal and a 

dielectric medium with dielectric constants of opposite signs. Gold, silver, copper, and aluminium 

are some of the metals that feature a negative real and a small positive imaginary dielectric 

constant and hence are able to support SPPs. In terms of choice of the sensor, silver (Ag) has the 

largest negative real dielectric constant and hence is more sensitive to refractive index (RI) 

changes, but has poor chemical stability as it is readily oxidized in air. On the other hand, gold 

(Au) has lower RI sensitivity than Ag but has higher stability, as well as higher chemical affinity 

which can be employed to easily functionalize the sensor surface for target biomolecule capture. 

Thus, Au has a higher employability in plasmonic biosensors and SPR sensor chips are often 
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made of a thin gold film of approximately 50 nm coated onto a dielectric substrate like glass or 

silica. 

The bulk RI sensitivity defined as the ability of the plasmonic sensor to detect changes in the RI 

is widely used to understand the effect of different parameters on the sensor performance. The 

bulk RI sensitivity (SB) is defined as (1)

…………………….. (1)𝑆𝐵 =  
𝑑𝜆𝑟

𝑑𝑛𝐵
 

where λr is the SP excitation wavelength (resonant wavelength) and n is the RI of the medium in 

contact with the sensor surface. The review by Špačková and co-workers18 discuss in detail the 

effects of various parameters on SB including the type of supporting EM mode (decay length), 

resonant wavelength, excitation geometry, and properties of the sensor. Among them, one of the 

main factors that affect SB is the localization of the EM mode. The generated electromagnetic 

plasmonic waves extend to around 100400 nm (SPR decay length) from the metal-dielectric 

interface making it capable of detecting any biomolecular binding event via dielectric RI change 

occurring within that range in the dielectric medium.

Additionally, the ability of a plasmonic sensor to measure minute changes in the RI is directly 

proportional to SB and, furthermore, inversely proportional to the width   of the resonant spectral 

feature being monitored. The figure of merit (FOM) (equation 2) is a combination of these 

parameters and serves as a quantitative comparison of sensing efficiency among different 

nanostructures. The importance and comparisons of FOM has been discussed in dedicated 

reviews.13, 18 

 …………………….. (2)𝐹𝑂𝑀𝐵 =
𝑆𝐵

  

A combination of the above factors and the ability to tune the optical response specifically and 

sensitively culminates into a limit of detection (LOD) with a sensitivity of 10-610-7 Refractive 

Index Units (RIU), making SPR a desirable choice for optical biosensor technology. Fig. 3(a) and 

(b) shows a standard SPR biosensor configuration along with data read-out of change in reflection 

angle () as a snap shot measurement, as well as a real-time measurement.

On the other hand, several optical device configurations have been explored depending on the  in 

coupling of the light to excite the resonance, SPR devices can employed either a prism, grating 

waveguide or fiber optic to achieve the excitation of surface plasmons.19, 20 The incident light 

coupling in fibre optic sensors are guided by total internal reflection inside the fibre core 

waveguide. At the fibre core waveguide-metal interface a evanescent field is generated. This 

configuration is increasingly becoming popular due to numerous advantages such as smart size, 
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high resolution, flexibility, and miniaturization, which allow sensing in harsh conditions and over 

long distances. A recent review by Tokel and co-workers6 discusses the role of the prism dielectric 

constant, energy-momentum conservation and the plasmon resonance angle which is highly 

sensitive to minute changes in the refractive index (RI) at the metal-dielectric interface. A SPR 

biosensor setup in the frequently used prism-coupled Kretschmann configuration is shown in Fig. 

3(a). The main advantage of such a configuration is that it allows monitoring of the incidence 

angle continuously and hence real-time detection is possible. 

Fig. 3. Schematic overview of (a) the biosensing detection (read-outs) for SPR on a thin gold film 
and (b) SPR read-out change in refection angle . (c) Miniaturization of the SPR instrument: from 
large commercial SPR (Biacore, GE Healthcare) (left), to hand-held devices21 (middle) and plan-
held22 (right) Adapted with permission from Scientific reports, 2014, 4, 6789 and Sensors and 
Actuators B: Chemical, 2010, 150, 1-6. Copyright (2010) Elsevier.

Furthermore, the light coupling strategies need to be efficient and for commercial high-throughput 

devices can cost a fair share. Miniaturization of SPR devices (as shown in Fig. 3c) into portable 

bench-top21 and palm-top22 set-ups has thus been investigated for boosting usability in clinical 

settings. Microfluidics, as well as smart optical components have revolutionized this 

transformation.4, 17, 19, 23-27 Interesting reviews of lab-on-chip integrated sensor devices justify the 

strategies and advantages of such approaches for miniaturization.28 Researchers have also 

included LED light source as opposed to laser, CMOS (Complementary Metal Oxide 
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Semiconductor) detector instead of CCD (Charge Coupled Device) camera, as well as a battery 

power source in order to minimize the size and the cost of the SPR instrument, making it attractive 

for POC market.8, 21, 22 Some of the above features, which have mainly been implemented in the 

research phase, have been depicted in Fig. 3c. Commercial SPR devices which are still 

comparatively bulky, are available from approximately 20 companies and costs approximately 

50-300k euros. Thus, the size and cost are major hurdles for its market penetration to every 

decentralized clinic in the world. The other major drawback of SPR instruments is its limited 

multiplexing capability; they often require multiple sensors chips (similar to Fig. 3c-middle panel-

d) in addition to multi-flow channels requiring complex microfluidics. Various reports and 

reviews suggest improved nanoscale manufacturing, microarray assay development and 

microfluidics channel design as some of the choices for achieving miniaturization and improving 

cost-effectiveness.4, 19, 29-32 A review by Masson provides an outlook of SPR biosensors, its 

limitations and benefits.33

SPRi. Following the initial discovery of SPR microscopy in 1998 where SPP field was used to 

image microscopic interfacial structures, researchers explored the use of surface plasmon 

resonance imaging (SPRi) for biosensing applications. SPRi allows detection and imaging in the 

entire sensor area and provides an added benefit of multiplexed detection, as opposed to SPR. 

SPRi sensors have been based on intensity, angular wavelength, phase, and polarization 

interrogations. A more extended explanation of SPRi fundamentals can be found in reviews by 

Wong and Olivio.34 One review compares SPR and SPR imaging35, while others discuss the 

importance of sensor interface design, biofunctionalization36, 37 and multiplexing in SPRi25. 

Though SPRi is a high throughput multiplexed technique, it suffers from reduced detection 

sensitivity of about one order of magnitude compared with SPR sensing. This reduction is due to 

the adaptation of a less compact optical configuration with a less sensitive mode of intensity-

based measurement and less sensitive detectors. The review by Liu and coworkers38 summarizes 

the recent developments in SPRi sensitivity discussing signal enhancement and/or amplification, 

and noise suppression. A more recent and detailed review39 of SPRi encompasses the significance 

of optical platforms, functional coatings, biomolecular interactions (drug–receptor, protein–

protein, protein–DNA, protein–cell) and their  applications of a broad variety of analytes (nucleic 

acids, proteins, bacteria). Though there has been some progress in the field of SPRi, it is not yet 

the most suitable technique for clinical applications.

LSPR. When metallic nanostructures interact with light, localized field oscillations are observed 

inspiring the name “localized” SPR i.e., LSPR. In this situation, part of the incident light is 
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absorbed and part is scattered. Both absorption and scattering are greatly enhanced when the 

LSPR resonance mode is excited. The large amplification observed in extinction (absorption and 

scattering) can be explained by an analytical solution of Maxwell´s equation with spherical 

boundary conditions, referred to as Mie theory which illustrates the extinction spectra of a 

nanoparticle. To extend this theory to more complex nanoparticles shapes and calculate dielectric 

constants at different wavelengths, the Modified Long Wavelength Approximation (MLWA) of 

Mie theory is used as stated below.40

 …………………….. (3)𝐶𝑒𝑥𝑡 =  
24 𝜋2𝑅2𝜀

3
2
𝑚𝑁

λln (10)   
𝜀𝑖

(𝜀𝑟 +  χ 𝜀𝑚 )2 +  𝜀2
𝑖  

where R is the radius of the particle, λ is the wavelength of the incident light, εm is the dielectric 

constant of the surrounding medium, ε = εr + iεi is the complex dielectric constant of the bulk 

metal, N is the electron density, and χ accounts for the shape of the particle (equals to 2 for a 

sphere and up to 20 for high-aspect ratio particles like nanorods). This proves the importance of 

the plasmonic nanoparticle physical properties in LSPR sensing, as opposed to that in SPR. It is 

also worth mentioning that with the increase in nanoparticle (NP) size, the relative contribution 

of scattering to extinction increases, with scattering observed for NPs ≥30 nm. The above equation 

(3) defines the importance of the different parameters including the shape of the NP, wavelength 

of incident light, type of material, and last but most importantly, the surrounding media and its 

dielectric constant. For a given nanoplasmonic system, a change in Cext and max (which lies in 

the visible region for Au and Ag, making them highly important) will be observed if the media 

surrounding of the nanoplasmonic system changes i.e., changes in its dielectric constant (ε) and 

refractive index (n) related by ε = n2. This has been utilized in determining analytes or biomarkers 

that can bind to a functionalized nanoplasmonic surface, where the refractive index change 

translates into a LSPR max shift. Thus, the LSPR Δ read-out plot would be similar to that of 

SPR  plot shown in Fig. 3b. Furthermore, the shift in LSPR frequency upon biomolecular binding 

is described by the following relation: 40

 …………………….. (4)∆ = 𝑚(∆𝑛)[1 ― exp (
―2𝑑

𝑙𝑑
 )]

Where, m is the refractive index sensitivity, Δn is the change in refractive index induced by the 

biomolecule, d is the effective biomolecular layer thickness and ld is the electromagnetic field 

decay length (approximated as an exponential decay length). 

Therefore, the continuous thin gold film used for SPR would not be sufficient for LSPR. LSPR 

sensor substrates demands nanostructured features onto a substrate, this is an added complexity 

and cost factor as opposed to SPR technologies. The electromagnetic field decay length for metal 
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nano-surfaces is of the order of 1040 nm for NPs from the sensor surface as compared to 

100400 nm for SPR continuous metal films. This thus improves surface sensitivity of the 

nanoplasmonic substrates for biomolecular sensing which happens closer to the sensor surface. 

As compared to SPR, LSPR has negligible contribution from the bulk sensitivity and bulk 

temperature fluctuations and thus feature high nano-surface sensitivity. SPR requires an external 

light coupling method, whereas, light is directly coupled to the sensor for LSPR. This thereby 

reduces the complexity of the instrumentation and with the market availability of portable 

sensitive spectrometers, LSPR demonstrates strong potential for clinical diagnostic applications. 

A more complete description of SPR, LSPR and their comparison can be found in our previous 

reviews41 and other literature reports42.  

3. Nanoplasmonic biosensors

Research in engineering and optimization of plasmonic nanostructures supporting SPP has been 

immensely boosted due to its application as LSPR biosensors.43-46 The simplest form of substrate 

fabrication methodology is the bottom-up approach where colloidal plasmonic nanoparticles 

(NPs) are firstly synthesized and further employed for biosensing applications.  In this domain, 

extensive effort has been directed towards plasmonic NP synthesis (shape, size, composition 

variants), linker directed self-assembly (morphology variants) for improving the stability, optical 

response and reproducibility of such colloidal nanostructures.44, 47-50 Although, simple and cheap 

to synthesize and covers a wide range of LSPR resonant wavelength of 400-1000 nm, its low 

shelf-life restricts the applicability of colloidal NPs in clinical applications, especially where 

laboratory-like controlled storage facilities are not available. Other factors include batch-to-batch 

variation in production, presence of stabilizing agents that interfere with biosensing, as well as 

the large handling or shipping volume (in colloidal form) limiting transportability.

In contrast, top-down nanostructures formed via lithography51-58 benefit from the long shelf-life, 

easy transportability and ease of usage as sensor chips for detection. This has instigated a research 

interest in fabrication techniques to obtain reproducible high performance nanoplasmonics. 

Various fabrication techniques have been employed including e-beam lithography, mask 

lithography, etc.57, 58 An interesting bottom-up lithographic technique referred to as the colloidal 

lithography has gained limelight as it offers an easy control and fabrication of various shapes and 

sizes onto the sensor substrate while still being a low-cost technology.51, 56 Nanoimprint 

lithography is another low-cost and easy to implement technology which is gaining momentum 
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for nanoplasmonic structure fabrication.57 Furthermore, nanostructures featuring increase of 

polarizability via multipolar resonance, plasmon coupling for boosting LSPR, as well as 

employing optical antenna structures (like arrays of nanocrescents, nanostars, nanocross etc. with 

varying pitch) utilizing the lightening rod effect has been employed, few of which has been shown 

in Fig. 4. 

For example, plasmonic nanodiscs have been widely investigated where studies have focused on 

fabricating them with control over the height, nanogap, diameter, as well as employing a trunk 

for elevated nanodiscs.55, 59, 60 Another novel methodology uses Blu-ray discs as the base substrate 

which inherently offers nano-gratings and which require only a one-step coating with 

nanoplasmonic metals as Au or Ag (Fig. 4).61 Other structures like nano split rings, nanocrescents, 

nanopillars have also gained interest. Nanoholes, have both LSPR properties, as well as 

extraordinary transmission (EOT) properties.8 Interesting research is being conducted in forming 

various array types with the nanoholes and features that resemble nanocups.62 In summary, taking 

into account the increase in sensitivity, the plasmonic nanostructures can be categorized into 

colloidal NPs with lowest sensitivity, followed by nanoholes and nanodiscs and, finally, by other 

varied structures as nanopillars, nanocrescents, nanorings etc., offering highest sensitivity. 

Nanoholes and nanodisc plasmonic structures operate in the wavelength range of 450-1000 nm 

and are typically fabricated using colloidal or nanoimprint lithography.8 They offer higher shelf-

life and better scalability and hence are favored for mass production than other nanostructures 

like nanopillars etc. which otherwise feature higher sensitivity. Nanopillars, nanocrescents55 

require complicated fabrication technologies that are difficult to scale up and are less amenable 

for biofunctionalization. Until now, nanodiscs and nanoholes have been dominating the field. 
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Fig. 4 (a) Nanodiscs with varying height and nanogaps55, (b) Blu-ray disk coated with 

nanoplasmonic metals61, (c) nanodiscs both flat on the surface and elevated59, (d) nanohole 

arrays8, (e) nanocup arrays62 and (f) nanocrescents55. Adapted with permission from Advanced 

materials, 2016, 28, 4658-4664 and Journal of biophotonics, 2018, 11 (Copyright Wiley); Light, 

science & applications, 2017, 6; and Biosensors & bioelectronics, 2015, 67, 237-242). Copyright 

(2015) Elsevier.

4. Nanoplasmonic biosensors for clinical biomarkers analysis

4.1. Neurodegenerative diseases

The prognostic use of plasmonic biosensors for the diagnostics of neurodegenerative diseases 

demands the characterization of aggregation prone proteins related to the etiology of Alzheimer’s, 

Parkinson and Prion diseases. Although there is an increasing interest in the development of 

neurodegenerative diagnostic tools, particularly for Alzheimer’s disease (AD), plasmonic 

biosensors are still under-utilized in this domain. This gap is especially pronounced for the 

diagnosis of Parkinson disease biomarkers, wherein the scarce use of optical biosensors mainly 

relies on quantum dots-related approaches.

Amyloid beta peptides and tau proteins are the most frequent biomarkers employed as diagnostic 

targets for Alzheimer disease. Among them, amyloid beta levels have been detected and evaluated 

in serum and cerebrospinal fluid (CSF) by SPR, LSPR and SPRi biosensors. The most common 

amyloid beta oligomers detected are 1-40 and 1-42, since they are frequently overexpressed in 
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amyloid plaques as a result of the degradation of amyloid precursor protein (APP). For instance, 

a shape-code LSPR nanoplasmonic biosensor for multiplex detection of amyloid beta (A beta) 1-

40, A beta 1-42 and tau protein at 34.9 fM, 26 fM  and 23.6 fM levels, respectively, was developed 

in mimicked blood by functionalizing heterobifunctional polyethylene glycol coated gold 

nanoparticles with specific antibodies and detecting directly the target proteins.63 The shape-code 

plasmonic biosensor was based on the optical properties of gold nanoparticles of three different 

shapes and sizes that allow the detection of distinct conjugated biomolecules from separate 

colored spots and plasmonic spectra. Determination of Alzheimer protein biomarkers onto the 

antibody functionalized gold nanoparticles was measured by quantifying Rayleigh light scattering 

shifts after analyte binding through dark-field microscope, a spectrograph, and a CCD camera.

When using  SPR biosensors, A beta 1-42 have been detected in the 22  to 440 pM range with 

waveguide-coupled bimetallic chips.64 The plasmonic biosensor makes use of Ag/Au films (Au 

as an outer layer) in order to improve the sensitivity by increasing the reflectance change obtained 

in an intensity interrogation detection mode. The assay proved to detect selectively A beta 1-42 

from A beta 1-4a oligomer although results in human biofluids such as blood or cerebrospinal 

fluid were not shown.

Other prominent biomarker of Alzheimer’s and Parkinson disease, detected either in plasma or 

CSF samples, is tau Protein which is associated with defective aggregation of microtubules and 

abnormal expression in neurodegenerative diseases.

Recently, Truong et al. described an immunoassay capable of detecting tau and phosphorylated 

tau proteins, characteristic of tau pathologies, at pM in human sera of AD patients employing a 

SPR fiber sensor.65 The detection method consisted of the conventional Tau antibody 

immobilization onto a thiol Self-Assembled Monolayer (SAM) followed by direct detection of 

total and phosphorylated tau proteins. The analytical performance was tested using real blood 

samples of 40 participants over 65 years, divided equally into experimental and control groups. 

The results obtained contribute to define the rule of unphosphorylated tau proteins in the progress 

of AD disease since concentrations of phosphorylated tau proteins (3-fold higher) were less 

increased than tau proteins (6-fold higher) in AD disease patients when compared with the control 

group. This suggests that unphosphorylated tau proteins are more likely to be produced in blood 

of AD patients than phosphorylated tau proteins. In addition, the compact format of the SPR 

device envisages its potential application for POC testing of tau proteins present in human blood 

in the POCT mode.

Another SPR approach has demonstrated the determination of human tau 381 protein at 10 fM 

levels in undiluted plasma66 by a multichannel platform. The detection format consisted of a DNA 

aptamer/antibody sandwich assay over a tailored mixed monolayer on the sensor surface. Results 

were validated by ELISA showing a 1000-fold sensitivity improvement for SPR, allowing Tau 

determination in both spiked and native samples (see Fig. 5).
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Fig 5. SPR Analysis in plasma for three different chip monolayer compositions:  60% 11-

mercaptoundecanoic acid (MUA):40% 11-mercaptoundecanol (MUD), 40% MUA:60% MUD, 

60% MUA:40% PEG monolayers. (a), (d), (g) Real-time SPR evaluation of anti-Tau adsorption 

following exposure to different Tau concentrations spiked directly into plasma, P. (b), (e), (h) Δ 

R.U plots obtained by calculating difference in R.U. signals in buffer before and after plasma 

exposure. (c), (f), (i) is where the Δ R.U signal has been normalized with respect to the average 

Δ R.U. signal of all non-specific controls (NC). The filled data point marker in the Δ R.U and 

normalized Δ R.U. plots represents the plasma signal with no spiking. Representative NC3(anti- 

recombinant human complement) and NC4 (aptamer control sequence) plots are also shown 

in (a), (d) and (g).

Reprinted with permission from (Analytical Chemistry, 2016, 88, 7793-7799). Copyright (2016) 

American Chemical Society.
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Finally, an original approach involving SPR detection by employing multiwalled carbon 

nanotubes (MWCNTs) was reported by Lisi et al.67 The functionalization of the nanotubes with 

a secondary Tau antibody afforded tau determination using a sandwich detection format over a 

previously immobilized primary antibody layer. A signal amplification of 102-fold was obtained 

in comparison with the direct and conventional unconjugated format, reaching a detection limit 

of 125 pM. The major limitation of the study is referred to the lack of analysis in real biological 

fluid since all the measurements were performed in buffer or in artificial cerebrospinal fluid. 

Nevertheless, further improvement in avoiding matrix interference would permit its potential 

transfer as a disposable device for POC testing.

Additionally, prion protein detection has been explored by SPR as a promising method for 

screening of other neurodegenerative diseases such as the Creutzfeldt Jakob syndrome and its 

variant Bovine spongiform encephalopathy (BSE).68 Lou et al. described an aptamer-based assay 

that exploits the magnetic properties of microspheres to selectively capture prion proteins from 

complex environments, while preventing interference effects of other compounds present in the 

same sample. The assay comprised of the fabrication of magnetic nanoparticles and the 

subsequent immobilization of aptamers by glutaraldehyde cross-linking. At this stage, Prion 

proteins could be captured by the functionalized magnetic nanoparticles, although the amphiphilic 

copolymer was required to embed and isolate prion proteins from the environment. Finally, the 

generation of an alternating magnetic field was needed to release the labeled prion proteins and 

allow SPR detection. In spite of the number of multiple steps and the complicated assay sequence, 

prion proteins were evaluated in the 0.01-1000 ng mL−1 range and demonstrated good correlation 

with determination in serum samples. 

The identification of amyloid fibrils as final products of α-synuclein aggregation pathways may 

be associated with the diagnosis and treatment of several neurodegenerative diseases. A 

nanoplasmonic biosensor was employed to investigate the formation of amyloid fibrils as a result 

of the aggregation of α-Synuclein proteins by using the chiroptical properties of helical fibril 

proteins to induce chiral nanoparticle assembly of gold nanorods.69 Furthermore, the detection of 

infectious prion proteins is reported by monitoring the circular dichroism (CD) signal at the 

longitudinal plasmon wavelength after the arrangement of prion fibrils to gold nanorods as a 

consequence of the helical assembly of gold nanoparticles to the fibrilar surface. The formation 

of helical nanorods was associated with the identification of α-Synuclein protein fibrils in samples 

of human brain homogenates of patients with Parkinson’s disease in contrast with the absence of 

optical activity observed in human healthy brain samples. The plasmonic technique therefore 

opens a route not only to the early detection of the Parkinson disease and novel therapeutic 
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strategies but also to a methodology that provides better understanding of the characterization of 

aggregated species and template-driven plasmon chirality.  

4.2. Cancer biomarkers

The detection of cancer biomarkers as predictive, diagnostic and prognosis tools by plasmonic 

biosensors takes advantage of their multiplexing performance for the rapid and simultaneous 

screening of a variety of biomarkers. The selection of the most appropriate cancer biomarkers is 

crucial since a wide range of biomolecules could be included in this category according to the 

clinical findings. Thereby, a universal classification relying on the biological nature of the 

biomarker should be considered in order to include the main cancer biomarkers categories, 

namely: proteins, exosomes, nucleic acids and circulating tumor cells.

4.2.1. Proteins

The interest in the determination of protein cancer biomarkers relies on their relevance to 

demonstrate translational alterations in genetic related oncology disorders while permitting the 

quantification of deviations in body fluid concentrations between cancer patients and healthy 

subjects. Among proteins, the most significant and commonly reported biomarkers for cancer 

screening have been PSA, VEGF and CEA.

PSA

“The prostate-specific antigen (PSA) has been extensively used as the most accepted biomarker 

for the diagnosis of prostate cancer, in spite of its low accuracy and limited specificity.”. PSA is 

a glycoprotein produced by the prostate gland commonly measured in serum as the sum of free 

(fPSA) and complexed PSA. Although total PSA (tPSA) concentrations above 10.0 ng mL−1 may 

indicate high probability of prostate cancer and tPSA concentrations below 4.0 ng mL−1 are 

normally found in healthy subjects, patients with tPSA levels between 4.0 ng mL−1 and 10.0 ng 

mL−1 are included in a diagnosis grey zone. Therefore, the assessment of novel biomarkers in 

serum is essential for the diagnosis of prostate cancer malignancy. Since sensitive determinations 

of fPSA are difficult to obtain by conventional methods, as concentration in serum is below 1 ng 

mL−1, the fPSA/tPSA ratio has recently become a relevant diagnosis value for differentiating 

between benign and malignant states. In this sense, several SPR and combined nanoplasmonic 

approaches have reported PSA detection of either total or free/total serum fractions, involving 

from immunoassay to microcontact patterning and aptamer-based assay deposition techniques. 

Ertuk et al. described a bottom-up functionalization strategy based on the fabrication of SPR 

sensor chips with PSA imprints.70 The method makes use of methacrylate derivatives and UV 

polymerization to imprint the PSA protein via microcontact patterning.  The design of the SPR 
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biosensor chip allowed PSA determination at highly sensitive levels (91 pg mL-1), improving the 

limit of detection of conventional analytical methods by an order of magnitude. Clinical analysis 

was performed in spiked human serum samples (1/4 diluted) of prostate cancer patients. 

Additionally, relevant analytical parameters such as specificity against another proteins (HSA and 

lysozyme) and association kinetic analysis were also reported, while good results were observed 

for recovery, reusability and correlation with ELISA immunoassays.  This method shows an 

alternative patterning strategy to conventional molecular imprinting techniques enabling a high 

specificity and binding capacity of the template molecule, while maintaining long-term 

conformational stability of the recognition layer. These features are inherent advantages that 

enable its application as a POC detection platform.

Another approach involving a micropatterned plasmonic strategy is described by Breault.71 The 

method employs a dual detection system that combines the wavelength interrogation of a four-

channel SPR instrument and a fluorescence microscope mounted on the same SPR platform. SPR 

biosensor chips were fabricated by photolithography to generate microhole arrays thus permitting 

fluorescence detection from the solution side of the micropatterned gold film and SPR 

interrogation using the interface between the glass prism and the gold film. The fabrication of a 

micropatterned surface by incorporating microhole arrays allowed the improvement of SPR 

response in 2-3 orders of magnitude. Likewise, the use of a sandwich-immunoassay format 

comprising a capture anti-PSA antibody immobilized at the sensor chip and a labeled 

horseperoxidase detection antibody incubated with Ampliflu™ Red solution increases the 

sensitivity when using fluorescence detection in comparison with the SPR format. The singular 

combination of SPR and fluorescence assays in a single chip using the same microfluidics 

provided highly sensitive PSA determinations at clinical concentrations between 142 pg mL-1 and 

1.42 g mL-1. 

Discrimination between PSA free and total serum fractions from benign and malignant disease 

state has been reported by Jiang and co-workers using a dual-channel SPR immunosensor72. Total 

PSA fraction was measured directly with a linear range from 1.0 to 20.0 ng mL-1, whereas the 

free fraction was detected via an asynchronous competitive inhibition immunoassay enhanced by 

gold nanoparticles, reaching a linear range between 0.010 to 0.40 ng mL-1. By measuring 

simultaneously total and free PSA serum fractions in each channel the f/t-PSA ratio was 

calculated showing significant differences between benign prostatic hyperplasia and prostatic 

cancer patients. The application of this methodology provides meaningful clinical information 

about prostate cancer diagnosis in addition to the analytical results.

Single detection of PSA free fraction has also been reported using a LSPR-coupled fiber-optic 

biosensor.73  A direct immunoassay was employed, based on the anti-PSA antibody 

immobilization onto a SAM modified sensor chip. The major contribution is the fabrication of a 

gold nanodisc at the fiber end facet allowing the reusability of the dielectric-metallic hybrid 
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interface and a detection limit of 0.85 ng mL-1. The development of a a miniaturized multiplexed 

POC device is suggested although. clinical applications were not demonstrated since PSA 

evaluation was only done in buffer. 

Another LSPR system with functionalized gold nanodiscs array is presented by Khan et al.74, 

where PSA detection was performed by using DNA aptamers as specific receptors. The technique 

takes advantage of the symmetry of gold nanodiscs thus providing detectable responses in a short 

range near the vicinity of the sensor surface. Another strategy presented was the functionalization 

of gold nanostructures with PSA specific aptamers providing a limit of detection of 1.49 ng mL-1 

within a linear range of 1.7 to 20.4 ng mL-1 in buffer. The interference in human serum was also 

tested showing good recovery values. Likewise, the reusability of the gold sensor was also 

demonstrated by removing the applied aptamers with NaBH4 solution. 

VEGF

Vascular endothelial growth factor (VEGF) is a hypoxia-inducible protein that promotes 

vasculogenesis and angiogenesis. VEGF appears frequently upregulated in most human tumors 

and it is a valuable cancer-specific protein biomarker for assessing the disease status during cancer 

progression and metastasis. SPR biosensing of VEGF is primarily based on aptamer or antibody 

assay formats. 

One of the most singular approaches involve the application of rolling circle amplification (RCA) 

to enhance the SPR signal by targeting different VEGF domains with two DNA aptamers, 

employed as capture and detection probes, respectively. VEap121 is named as Aptamer 1 and 

provides high affinity to the receptor binding domain of VEGF165 while VEa5 or Aptamer 2, 

shows high binding affinity to the VEGF165 heparin binding domains. The aptasensor is based on 

the immobilization of Aptamer 1 for monitoring VEGF in real-time. The RCA process makes use 

of hybridization with the primers of the aptamer 2- polystyrene microspheres complex75 to 

increase the VEGF  sensitivity. A limit of detection of 100 pg mL-1 with a linear range from 1x10-

12 to 1x10-5 g mL-1 was achieved. The method shows the potential applicability of RCA to assist 

SPR signal enhancement although lacks results with real samples (see Fig. 6).
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Fig 6. (a) Concentration dependence of VEGF detection from 1x10-12 to 1x10-5 g mL-1, (b) the 

contrast of with (red points) or without (black points) the SPR signal amplification by RCA 

process. Reprinted with permission from (Biosensors and Bioelectronics 2014, 61, 83–87). 

Copyright (2014) Elsevier.

Another VEGF biosensor application based on DNA aptamer is presented by Cennamo et al.76 

The main characteristic of this system is the integration of a plastic optical fiber into the SPR 

platform avoiding the prism-based Kretschman configuration. Following the aptamer layer 

characterization, VEGF was detected directly at 81 ng mL-1 levels. Further experiments related to 

other analytical parameters such as selectivity, reusability or interference of complex matrix are 

not reported.

A different approach employs the immobilization of the fragment crystallizable (Fc) region of an 

anti-VEGF antibody, reached a linear detection range of 0.01-100 ng mL-1 for VEGF165 detection 

in human serum. The biosensor comprised of nanogold dot array that exploits the localized surface 

plasmon properties at narrow bandwidths. The specificity of the plasmonic biochip was tested by 

analyzing the interference of glucose and ascorbic acid and was also correlated with ELISA 

results.77.

CEA

Another specific protein biomarker for cancer diagnosis and prognosis is the Carcinoembryonic 

antigen (CEA) glycoprotein. CEA is a well-established tumor biomarker with increased reported 

levels in several types of cancer at several locations (tumor size, staging) from the gastrointestinal 

tract to body organs such as liver, lung, ovary, prostate or pancreas.

Clinical determination of CEA in serum and blood plasma has been reported using SPR 

biosensors employing different immobilization formats. An immobilization method based on 
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biofunctionalized gold nanoparticles (bio-AuNPs) with either streptavidin or bovine serum 

albumin was described to determine CEA in blood plasma at 0.1 ng mL-1 levels. The assay made 

use of both high affinity of bio-AuNPs and lack of nonspecific binding towards the surface of the 

SPR sensor to improve the LOD by a factor of more than 1,000 in comparison with previous CEA 

determinations in undiluted plasma.78 

CEA glycoprotein has also been detected via a two-channel SPR platform in spiked human serum 

by exploiting streptavidin affinity in different detection formats, including direct, sandwich and 

gold nanoparticles enhanced sandwich assays. The most sensitive detection format was obtained 

for the streptavidin-gold nanoparticles enhanced sandwich format allowing CEA determination 

at 1.0 ng mL-1 levels while achieving an improvement of 13.2-fold in sensitivity in comparison 

with the direct format. The specificity of the assay was proved against other protein cancer 

biomarkers, such as alpha fetal protein and prostatic specific antigen.79

Another recent approach80 described the fabrication of a liquid core coupling unit as an 

amplification method to increase the sensitivity of a SPR biosensor by changing the liquid core 

refractive index. The so-called liquid core SPR coupling unit consisted of a semi-cylindrical 

container with an inlet and an outlet and a micro flow cell with a volume of 250 μL assembled to 

the SPR chip via a poly(dimethylsiloxane) (PDMS) layer. The applicability of the method was 

tested for CEA determination in real serum samples from early stage cancer patients and healthy 

subjects, showing an 18-fold increase of concentration in cancer samples in comparison with 

controls. Similarly, another novel strategy exploited81 the surface plasmon field enhanced 

fluorescence (SPFS) from plasmonic nanogratings to create a protein array with a LOD of 0.36 

ng mL-1, showing a 10-fold signal enhancement due to the fluorescence amplification in 

comparison to the bare glass sensor surface.

ALCAM

Activated leukocyte cell adhesion molecule (ALCAM) is a cell surface glycoprotein of the 

immunoglobulin superfamily that mediates adhesion and interactions with the CD6 immune 

antigen. ALCAM is overexpressed in many types of cancers such as colorectal, gynecological, 

and pancreatic while it is associated with poor prognosis for esophageal, breast and ovarian 

cancers. 

The analysis of ALCAM has been explored by plasmonic biosensors using both SPR imaging and 

LSPR detection formats. Homola’s group82 described an SPR imaging sensor that was able to 

detect human chorionic gonadotropin (hCG) and ALCAM with a limit of detection of 45 ng mL-

1 in 10% diluted blood plasma. The SPRi platform comprised of a high-density protein array with 

120 sensing areas. DNA directed immobilization with antibody-DNA conjugates were 
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microspotted on the sensor surface in combination with covalently immobilized bovine serum 

albumin to reduce non-specific binding. 

Another approach to detect ALCAM antigen was reported by Pai et al.83 using an immunoassay-

based LSPR sensor. The main feature of this assay was the incorporation of polyethylene glycol 

adlayers in order to optimize the immobilization of gold nanorods bioconjugated to anti-ALCAM 

antibodies. The model was able to detect ALCAM at 1.253 ng mL-1 in buffer although no other 

analytical parameters were reported. The ALCAM gene expression has also been monitored by a 

LSPR design involving the use of nanoparticles as the target-specific probes capable to detect 

specific sequences of DNA or RNA. 

4.2.2. Nucleic acids

Telomerase activity

Telomerase is a ribonucleoprotein reverse transcriptase that adds tandem telomeric repeats units 

(TTAGGG)n to the 3' end of telomeres in order to prevent chromosomal DNA damage. The 

expression of telomerase differs between normal and cancer cells. In normal cells, telomerase 

activity is inhibited and the telomeres length diminishes after each replication cycle. In contrast, 

the reactivation of telomerase is observed in over 85% of human cancer types thus inducing the 

division of cancer cells indefinitely by counteracting telomere shortening. Monitoring of 

telomerase over-expression during tumor diagnostic and therapy emerges as a promising tool 

while conferring to telomerase activity a valuable role as tumor biomarker. 

Conventional detection methods take advantage of the formation of G-quadruplex structures by 

stranded repeats of TTAGGG for the development of telomere repeat amplification protocols 

based on PCR and electrophoresis procedures. Although extensively used, the sensitivity and 

reproducibility of the conventional method may be affected by the contamination of the sample 

and can produce false results. To overcome these limitations, several approaches have measured 

telomerase activity employing plasmonic biosensors. 

Commonly, dual-detection mode strategies based on either fluorescence or colorimetric 

functionalities in combination with plasmonic properties such as SERS, Rayleigh scattering and 

LSPR have been described.

For instance, Wang et al.84 described a LSPR biosensor combining plasmonic resonance Rayleigh 

scattering spectroscopy with dark-field microscopy (DFM) for in-situ detection and intracellular 

monitoring of telomerase activity in response to telomerase-based drug treatments. The 

biosensing method comprised core-satellites assembled nanostructures of Au50@Au13 

functionalized with single chain DNA and complemented with the nicked hairpin DNA of O1. 

The increase of telomerase activity induced the hybridization of the telomeric repeated sequence 
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extended at the 3’-end of O1 to its complementary sequences at 5’-ends. Due to the elongation of 

O1, a rigid hairpin structure was formed and the core-satellites nanostructure of Au50@Au13 

might disassemble with the release of O1. The increase of telomerase activity caused by the 

disassembly of Au50@Au13 was measured in HeLa cancer cell lines by the LSPR spectral shift 

accompanied with color changes from orange to green with a detection limit of 1.3×10-13 RIU. 

MicroRNA

MicroRNAs (miRNAs) are short (18–24 nucleotides) non-coding RNA molecules that regulate 

gene expression by inhibiting the translation of mRNA. Their use as biomarkers is prominent 

since deregulation of miRNA signaling pathways may affect biological functions from gene 

expression to cellular processes, while can be also associated with cardiovascular or neurological 

disorders and the development of a wide number of cancer types. Due to their valuable role as 

protein translation regulators and the difficulties for an accurate and sensitive detection, the 

number of miRNAs plasmonic applications has increased remarkably in the last five years. 

For instance, noninvasive monitoring of exosomes is particularly relevant in clinical analysis as 

they are extracellular microvesicles secreted by cells and neoplastic cell lines present in blood, 

urine, saliva and breast milk which contain cytosolic and plasma proteins, lipids, DNAs and 

RNAs. The major RNA component of exosomes is micro-RNA (miRNAs) which are of special 

interest for cancer monitoring as they can be associated with epigenetic changes in the recipient 

cells. Exosomes promote intercellular communication without direct cell-cell contact and are 

involved in various physiological and pathological processes such as cancer development, 

migration, metastasis, treatment resistance and the regulation of immune responses. 

The use of exosomes has appeared to be a promising tool for the study of cancer development and 

metastasis. Among exosomal proteins, CD63, CD9, CD24, CD44, EpCAM, HER2, EGFR, LRP1, 

and LG3BP have been reported as potential biomarkers and have been already evaluated by 

plasmonic biosensors. For instance, two studies report the determination of exosomal expression 

derived from mast cell lines85 and breast cancer cell lines86 respectively by using a SPR 

commercial biosensor. Rupert et al. quantified the CD63 expression of the total mass of exosomes 

in µg L-1 levels while the latter one was able to distinguish between the exosomal expressions of 

EpCAM in different types of cells in real plasma samples from healthy subjects.

Another approach involving a SPR biosensor was developed by Sina et al. in order to isolate bulk 

exosome populations and detect exosome subpopulations using the tumor-specific marker human 

epidermal growth factor receptor 2 (HER2). The assay was capable of identifying that 14-35% of 

the bulk population from a small cohort of breast cancer patients expressed HER2. Patients with 
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HER2+ exosomes exhibited 10-fold higher HER2 exosome concentration than HER2 and healthy 

patients.87

Alternative immobilization methods take advantage of nanoholes87 or colloidal gold enhancement 

strategies to exploit nanoplasmonics.88 For example, Park et al. designed a nanoplasmonic system 

that uses nanohole arrays as a base sensing element. Multiplexed detection of both transmembrane 

(EpCAM and CD63) and intravesicular (AKT1) proteins in exosome vesicles derived from 

ovarian cancer cells was carried out by a plasmonic sensor with 100 sensing sites, showing good 

correlation in the expression profiles between unperturbed cells and their exosome vesicles (see 

Figure 7). The detection format enabled the identification of drug-specific protein signature from 

drug-treated cancer cells, although the interference generated by the binding of AuNP aggregates 

and the use of a pair of antibodies for target capture and detection are some of its limitations.88 

Fig.7 New intravesicular nanoplasmonic system (iNPS) assay. (a) EVs are lysed to release 

molecular cargos. Each target is captured on the iNPS chip via affinity ligands, and further labeled 

with Au nanoparticles (AuNPs). Note that a single assay format is used both for transmembrane 

and intravesicular proteins. (b) Scanning electron micrograph showing AuNPs after iNPS assay 

steps. (c) FDTD electromagnetic simulation. AuNP on the iNPS surface concentrates electrical 

fields. Compared to a protein binding (left) or a whole Extracellular Vesicles (EV) binding 

(middle), the field intensity enhanced up to 70-fold with AuNP (right). (d) Measured signal 

enhancement. Compared to EV binding, the spectral shift was about 9-fold higher when the same 
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concentration of AuNPs (100 nm) bound to the iNPS chip. (e) Validation of iNPS assay. AuNPs 

enables both membrane protein (EpCAM, CD63) and intravesicular protein (AKT1) detection 

with enhanced spectral shifts. The error bars represent the standard deviation of signals. Reprinted 

with permission from (ACS Photonics, 2018, 5 (2), pp 487–494). Copyright (2018) American 

Chemical Society.

As a last example, Di Noto et al.89 exploited the colloidal properties of myeloma multiple (MM) 

derived exosomes by a colorimetric nanoplasmonic assay. The method allowed the determination 

at nanomolar concentration and cell protein binding. They demonstrate that exosomes are present 

in four-fold higher concentrations in myeloma multiple patients in comparison with healthy 

subjects, while only MM-derived exosomes have a significant binding affinity for heparin, 

indicating that exosomes show different binding affinities for cell-associated heparan sulfate 

proteoglycans.

Regarding to microRNA specific detection, LSPR and SPR biosensors have mainly exploited 

nanoparticle and amplification approaches. For example, Ding et al.90 described the detection of 

real miRNA from total RNA extracted from human breast adenocarcinoma MCF-7 cells at 9 pM 

levels by a SPR biosensor. The detection method is based on the formation of DNA super-

sandwich assemblies between target miRNA and surface bound DNA-probes after hybridization. 

Signal amplification was observed via streptavidin-biotin binding to the DNA sandwich structure. 

The specificity of the assay was tested against five different miRNA sequences, while the 

interference of complex components was evaluated by measuring spiked samples containing 

miRNA and total RNA, showing good recovery values (108.3%). Although the assay lacks 

evaluation in real biological samples, these results demonstrate its potential for discriminating a 

single base mismatched miRNA sequence in complex matrices. 

Another laboratory custom designed SPR platform has been described for the detection of 

miRNA-145, a miRNA sequence involved in tumor suppression of human colon and gastric 

cancer cell lines. The SPR based-assay takes advantage of modified parallel tail-clamps carrying 

8-amino-2′-deoxyguanosine derivatives, which are used as bioreceptors, to form stable triplex 

structures with their target miRNA-145. The results demonstrated that the formation of triplex 

structures stabilizes the hybridization and is more stable than the conventional duplex format, 

improving the detection limit 1.5 times (Fig. 8). This work contributes to strengthen the potential 

of label-free methods to profile miRNA expression by evaluating alternative approaches, such as 

the introduction of parallel tail-clamps bioreceptors with a short polypyrimidine track to form the 

most stable triplex structures.91
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Fig. 8 Scheme of the gold sensor chip functionalized with the 3AG PT clamp bioreceptor (a). 

Schemes of the different bioreceptors employed for the SPR biosensor study. LODs obtained for 

each bioreceptor are indicated (b). SPR calibration curves of the detection of miR-145 with

different bioreceptors. (c). Real-time sensorgrams of 30 nM miRNA-145 using the different 

bioreceptor variants. Dashed arrow indicates the equilibrium signal of the SPR sensorgrams 

(d)Reprinted with permission from (Anal Bioanal Chem 2016, 408, 885–893). Copyright (2016) 

Elsevier.

SPR analysis involving three-one dimensional spot arrays parallel designed for miRNA-93 

capture by locked nucleic acid (LNA) immobilized probes is presented by Shmieder et al.92 Two 

distinct amplification strategies were used to increase the assay sensitivity. First, an RNA-DNA-

hybrid antibody binding to the LNA-RNA double strand after successful hybridization of 

miRNA-93, enabled miRNA-93 detection in RNA lysates from HEK-293 cell cultures with a 

limit of detection of 10 pM. Alternatively, signal amplification by using the Poly(A) polymerase 

enzyme after binding to the LNA probe reached a limit of detection of around 1 fM.

Several approaches involving LSPR biosensor have been reported by exploiting gold 

nanoparticles. Hu et al.93 described trace oligonucleotide detection by measuring changes in the 
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dielectric constant on the surface of DNA modified gold nanoparticles after hybridization between 

probe single-strand DNA and miRNA at 3 nM level. The system made use of a single plasmon 

nanoparticle sensor based on Surface Plasmon Resonance Scattering (SPRS) to monitor a red shift 

during the process of hybridization due to the change of the refractive index of the surface of 

individual gold nanoparticles.

Similarly, a singular LSPR approach reports MicroRNA205 (miR-205) detection by monitoring 

the variation of the dielectric constant which causes a red shift in the LSPR scattering spectra 

during the hybridization of the target miRNA with a single DNA modified on the surface of a 

gold nanocube94. Measurements were carried out in serum samples with a limit of detection of 5 

pM showing an improvement of three orders of magnitude in comparison with the detection 

efficiency of gold nanospheres (Fig.9). This achievement agrees with the theoretical analysis 

about the effect of the nanocrystal configuration, since the presence of more vertexes and fewer 

faces of polyhedral nanoparticles induce more surface plasmons in a wider energy range.

Fig 9. (a) LSPR scattering spectra of one AuNC-ssDNA probe treated with 1 μM miRNA sample 

at different times. (b) LSPR spectra peak redshifts with the time on various AuNC-ssDNA probes 

with miR-205 in different concentrations (10 pM, 100 pM, 1 nM, 10 nM, 100 nM, 1 μM). (c) 

Calibration curve of the LSPR peak shift versus different concentrations of miR-205 (10 pM, 100 

pM, 1 nM, 10 nM, 100 nM, 1 μM). (d) LSPR Peak shift after treatment of 100 nM target miR-
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205 with different modification times of 1 μM probe ssDNA. Reprinted with permission from 

(ACS Sens. 2017, 2, 1435−1440). Copyright (2017) American Chemical Society. 

Sensitivities in the nanomolar range (LOD of 10 nM) were obtained for miRNa-155 detection by 

combining LSPR biosensing and colorimetric changes in the UV-visible spectrum95. The main 

singularity of the method consisted on the aggregation of the gold nanoparticles without ligating 

a linker to increase miRNA length in order to shorten the process to a single step. 

Significant higher sensitivity, at attomolar levels, was achieved by Na et al.96 by using a LSPR 

biosensor based on a 3D plasmonic nanostructure comprising gold strips on a 4-in.-scale substrate. 

Determination of miRNA in total RNA from extracts of cancer lines allowed for discrimination 

of single base mismatches (Fig. 10). Although the method has several limitations in comparison 

with qRT-PCR, such as labeling or gene amplification, other analytical performance parameters 

like response time or real-time analysis were reported to permit the integration of the 3D gold 

strips nanostrutrctures in point of care diagnostic devices. 

Fig. 10. Sequence specificity of the LSPR sensor for miRNA. (a) LSPR spectra of the pattern 

after incubation in the absence (green) or presence of miR-let-7c (blue), miR-let-7f (gray), or 

miR-let-7a (red, 25 nM each). (b) Probe sequence for miR-let-7a detection and sequences of miR-

let-7a, miR-let-7c, and miR-let-7f. Mismatch positions in miRNA sequences are in red. LNA 

positions are underlined and in bold. (c) miR-200a-3p detection in total RNA extracts from human 

stomach adenocarcinoma cells. (d) LSPR peak shift in total RNA from human primary gastric 

cancer cells expressing (MKN45) and not expressing (SNU1) miR-200a-3p and quantification of 

miR-200a-3p in each cell line by qRT-PCR. Reprinted with permission from (Biosensors and 

Bioelectronics, 2018, 113, 39–45). Copyright (2018) Elsevier.
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DNA methylation

Among the epigenetic alterations associated with the origin of cancer, DNA methylation is one 

of the most important mechanisms that regulate the genome imprinting while maintaining the 

stability to prevent mutations. DNA methylation comprises the addition of a methyl group at the 

fifth carbon of the cytosine ring (5-methylcytosine, 5mC) mediated by DNA methyltransferase 

enzymes. Since the methylation pattern is closely related to cell differentiation and normal gene 

expression, DNA methylation plays an important role as a promising biomarker for cancer 

prevention and prognosis.

In recent years, several plasmonic-based methodologies have been successfully applied to the 

sensitive and reliable quantification of DNA methylation. For instance, Huertas et al.97 describe 

a SPR-based assay consisting of the monitoring of straightforward interactions between poly-

purine reverse-Hoogsten hairpin probes (PPRH) and ds-DNA fragments by triple helix formation. 

The method proved to be effective for the specific methyl-cytosine quantification and the specific 

capture of ds-DNA fragments in comparison with the standard duplex-forming probes. The label-

free method skips previous DNA strand de-hybridization or PCR amplification. In particular, the 

analysis of DNA-methylation levels of the promoter region of PAX-5 gene showed a good 

correlation between the sequences with a low signal variation (≤8% CV) for 35 

hybridization/regeneration cycles. Additionally, no cross-reactivity results were reported by using 

non-specific antibody indicating its accuracy and precision for screening of other DNA 

modifications such as 5-hydroxymethylcytosines, 5-formylcytosine and 5-carboxylcytosine.

The analysis of methyltransferase activity plays an important role in cellular processes since it is 

involved not only in the status of DNA methylation but also in genome regulation and stability, 

thus making it a valuable biomarker with regard to cancer origin and progression. 

A singular approach involving both the quantitative analysis of DNA methylation and the 

detection of adenine methylation (Dam) methyltransferase (MTase) activity is presented by Li et 

al.98 A SPR biosensor makes use of gold nanorods end-to-end assemblies, which functioned as 

signal-enhancing scaffolds to amplify the SPR response. The assay comprises the monitoring of 

the methylation process by injecting the methylation reaction solution in the first place into the 

fluidic channels and subsequently the end-to-end AuNR assemblies. The shift in the SPR angle 

after the hybridization process is enhanced by the introduction of the end-to-end AuNR 

assemblies showing a good correlation between the SPR angle shift and the Dam MTase 

concentration, with a detection limit of 0.2 U/mL (U: units of activity typically used to describe 

enzyme catalytic activity). The main advantage of the method comprises the capacity to screen 

inhibitors for Dam MTase with broad antimicrobial action, thus becoming a promising target for 

antimicrobial drug development. 
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Another SPR-based assay for DNA methyltransferase activity and the screening of its inhibitors 

is described by Xia et al.99 The method was capable of monitoring the interaction between p53 

protein and the methylation of double-stranded (ds)-DNA consensus sites consisting of a specific 

sequence of 5′-CCGG-3′ in which the second C base can be methylated by methyltransferase. A 

limit of detection of 0.09 U/mL for the methyltransferase activity was obtained due to the strong 

binding between the methylated ds-DNA and p53 protein. The screening of the methyltransferase 

inhibition demonstrated that nucleoside inhibitors are more effective than non-nucleoside 

inhibitors. The potential of the method for exploring DNA methylation related diseases was 

proved in either normal or cancer cell lysates.

4.2.3 Cells 

Circulating tumor cells (CTCs) are cells within the blood stream that are released from the tumors 

into the blood. CTCs are scarcely present in blood since only one CTC per billion normal blood 

cells is circulating in patients with advanced cancer. Their presence in blood is associated with 

epithelial cancers and implies poor prognosis for breast, colorectal, prostate and lung cancers. 

Thus, characterization of CTCs by measuring either morphological properties or surface antigen 

expression is essential for monitoring the progression of both localized and metastatic cancer 

lesions. Until now, the use of plasmonic biosensors mainly rely on either the identification of 

cancer cell lines from the specific patterns generated by SPR signals100 or the monitoring of cell 

viability through morphological changes101. An interesting approach is described by Hong et al.  

for the recognition of the proteolytic activity of membrane type 1 matrix metalloproteinase (MT1-

MMP), a zinc proteinase extracted from invasive cancer cells. They make use of a LSPR biosensor 

with PEG-coated gold nanorods immobilized onto the gold sensor surface to detect the proteolytic 

activity of MT1-MMP. Additionally, the biosensor was capable of discriminating the proteolytic 

activity from whole cell lysate of two different live cancer cell lines (HT1080 and MCF7 cells). 

The assay sensitivity for the proteolytic activity in both MT1-MMP enzymes and cell lysates were 

measured by determining the maximum wavelength blue-shift changes of the LSPR spectra with 

regard to the response time and the MT1-MMP concentration. The kinetics proteolytic response 

for HT1080 cells showed higher proteolytic kinetic constant values (11.58 min-1) than for MCF7 

(6.10 min-1) thus indicating higher proteolytic activity and overexpression of MT1-MMP 

proteinases.

Other interesting approach reports the monitoring of intracellular signaling events as variations 

of the angle of resonance of a SPR biosensor after activation of the epidermal growth factor 

(EGFR) from Chinese hamster ovary (CHO) cells in response to EGF induction100. Results 

showed different patterns in SPR signals when comparing carcinoma cell lines to non-tumorigenic 

normal cell lines. A triphasic change of the angle of resonance was observed as induction of EGF 
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in cancer lines whereas the activation of other receptors (as IgE, adenosine A3) produced either a 

monophasic change or a minimal variation of the SPR signal. These findings provide a 

complementary method to conventional histological techniques for the diagnosis of cancer. 

Similarly, the phosphorylation of the cell surface signaling receptor VEGFR2 in intact 

hepatocellular carcinoma HepG2 or Huh7 cells after VEGF stimulation was reported by another 

SPR biosensor approach103. Two distinct immobilization strategies consisting of either living cells 

directly cultured on the sensor chip or VEGF molecules covalently attached on the sensor surface 

were examined. The latter strategy proved to be the most reliable method for monitoring VEGFR–

VEGF interactions in terms of stability and reproducibility while distinguishable SPR 

sensorgrams were obtained for each cell line depending on the time required for VEGFR2 

activation. The reusability of the sensor surface over more than 60 complete regeneration cycles 

demonstrated significant benefits over conventional analytical methods thus indicating the 

capacity of the sensor surface to recover the initial assay conditions without alteration of VEGF 

active binding sites.

Liu et al. reported the effect of a targeted drug (bevacizumab, anti-VEGF monoclonal antibody) 

on the binding between VEGFR and VEGF in live SKOV-3 carcinoma cells104. A customized 

polymer flow gasket was fabricated to attach living cells on the ceiling of the flow chamber, 

whereas VEGFR was immobilized on the SPR sensor chip. After stimulating the induction of 

VEGF from cells, bevacizumab was added to the flow chamber and the regulation effect against 

the VEGF-VEGFR angiogenic switch was monitored. Results showed good sensitivity and linear 

range for VEGF and bevacizumab interactions and the blockage of VEGF-VEGFR binding after 

bevacizumab addition.

4.3 Inflammation biomarkers

Inflammatory disorders comprehend a heterogeneous group of diseases that involve acute or 

chronic inflammation such as autoimmune diseases, allergies, hepatitis, rheumatoid arthritis, 

coeliac disease or transplant rejection. Monitoring of the inflammation process requires the 

analysis of biomarkers to allow early diagnosis and control of the illness progression while 

avoiding the relapse of the disease. Among inflammation biomarkers, including from cellular to 

molecular factors such as serum amyloid A and procalcitonin, plasmonic biosensors have mainly 

focused on cytokines and C reactive protein (CRP) detection.

4.3.1 Cytokines

Cytokines are soluble proteins of low molecular weight involved in cell communication as 

immunomodulatory agents of autocrine, paracrine and endocrine cell secretions. Additionally, 
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cytokines play a remarkable role in inflammatory reactions, host defense tissue damage repair, 

apoptosis and cancer progression. They are commonly classified as pro-inflammatory (IL-&, 

TNF-) responsible of the inflammatory response and anti-inflammatory cytokines (TGF-β, and 

IL-4) which act as mediators of the immunological equilibrium. Monitoring the cytokine levels 

may provide relevant information to improve our understanding of the immune response and 

disease progression. Cytokines quantification primarily rely on immunoassay detection.

Multiplex cytokine analysis based on either LSPR or SPR imaging platforms appear to be the 

most singular approaches for cytokine detection by plasmonic biosensors. Hendriks et al. 

described an SPRi immunoassay relying on a reaction cascade which involved an antibody 

sandwich assay with subsequent addition of neutravidin and gold biotinylated gold nanoparticle 

signal enhancement105-. Measurements were attained for four cytokines, IL-1β, IL-6, IFN-γ, and 

TNF-α, in spiked synovial fluid and compared with buffer. The assay reported significantly high 

sensitivity (fg mL-1) with an improvement of sensitivity over 40000 times and low variability 

when using the signal enhancement cascade. Differences in sensitivity and cross-reactivity values 

between cytokines were related to the affinity of the antibody pairs. The lack of validation in real 

human samples and signal fluctuations are limitations to be addressed in a potential POC platform. 

Chen et al106 presented another multiplexing approach based on a LSPR biosensor microarray 

including eight parallel microfluidic channels fabricated by one-step microfluidic patterning and 

480 nanoplasmonic sensing spots . The biosensor took advantage of antibody- conjugated gold 

nanorods (AuNRs) while scanning the scattering light intensity across the microarrays of AuNR 

conjugates with dark-field imaging optics. The assay achieved a sensitivity in the pg mL-1 range 

for six cytokines: interleukin-2 (IL-2), interleukin-4 (IL-4), interleukin- 6 (IL-6), interleukin-10 

(IL-10), interferon-gamma (IFN-γ), and tumor-necrosis-factor alpha (TNF-) in serum samples. 

An assay cycle was completed in 40 minutes by utilizing the entire 480 LSPR biosensor array for 

multianalyte detection along with ten repeated cycles including loading, incubation and washing 

of eight different samples. As a proof of concept, the LSPR biosensor was used to monitor the 

cytokine levels in serum during the immediate post-operative period of two neonates undergoing 

congenital heart surgery. They obtained similar results to previous studies, indicating that 

increased cytokine levels return to pre-operative concentrations within 48 hours of surgery. A 

particular strategy combining a LSPR biosensor integrated with microelectrodes pursued the 

enhancement of biosensing performance by applying an AC voltage to microelectrodes while 

scanning the scattering light intensity variation of the gold nanorods. The quantification of the IL-

1β cytokine involved the functionalization of the gold nanorods followed by the monitoring of 

the scattering intensity change every five seconds after applying an AC bias of 180 phase 

difference for around 15 min107. The limit of detection of the assay was 158.5 fg mL-1 (9.1 fM) 

for spiked samples in PBS and 1 pg mL-1 (58 fM) for diluted human serum (see Figure 11).
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Fig. 11 Schematic and principle of AC electroosmosis-enhanced localized surface plasmon 

resonance (ACE-LSPR) biofunctional nanoparticle imaging. Pt microelectrodes were first

patterned on a glass substrate by photolithography and metal lift-off. AuNRs were then deposited 

to form line-shaped sensor pattern between the microelectrodes using a microfluidic patterning 

technique. Reprinted with permission from (Nano Letters, 2017, 17, 2374-2380.). Copyright 

(2017) American Chemical Society.

4.3.2 CRP

C-reactive protein (CRP) is an annular blood plasma protein of liver origin with pentameric form 

due to five identical non-glycosylated polypeptide sub-units. CRP is associated with infectious, 

inflammatory conditions and other disorders. Its level increases substantially from pM to mM 

during an acute-phase response of inflammation. The need of continuous monitoring of CRP in 

clinical settings mostly rely on immunonephelometric, immunoturbidimetric and enzyme-linked 

immunosorbent assays (ELISA). Plasmonic biosensing of CRP has been demonstrated for over a 

decade. The most common approaches have focused on immunoassay applications based on 

either non-oriented or site-directed immobilization formats with limit of detection in the µg mL-1 

level. 

An SPR immunoassay comprised of protein A/G oriented immobilization of an anti-CRP 

antibody followed by direct CRP detection was described by Vashist et al108. The method 

achieved good sensitivity with a limit of detection of 1.2 ngmL-1 in whole blood and serum. 
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Determination of CRP was also performed in EDTA plasma samples of patients showing good 

correlation with the clinically-accredited Roche COBAS® 8000 modular analyzer-based 

immunoassay and conventional sandwich ELISA-based IA (human CRP Duoset ELISA kit).

Additionally, CRP detection through aptamer-based strategies has been developed in recent years.  

Vance et al. reported an SPR imaging-oriented immobilization assay relying on the use of biotin-

labeled aptamers109. The detection method took advantage of signal amplification by coating the 

aptamers with quantum dots emitting in near infrared. A limit of detection of 5 fg mL-1 was 

obtained in diluted (spiked) human serum. 

Another biotinylated-aptamer SPR-based approach was employed by Wu et al. for CRP detection 

by using anti-CRP gold nanoparticles conjugates enhancement. Determination of CRP was 

attained by the aptamer-antibody sandwich assay in the pM or nM range for 110 times diluted 

human serum, while the specificity of the assay was tested against human immunoglobulin G 

(IgG), human serum albumin (HSA), hemoglobin (Hb), transferrin (TRF) and myoglobin 

(Myo)110. 

Alternatively, an immobilization method based on plasma parylene N film was used for the 

functionalization of the sensor biochip of a SPR biosensor. The method consisted of anti-CRP 

immobilization onto the parylene film with a previous introduction of peroxide, hydroxyl and 

carboxylic acids. Results showed that sensitivity levels needed to be enhanced since a linear 

detection range between 1 ng/mL and 1 g mL-1 was obtained.111

Finally, a bioactive surface consisting of a calixarene-based antibody immobilization strategy 

(ProLinker™ B) was evaluated by Soler et al. to directly detect CRP from urine and undiluted 

human serum samples.112 Results were obtained for SPR and LSPR (based on nanodiscs 

structures) biosensors -schemes by using a laboratory nanoplasmonic biosensor device capable of 

working in both SPR and LSPR configurations. The comparison between both biosensing 

approaches showed a two-fold improvement in sensitivity for LSPR detection on gold nanodiscs 

(LOD(SPR) = 30.8 ng mL-1 and LOD(LSPR) = 16.2 ng mL-1). Additional advantages of this 

biofunctionalization methodology on nanoplasmonic surfaces were the reduction of nonspecific 

adsorptions and the achievement of higher sensitivity while assuring the reproducibility and 

stability of the bioactive surface.

4.4 Cardiac biomarkers

Troponin forms a complex of three regulatory proteins (C, I and T) associated with muscle 

contraction in skeletal and cardiac muscle. Among them, troponins I and T are considered the 

target biomarkers for the diagnosis of acute myocardial infarction (AMI) since they are rapidly 

released into the bloodstream after any event associated with myocardial damage. In addition, 
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troponins are more sensitive and specific that other cardiac biomarkers,as creatinine (CK-MB) 

and or myoglobin (Mb). While the prominence of the latter ones is not supported by the number 

of plasmonic-based applications the presence of the former one in recent literature is increasing 

every year. The monitoring of increased troponin levels in blood is essential for improving the 

prognosis of patients while reducing deaths from heart attacks. Therefore, the rapid and real-time 

detection conferred by plasmonic biosensors has triggered the number of troponin applications in 

recent years. Most of the strategies rely on immunoassays using either SPR or LSPR biosensor 

platforms.

SPR detection methods commonly involve gold nanoparticles secondary signal enhancement. 

Pawula et al. describe Troponin T(tnT) detection in serum samples by using a SPR biosensor.105 

The immobilization procedure included conventional carbodiimide coupling over a thiol 

monolayer followed by the antibody immobilization113. Determination of Troponin T was attained 

by using either a direct or a sandwich assay with gold nanoparticles anti-tnT antibody conjugates. 

The optimized assay obtained a limit of detection of 0.5 ng mL-1 for 50 % diluted serum samples 

(Fig. 12). The assay could be further improved by chemical modifications to achieve enhanced 

sensitivity in the pM levels as required for clinical monitoring. 
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Fig. 12. Sensorgram of binding assays using AuNP modified detector antibodies on active (a) and 

control antibody surfaces (b). Calibration plot for the measurement of TnT in human serum using 

detector antibody conjugated AuNPs for amplification of the final binding response(c) (0.5 ng 

mL-1 of antigen was injected on the active sensor surface). Reprinted with permission from 

(Talanta, 2016, 146, 823–830). Copyright (2016) Elsevier

Another SPR biosensor reported significant advancements by developing a novel troponin I 

detection strategy that involved both signal amplification by gold nanoparticles surface 

modification and the generation of a magnetic field via multi-walled carbon nanotubes114. The 

assay made use of a sandwich immunoassay format comprising the oriented immobilization of a 

capture antibody into a gold nanoparticle-polydopamine (PDA) modified sensor surface. The 

subsequent detection of the target analyte was carried out by conjugating the detection antibodies 

to nanocomposites of polydopamine and multiwalled nanotubes. The formation of the antibody 
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nanocomposites allowed the separation and enrichment of the target molecule while minimizing 

diffusion limited mass transfer and matrix interference effects. The nanocomposite assay achieved 

a 1000-fold improvement of the detection limit in comparison with barely PDA modified sensor 

surfaces. The assay was not employed for testing clinical samples.

A SPR commercial biosensor demonstrated Troponin T detection by taking advantage of PDA 

universal adhesive properties for immobilization of a biocompatible molecular imprinted polymer 

(MIP)-based receptor. The characterization of the MIP optimal properties is reported by 

evaluating different MIP receptors. After selecting the optimum MIP, determination of Troponin 

was performed in human serum at nanomolar levels115.The improvement of sensitivity was 

attributed to the bottom-up functionalization approach involving the assembly of molecular 

nanostructures.

LSPR biosensor advances in troponin detection have allowed the determination of Troponin at 

attomolar level in human biological samples (plasma, serum and urine). Liyanage et al. described 

an immunoassay comprising the immobilization of the anti-TnT antibody on gold nanoprisms and 

the subsequent determination of troponin by measuring the LSPR wavelength shift after 

binding116. Low limit of detection at approximately 15 atM level was explained by the larger 

sensing surface functionalized with gold nanoprism-antibody conjugates, the appropriate SAMs 

length, and the number of receptor molecules that contributed to reduce the steric interference 

between analytes. In spite of the excellent detection limits and reproducible results reported for 

human body fluids, the biosensor was not capable of detecting TnT in cell extracts.

Another LSPR biosensor for TnT detection has been reported by Ashaduzzaman et al. by using 

gold nanorods (GNR) and thermosensitive poly(N-isopropylacrylamide) (PNIPAAM) to form 

stables anti-TnT conjugates117. The method attained an on/off-switching textural ability that 

generated a highly sensitive reversible immune interaction between 25 and 37 °C. The reversible 

behavior of the immunoassay was assigned to the induction of temperature structural changes by 

PNIPAAM that generated differential LSPR responses in the gold nanorods while monitoring the 

interaction between the anti-TnT and Tn-T. Following this singular approach, a limit of detection 

of only 8.4 fg mL-1 with a fast response time of only 10 seconds at 25ºC was achieved.

4.5 Singular clinical applications

Insulin

Monitoring of insulin and glycosylated hemoglobin (HbA1c) by a SPRi biosensor microarray is 

proposed as an innovative method for the control of diabetes instead of the successful 

Page 36 of 47Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
1 

O
ct

ob
er

 2
01

9.
 D

ow
nl

oa
de

d 
by

 C
en

tr
o 

de
 I

nv
es

tig
ac

io
n 

y 
D

es
ar

ro
llo

 (
C

ID
) 

on
 1

0/
2/

20
19

 1
0:

58
:3

2 
A

M
. 

View Article Online
DOI: 10.1039/C9AN00701F

https://doi.org/10.1039/c9an00701f


Page 37 of 47

electrochemical glucose biosensor118. The dual biomarker detection format is based on the 

functionalization of the SPR microarray spots with insulin antibody or HbA1c-antibody (Fig. 13). 

To enhance the assay sensitivity, magnetic nanoparticles amine-functionalized with quantum dots 

and subsequently the carbodiimide-activated COOH groups were covalently attached to specific 

insulin and HbA1c aptamers. The conjugates formed were capable of capturing insulin and 

HbA1c in whole blood diluted 20-times in buffer before being magnetically separated and 

introduced to the SPR microarray spots immobilized with insulin antibody or HbA1c-antibody. 

The limit of detection using this combined SPRi fluorescence imaging assay was 4 pM for insulin 

and 1% for HbA1c, respectively, which are both within the clinical relevant range.

Fig. 13 (a) SPRi microarray immunosensor developed for insulin detection in human serum,

and (b) SPRi responses inferring the serum matrix effect and the performance of direct vs.

sandwiched 50% serum insulin immunoassay. Reprinted with permission from (Analyst, 2018, 

143, 1544-1555.). Copyright (2018) Royal Society of Chemistry 

HIV-related DNA

Human immune deficiency virus (HIV)-related DNA has been detected by SPR biosensors using 

entropy-driven strand displacement reactions (ESDRs) and double-layer DNA tetrahedrons 

(DDTs)119. By using the ESDRs, target DNA could be utilized by cyclic formation of a great 

number of double stranded DNA products, that after binding to the immobilized hairpin, could 

combine with DDTs nanostructures. The detection limit of HIV-related DNA was 48 fM. The 

major advancement over conventional methods relied on the reduction of the detection time to 6 

minutes while avoiding enzyme labeling and complex chemical modifications. 

Sintrom

A compact LSPR device based on gold nanodiscs has been used for the therapeutic drug 

monitoring of Acenocoumarol (Sintrom®), an oral anticoagulant prescribed for the treatment of 

a variety of thromboembolic disorders.  By using a specific and reproducible label-free indirect 

competitive assay, acenocumarol was monitored in 1:1 plasma diluted samples120. The interaction 
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of the antibody with the custom-biofunctionalized antigen-coated surface resulted in detection 

levels of 0.77 nM, which are within the required clinical values for acenocumarol testing. The 

main contribution of the method is its potential use as complementary tool in decentralized 

settings as primary healthcare units.

Key analytical features and biomarker classification of the assays have been summarized in Table 

1.

Table 1. Key analytical features and biomarker classification for detection in biological matrix, 

sensitivity and linear range 

Type of biomarker Detection format 
(instrument 
configuration, 
recognition element)

Matrix Detection 
range/LOD

Reference

NEURODEGENERATIVE 
DISEASES

LSPR (PEG- gold 
nanoparticles different 
sizes)

Mimicked blood 34.9 and 26 fM 
(A 40 y A)

 63

SPR ( waveguide-coupled 
bimetallic)

Assay buffer 22  to 440 pM 
(A 42)

64

SPR (fiber intrinsic 
coupling)

Real blood 
samples

0.3 pM (total and 
phosphorylated)

65

SPR (multichannel 
platform DNA aptamers)

Undiluted 
plasma samples

10 fM 66

Amyloid beta oligomers

SPR (Immmunoassay 
multiwalled carbon 
nanotubes)

Assay buffer and 
artificial 
cerebrospinal 
fluid

125 pM 67

Prion proteins SPR (magnetic 
nanoparticles, amphiphilic 
copolymer)

Serum samples 0.01-1000 ng mL-

1
68

Amyloid fibrils (α-Synuclein 
proteins)
Prion proteins

LSPR (gold nanorods) Human brain 
samples

Plasmonic 
chirality down 
nanomolar 
concentrations

69

CANCER BIOMARKERS
PROTEINS

SPR (PSA imprinted 
proteins)

Spiked human 
samples

91 pg mL-1 (18 x 
10-14M)

70

SPR (photolithography, 
microhole array 
fluorescence SPR 
interrogation)

Whole blood 
without 
treatment

142 pg mL-1-1.42 
g mL-1

71

SPR (gold nanoparticles) Serum 0.010 to 0.40 ng 
mL-1 (total PSA/ 
PSA free 
fractions)

72

LSPR (gold nanodiscs) Assay buffer 0.85 ng mL-1 73

PSA

LSPR (gold nanodiscs UV 
spectra detection)

Assay buffer 
Human serum

1,7 to 20.4 ng 
mL-1 LOD 1.49

74

SPR (rolling circle 
amplification DNA 
aptamers polystyrene 
microsphere)

Assay buffer 1x10-12 to 1x10-5 
g mL-1 
LOD 100 pg mL-1

75

SPR (plastic optical fiber, 
DNA aptamers)

Assay buffer 81 ng mL-1 76

VEGF

LSPR (nanogold dot array) Human serum 0.01-100 ng mL-1 77
SPR (gold nanoparticles) Blood plasma 0.1 ng mL-1 78
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SPR (gold nanoparticles) Spiked human 
serum

1.0 ng/mL-1 79

SPR (liquid core coupling) Serum 0.5 ng mL-1 80

CEA

SPR field enhanced 
fluorescence (nanograting 
microarray)

Assay buffer 
PBS

0.36 ng mL-1

1ng mL-1
81

SPR imaging (DNA-
directed array of 
antibodies)

Diluted blood 
plasma

45 ng mL-1 82ALCAM

LSPR (gold nanorods) Assay buffer 1.253 ng mL-1 83
Telomerase activity LSPR (Rayligh 

spectroscopy+dark field 
microscope) Gold 
nanostructures

Culture medium 1.3×10-13 IU 84

SPR Buffer CD 63 expression 
6.3 g mL-1

85

SPR Plasma Exosomal 
expression 
differentiation 
between cell lines

86

SPR custom built Identification of 
exosomal 
subpopulations  
2070 
exosomes/μL

87

SPR (nanohole multiplex 
detection)

Culture medium 
PBS

Transmembrane 
and intravesicular 
proteins 10E4 
exosome vesicles

88

EXOSOMES

SPR (Colloidal gold 
nanoplasmonics)

Serum Myeloma 
vesicles, 
production from 
patient and 
healthy subjects 
nanomolar- 
picomolar

89

SPR (coupled with DNA 
super-sandwich assemblies 
and biotin–streptavidin 
based amplification.)

miRNA in total 
RNA samples

9 pM  1x10-11M 
to 1x10-6 M

90

SPR laboratory custom 
designed

human miRNAs 2 to 30 nM 91

SPR commercial design miRNA-93 in 
total RNA lysate 
from HEK-293 
cells

10pM -1fM 92

LSPR (gold nanoparticles 
+ SPR scattering)

DNA probes 3 nM 93

LSPR (red shift gold 
nanocubes)

DNA probes 5 pM (miRNA 
205)

94

LSPR (colorimetric UV 
spectrum)

DNA probes 1 nM 
(miRNA155)

95

MicroRNA

LSPR (3D nanostructure) Total RNA 
Extract cell lines

13 fM: 2.6 
attomole in 200 
µL 
Single base 
mismatch

96

SPR laboratory custom 
design

DNA probes 115 pM 97

SPR (gold nanorods 
methyl transferase 
activity)

DNA probes 0.2 U mL-1 98

DNA methylation

SPR (methyl transferase 
activity)

Cell lysates 3.04 nM 99

LSPR (PEG-coated 
nanorods)

Whole Cell 
lysates

Metalloproteinase 
proteolytic 
activity of cancer 
cell lines 

102

SPR Culture medium 
assay buffer

Signalling event 
Change in the 
angle of 
resonance

100

Cells
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SPR Culture medium 
Assay buffer

Change in the 
angle of 
resonance 
depending on the 
time required for 
activation.

103

SPR 
(polydimethylsiloxane 
flow chamber gasket)

Culture medium 
assay buffer

VEGF binding 
and drug 
blocking-live cell 
lines interaction, 
variation of 
baseline

104

INFLAMMATION 
BIOMARKERS
Cytokines
IL-1β, IL-6, IFN-γ, and 
TNF-

SPRimaging 
(immunoassay)

Spiked synovial 
fluid

50 fg mL-1 105

interleukin-2 (IL-2), 
interleukin-4 (IL-4), 
interleukin- 6 (IL-6), 
interleukin-10 (IL-10), 
interferon-gamma (IFN-γ), 
and tumor-necrosis-factor 
alpha (TNF-R)

LSPR (multiplex 
immunoassay arrays 480 
nanoplasmonic spots 
antibody conjugated gold 
nanorods)

Serum samples 11.43 (TNF-R), 
6.46 (IFN-γ), 
20.56 (IL-2),
4.60 (IL-4), 11.29 
(IL-6), and 10.97 
(IL-10) pg mL-1 

106

IL-1β cytokine LSPR (AC voltage 
microelectrodes)

Assay buffer
Diluted human 
serum

158.5 fg mL-1 
PBS; 1pg/mL 
human serum

107

SPR (immunoassay 
protein A/G oriented)

Plasma samples 1.2 ng mL-1 108

SPR imaging (oriented 
immobilization: biotin 
labelled aptamer coated NI 
quantum dots)

Spiked human 
serum

5 fg mL-1 109

LSPR (biotin labelled 
antibodies, anti-CRP gold 
nanoparticles)

Diluted human 
serum

10 pM-100 nM 
range

110

SPR (plasma parylene 
film)

Assay buffer 1 ngmL-1 and 1 
gmL-1

111

CRP

SPR/LSPR (gold 
nanodiscs, calixarene 
immobilization)

Pure urine
Diluted plasma

LOD(SPR) = 
30.8 ng mL-1 
LOD(LSPR) = 
16.2 ng mL-1

112

CARDIAC 
BIOMARKERS

SPR (immunoassay) 50% Diluted 
serum

0,5 ng mL-1 113

SPR (gold nanoparticles 
magnetic field multiwalled 
carbon nanotubes 
nanocomposite)

Spiked human 
serum

1.25 ng mL-1 114

SPR (molecular imprinted 
polymers)

Human serum 15.4 nM 115

LSPR (gold nanoprisms 
antibody conjugates)

Plasma, serum 
and urine

15 attomolar 116

Troponin

LSPR (gold nanorods 
reversible 
immunoreaction)

Assay buffer 
(PbS,MES)

8.4 fg mL-1 117

OTHER CLINICAL 
APPLICATIONS
Insulin SPRimaging (microarray 

magnetic nanoparticles, 
quantum dots aptamers)

Diluted whole 
blood

4 pM 118

HIV-related DNA SPR (entropy-driven 
strand displacement 
reactionsand double-layer 
DNA tetrahedrons).

Assay buffer 48 fM 119

Sintrom LSPR (goldnanodiscs) 1:1 diluted 
plasma

0.77 nM 120
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Conclusions and future perspectives

Although plasmonic biosensors have exploited clinical applications for more than a decade, recent 

progress in nanotechnology has enabled their consolidation in a new and more advanced stage. 

The arrival of the new era of nanoplasmonics relies on several paramount aspects: (i) the 

utilization of complementary analytical performances using detection formats unable to be 

combined in the past (i.e. colorimetric, electrochemiluminescence, SERS or fluorescence 

imaging); (ii) the development of novel chemical functionalization strategies by employing top-

down (lithographic, patterning, etc.) and bottom-up (nanoparticles and their self-assemblies, etc.) 

approaches and (iii) the selection and appropriate integration of the bioreceptors improving sensor 

specificity while reducing cross-reactivity and thereby eliminating false outcome. Such 

advancements have permitted to overcome several hurdles including poor sensitivity, limited 

multiplexed analysis and interference from complex biological matrices for clinical applications.

This review covers mainly analytical improvements for the determination of several types of 

biomarkers concerning neurodegenerative, inflammation, cancer and cardiac-related disorders by 

describing different plasmonics biosensor methodologies. Firstly, approaches involving 

modifications of conventional Surface Plasmon based-arrangements such as well-known LSPR, 

SPR imaging and SPR fiber optic have also contributed to achieve ultrasensitive plasmonic 

applications. Additionally, the use of distinct biosensor approaches with novel configuration 

strategies involving the combination of plasmonics with electrochemical, fluorescence or 

colorimetric detection has enabled the enhancement of the biosensor response while improving 

the assay sensitivity. The number of combined applications is represented in almost every type of 

biomarkers comprising from PSA and CEA cancer proteins detection to microRNA analysis. 

Secondly, the design of the plasmonic sensor chip using top–down (metal nanoparticles) and 

bottom up (lithographic) procedures determines the stability of the biosensor device for long-term 

use. The fabrication of nanopatterned structures by microcontact printing, nanoimprinting and 

polymer or electron beam lithography provides consistent nanoarchitectures that improve the 

capacity of the immobilized component for interacting with the target analyte. Imprinting 

technology has been successfully applied to the detection of PSA, troponin or cytokine 

biomarkers. Similarly, the functionalization of nanomaterials by assembling nanocomposites and 

tagging nanoparticles for enhancing the signal response has been extensively considered in 

plasmonic sensing for clinical diagnosis. In particular, LSPR arrangement makes intended use of 

Page 41 of 47 Analyst

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
na

ly
st

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 0
1 

O
ct

ob
er

 2
01

9.
 D

ow
nl

oa
de

d 
by

 C
en

tr
o 

de
 I

nv
es

tig
ac

io
n 

y 
D

es
ar

ro
llo

 (
C

ID
) 

on
 1

0/
2/

20
19

 1
0:

58
:3

2 
A

M
. 

View Article Online
DOI: 10.1039/C9AN00701F

https://doi.org/10.1039/c9an00701f


Page 42 of 47

the chemical activation of different types of nanoparticles from nanorods to nanoprisms for the 

detection of a broad range of biomarkers from CRP protein to living circulating tumor cells or 

telomerase activity. 

Finally, the feasibility of any biosensor depends on the appropriate immobilization of the 

biorecognition element. The bioreceptors that recognize biomarkers include antibodies and 

aptamers to more specialized biomolecules such as cell membrane receptors, DNA probes or 

molecular imprinted polymers. The biocompatibility is a key aspect to consider during 

immobilization of the biorecognition element since the functionalization may affect its activity. 

The biological nature should also be preserved along measurements by generating the appropriate 

environment to facilitate the accessibility while maintaining the binding activity.  For this reason, 

recent biomarker detection strategies take advantage of bottom-up surface modifications to 

effectively functionalize the sensor chips. The use of anti-fouling materials as PEG/OEG on 

nanosurfaces intends both to conserve the bioactive area from non-specific binding and to avoid 

the interference of complex biological media. By achieving these outcomes, the majority of 

plasmonic biosensors could be employed for analyzing body fluids (blood, urine or cerebrospinal 

fluid) with better detection limits than conventional techniques. Likewise, improved selectivity 

has also been demonstrated by attaining, for example, the mismatch differentiation of a single 

nucleic acid base pair. 

In spite of the apparent progress, several aspects still need to be considered in order to reach 

reliable clinical applications in the future. Miniaturization, automation and integration of 

microfluidics are essential blocks to construct POC biosensors. Primarily, miniaturization seems 

an achievable goal to build efficient POC platforms owing to both the availability of lithographic 

techniques and the development of novel flexible materials, whilst software can be easily 

incorporated for the design of automatable POC devices.

Therefore, the main focus for the fabrication of POC platforms is to set the integration of 

microfluidics without the minimum support of additional equipment. Although several 

approaches are under development, particularly involving microchannels with micropneumatic or 

electrical pumping, more efforts are needed to develop digital microfluidic devices that enable 

the delivery, transport and separation of a tiny droplet of sample in a single step.

Likewise, it is worth pointing that the majority of works have concentrated on improving the 

analytical performance of novel and existing detection designs, whereas less attention has been 

paid to the integration of truly POC devices. Thus, the development of plasmonic devices has 

mainly focused in the improvement of sensing schemes for attaining ultrasensitive detection 

limits, while the incorporation of advanced software and microfluidic designs have been barely 
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considered. In this sense, many plasmonics works address novel functionalization strategies either 

to enhance the active sensing area or to prevent non-specific adhesion of proteins. This matter has 

been of paramount importance in order to provide antinonfouling layers that succeed in the sensor 

detection of biomarkers in undiluted body fluids. However, the transfer of fully-integrated devices 

to the clinical settings has not yet been entirely overcome and the gap between the laboratory and 

the market still remains.

On the other hand, validation of multiplexed detection formats, specifically for cancer, 

inflammation, cardiac and neurodegenerative biomarkers, is seriously needed as the first step for 

the clinical use of plasmonic biosensors. The second step involves both commercialization and 

integration of plasmonic biosensors in clinical settings for routine analysis. Since manufacturing 

and scale-up for mass production are the major bottleneck of clinical biosensors, extensive 

research on the assembly and component integration process will aid to overcome these 

challenges in relatively near future. Improvements in micro- and nanofabrication technologies 

will help to introduce plasmonic biosensors as biodiagnostic tools for the massive screening of 

the most prominent disorders. Furthermore, the incorporation of soft materials and wireless 

telemetry systems might enable wearable or implantable biosensors in the human body for non-

invasive health monitoring.
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