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Non-intrusive load monitoring (NILM) techniques have recently attracted much interest, since they allow
to obtain latent patterns from power demand data in buildings, revealing useful information to the expert
user. Unsupervised methods are specially attractive, since they do not require labeled datasets. Particu-
larly, non-negative matrix factorization (NMF) methods decompose a single power demand measurement
over a certain time period into a set of components or “parts” that are sparse, non-negative and sum up
the original measured quantity. Such components reveal hidden temporal patterns which may be diffi-
cult to interpret in complex systems such as large buildings. We suggest to integrate the knowledge of
the user into the analysis in order to recognize the real events inside the electric network behind the
learnt patterns. In this paper, we integrate the available domain knowledge of the user by means of a vi-
sual analytics web application in which an expert user can interact in a fluid way with the NMF outcome
through visual approaches such as barcharts, heatmaps or calendars. Our approach is tested with real elec-
tric power demand data from a hospital complex, showing how the interpretation of the decomposition
is improved by means of interactive data cube visualizations, in which the user can insightfully relate the
NMF components to characteristic demand patterns of the hospital such as those derived from human

activity, as well as to inefficient behaviors of the largest systems in the hospital.

© 2018 The Authors. Published by Elsevier B.V.
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1. Introduction

One interesting approach in energy efficiency is the improve-
ment of electric consumption strategies by means of power de-
mand monitoring tools. Thanks to the growing amount of smart
meters installed recently, a lot of measurements of power demand
are being gathered today in buildings, household and industrial
systems, containing useful hidden information that can help in
making efficient decisions if it is extracted and presented intu-
itively. Thus, developing techniques that are able to extract charac-
teristic patterns of how energy is being consumed from large vol-
umes of demand data, as well as methods to visualize these pat-
terns in an efficient and intuitive way have become promising re-
search topics. A suitable approach with these features is visual ana-
Iytics (VA) [1,2]. VA exploits the insightful synergies between intel-
ligent data analysis (IDA), data visualization and interaction mecha-
nisms, allowing the user to get knowledge from efficient visualiza-
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tions of raw data and the IDA outcome. By means of interaction
mechanisms, the user is brought into the analysis, being able to
modify according to his expert knowledge of the system both the
visualization and the IDA analysis.

Applying techniques based on IDA algorithms, it is possible to
address issues that require a certain learning from the data such
as forecasting energy consumption [3-5], getting temporal patterns
in electric power demand [6] or the factorization of a total elec-
tric power demand into consumptions downstream that have not
been measured individually. Decomposing a total consumption, in
a sensorless way, is called in the literature non-intrusive load moni-
toring (NILM) [7-9]. This kind of techniques, that can be considered
a parts-based representation of total energy, increases the energy
awareness of the user, since the obtained components can provide
insightful information of how the electric consumptions are dis-
tributed temporally and spatially in the network.

Despite recent efforts to develop novel NILM systems, few
approaches have explored the NILM outcome within the VA
paradigm. NILM techniques are suitable analysis tools for VA, since
the obtained disaggregated consumptions reveal temporal patterns
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bearing insight when they are represented using suitable data vi-
sualizations such as week [10] or calendar [11] heatmaps.

NILM techniques can be classified into supervised and unsu-
pervised methods. In supervised methods, optimization algorithms
[12] are applied, and their principal disadvantage is that a labeled
dataset is required. In many cases, obtaining labeled data can in-
crease set-up costs of NILM systems, making unsupervised meth-
ods more suitable. Within unsupervised NILM techniques, blind
source separation (BSS) and factorial hidden Markov models (FHMM)
are the most typical approaches as it is explained in [13]. We
choose to apply non-negative matrix factorization (NMF) [14] as BSS
technique, due to the positive nature of electric power demand and
because the imposed constraints on the resulting components may
improve their interpretability. NMF techniques aim to separate to-
tal power demand into sources of consumption which can be asso-
ciated with characteristic events or recognizable consumption pat-
terns downstream. In large buildings, where there are many com-
plex systems, the interpretation of the resulting decomposition is
often difficult and may require an expert knowledge of the system.

In our work, we propose to apply state-of-the-art NMF tech-
niques to energy-based data of a hospital complex within an in-
teractive framework which allows to integrate the user knowledge
in the analysis, showing that NILM methods combined with effi-
cient visualization and interaction mechanisms result in an insight-
ful power demand monitoring tool for large buildings. In Section 2,
we formulate our approach and we describe the real electric con-
sumption dataset from a hospital complex on which our approach
is tested. Then, in Section 3, we define how to apply NMF to elec-
tric measurements and how to integrate NMF in an interactive vi-
sualization. Finally, in Section 4, the proposed power demand mon-
itoring application is presented, showing different cases of study.

2. Problem formulation

In this section, we will introduce the two pillars of our work:
NILM analysis and the specifications of the interactive data visual-
ization. Then, we will explain the particular problem that will be
addressed in Section 4.

2.1. NILM analysis

Several studies [7,15,16] suggest that an improvement in energy
efficiency can be achieved through the increase of energetic aware-
ness by means of feedback mechanisms. The extended deployment
of smart meters is an example that getting feedback about demand
has become a key factor in energy efficiency strategies. Based on
this, we propose not only a simple visual supervision of the mea-
sured energy data, but also consider the integration of NILM tech-
niques in a visual interface to reveal hidden patterns of how the
energy is spent, providing a more detailed feedback information.

The idea of NILM was introduced three decades ago by Hart in
[12]. Its application to time series of electrical demand results in
the decomposition of the following parts

p) =p1(t) +p2(t) +... +Pn(t) (1)

where the electric power demand at time ¢ is the sum of the n
consumptions p; corresponding to the appliances connected down-
stream. Note that if the network lacks generative systems, the com-
ponents p; are always positive. This non-negative nature of the
components suggests that each p; is a part of a whole. Getting in-
sight into an object through learning its parts individually is an op-
eration that occurs in the human perception process as it is shown
in [17,18]. Thus, the parts-based representation expressed in Eq.
(1) is potentially a highly interpretable feedback for the user.

A well-known decomposition method which attempts to learn
the parts of a whole from the input data is non-negative matrix fac-

torization introduced in [14]. NMF was conceived to address funda-
mentally image processing, being able to learn different parts from
example images of an object. In recent years, more successful ap-
plications of NMF have been addressed in different fields, such as
text analysis [19] or environmental data analysis [20], but few ap-
proaches have explored the possibilities of applying NMF to elec-
tric power demand data. In this paper, we suggest how to apply
NMF techniques to energy consumption analysis in a large build-
ing, discussing their advantages and limitations as unsupervised
NILM methods.

2.2. The need for interactive visualization

Energy demand monitoring tools in large buildings are based
on the energy-based data gathered from smart meters. These mea-
surements involve different kinds of attributes apart from the elec-
tric variables, such as time factors (hour, day, week, year), spa-
tial factors (buildings, floor), environmental factors (temperature,
humidity, occupancy) or even variables of characteristic processes
or systems where a large demand is involved. Thus, energy de-
mand analysis is a multiway problem. If all these factors are effi-
ciently presented in an intuitive representation, an expert user can
discover hidden insightful correlations between all these factors,
thereby improving his knowledge about how the energy is spent.
In this scenario, many applications suggest that the user can find
these correlations visually by means of well designed visual en-
codings to transform information into appropriate visual represen-
tations. Most of the visual energy demand approaches are based
on static 2D representations which can only plot a few factors.
Through interaction, the user can explore a multiway dataset, set-
ting a scenario by means of a number of conditions and using the
visual feedback to confirm or reformulate hypotheses, by retuning
the conditions, focusing on specific factors or modifying the visual
encodings. This process has been modeled in [2] as an iterative
process that improves the knowledge of the user through several
cycles of interaction and visualization. It is known that the more
fluid [21] the process of interaction is, the better immersion in the
problem, increasing the chances to obtain useful knowledge as well
as confidence in the results.

One example of interactive data exploration tool based on elec-
tric power demand is [22], where the multiway problem of energy
demand analysis in several public buildings is addressed through
a fluid interaction between coordinated views of the factors. In or-
der to achieve the required fluidity in the interaction, the informa-
tion from the buildings is structured according to the data cube ap-
proach [23,24]. The data cube provides mechanisms to create new
hypotheses through filters on different attributes of the data which
can be established quickly by means of Javascript implementations
[25], receiving an immediate visual feedback (latencies < 16 ms).

The visual analytics paradigm suggests that the gained knowl-
edge about the problem not only comes from the fluid interac-
tion between data and the user, but also from the outcome of IDA
algorithms. The integration of IDA outcomes in the interactive vi-
sualization reinforces them, since they can be visually confronted
with the rest of the attributes by the user in an intuitive way. The
newly discovered knowledge inspires the user to change the spec-
ifications both in data visualization and in IDA, closing the cycle.

In our approach, we propose to integrate the outcome of NILM
techniques in an interactive visualization based on the data cube
framework, considering design principles which improve both the
fluid interaction and the efficient perception of the attributes.

2.3. Monitoring power demand in a hospital complex

The concepts explained above will be tested with real electric
power demand data obtained from a hospital complex, which in-
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Table 1
Variables used in our energy disaggregation approach.

Id Label Variable description

1 PotenciaPF Total power demand (kW)
2 P1 Cooling machine 1 (kW)
3 P2 Cooling machine 2 (kW)
4 P3 Cooling machine 3 (kW)
5 P4 Cooling machine 4 (kW)
6 P5 Cooling machine 5 (kW)
7 T1 Cooling machine 6 (kW)
8 T2 Cooling machine 7 (kW)
9 Temperature Temperature (°C)

10 DayOfYear Day of year

1 Hour Hour

12 Month Month

13 WeekOfYear Week of year

14 DayOfWeek Day of week

15 Fecha Timestamp

clude different measurements of current, voltage, power and qual-
ity parameters in several measuring points over the network. In
our work, we will analyze the total power demand (which gath-
ers the consumptions of all systems in the hospital), focusing our
analysis on the heating, ventilation and air conditioning systems
(HVAC) as well as on seven cooling machines, which feed with cold
water the ring that keeps the diagnostic devices chilled. The ther-
mal comfort system represents about 30% of overall consumption
in large buildings [26]. Therefore the disaggregation of these con-
sumptions is a relevant feedback in order to improve the efficiency
through changes in the hospital such as configuration of HVAC or
schedules. Moreover, the cooling machines have a large peak of
consumption in the starting, fact that may produce problems in
the electrical network of the hospital, such as exceeding the total
contracted power. In the dataset used in this paper, the individual
consumptions of each cooling machine are recorded. Therefore, it
is not only possible to supervise the starting peaks, but it is also
possible to prove the capacity of NMF methods to detect the con-
sumptions of the HVAC system.

The energy-based dataset used to apply our approach is com-
posed of the variables shown in Table 1. These variables were col-
lected with a sampling period of one minute throughout the year
2016. Some samples were lost due to problems in the meter caused
by a temporary network malfunction, so our dataset has a total of
526,981 samples. Such amount of samples difficults the agility of
interaction if the data are not properly summed up using aggrega-
tion techniques. In the next section, we shall explain how the in-
formation is efficiently aggregated in the data cube paradigm, im-
proving the fluidity in the interaction with the data.

3. Methods and techniques

In this section, methods and terminology about NMF will be ex-
plained in the context of its application to data from total electric
demand of large buildings. Then, in order to reach a fluid interac-
tive visualization, the data cube paradigm is introduced, summariz-
ing briefly its elements and operations. Finally, in this section, we
shall explain a set of suitable visualizations and interaction meth-
ods to visualize the data cube and the NMF outcomes.

3.1. Non-negative matrix factorization (NMF)

NMF is formulated [14,27] as an approximate matrix factor-
ization of non-negative input expressed as VA~WH. Let us de-
fine a M-dimensional vector v; whose elements are non-negative
and the matrix V=[vq,vy,...,vy] e RM*N as N observations of
v;, j=1...N. Considering W = [wy,w,,...,w;] e R"f*" and H=

[hy, hy, ... 0" e RPN, where h, is the ath row of matrix H.
NMF can be reformulated as:

L
Vj = Zwah(,,{j (2)
a=1

where v; is the jth column of V and h, ; is the ath element in jth
column of H. Therefore v; is a linear combination of the columns
in W. The coefficients of this linear combination are the elements
of the columns in H. Thus, all the input observations are weighted
sums of non-negative basis vectors. This non-negativity suggests
that the columns w; are “the parts of a whole” as it is shown in
[28], and they will be referred to as basis consumptions. On the
other hand, the elements of the rows in H contain information
about the influence of the basis consumptions along the N observa-
tions. Note that NMF decomposition has infinite possible solutions
since it is possible to transform the decomposition into a new one
by means of any transformation matrix K such that V= WKK-'H.

Although there are infinite possible transformations, the prod-
uct wyhy, j between one basis consumption « and its coefficient
corresponding to a specific observation j is unique and it has units
of measurement (kW in the case of total electric power demand).
This product will be called a component throughout the rest of the
article and it will be the object of analysis in later cases of study.
Similarly, the pair (w;, h;) will be referred to as the ith factor. In
summary, the application of NMF to electrical consumptions aims
to extract a certain number of basis consumptions that are a parts-
based representation of the whole measurement, thus showing la-
tent patterns, which may contain useful information in order to
improve the knowledge about the system.

3.2. Complexity of NMF

Achieving an exact NMF decomposition V= WH is considered
a NP-hard issue [29]. Due to this complexity, we dismiss the ex-
act NMF model and we use the basic NMF V~WH. One difficult
issue in this basic approach is to determine the number of basis
consumptions, since the accuracy of the reconstruction WH is di-
rectly related to the number L. The number of components can be
chosen according to the reconstruction error, choosing the inflec-
tion point in the curve of the reconstruction error vs. the number
of components. In certain complex problems, such as energy de-
mand in large buildings, the number of components obtained with
this automatic method is often high, making the efficient repre-
sentation of the results more complicated. Therefore, in our ap-
proach we propose to integrate the choice of L within the interac-
tive paradigm, being the user who sets the number of components
according to the expert knowledge of the problem and the feed-
back received in the visual representation.

3.3. SVD-based initialization

Typically, W and H are estimated using a constrained optimiza-
tion problem whose objective function is a similarity measurement
between V and WH [28] and it is solved by means of gradient de-
scent methods [30]. This optimization problem is not convex with
respect to W and H at the same time; however, it is separately
convex in either W or H [31]. As a nonconvex gradient-based prob-
lem, results of basic NMF rely on the initialization of W and H ma-
trices.

In most of the NMF approaches, the matrices W and H are ini-
tialized applying nonnegative random techniques. Optimizing NMF
with gradient descent methods, the random initializations con-
verge to a local minima. Thus, each trained model will be differ-
ent. Other methods suggest to apply an initial low rank decompo-
sition of the input matrix V such as clustering or svd-based meth-
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Fig. 1. Intuition about the possible NMF solution.

ods. In clustering methods typically the k-means algorithm is ap-
plied, which contains random elements, so basic clustering meth-
ods are not capable of ensuring the repeatability of the results. In
[32], the authors propose nonnegative double singular value decom-
position (nndsvd) as a good initialization of the matrix W and H.
This svd-based initialization is the best positive low rank matrix
decomposition based on the first L most relevant singular values
of input matrix V. Without a random process in nndsvd, the ob-
tained basis consumptions will be always the same. Moreover, in
[32] it was shown that less iterations are needed in order to ob-
tain the local minimum. In this paper, (W, H) will be initialized
with nndsvd algorithm.

3.4. Objective function: sparseness

NMF, such as it has been formulated above, is a low rank de-
composition that is purely additive since the reconstruction of the
input matrix lacks cancellations by negative components. The in-
terpretation of the components is more intuitive if these compo-
nents are sparse. Thus, NMF decomposes the input matrix into
positive blocks that have relevance only in a few elements. This
idea has a tight connection with the human mechanism of learn-
ing an object by its parts. In the beginnings of NMF [27,28], it
is shown that the basic NMF model applied to some real dataset
reaches sparse basis consumptions and coefficients, being, there-
fore, a sparse parts-based representation. In [33] it is suggested
that by analyzing NMF as an optimization problem, we can obtain
some intuition about why the outcome is sparse. Let us define the
following optimization problem:

1
JW.H) = 5|V — WHI|}
(W*,H") = arg%}gJ(W, H)

where the cost function J(W, H) is based on the Frobenius norm
of the residual matrix V— WH. J(W, H) represents a measurement
of similarity between the input matrix V and the estimated matrix
WH. This problem is similar to the minimization:

X* = arg mxin f(x)

where the vector x gathers all the elements of W and H. If we use
gradient-based methods to minimize the function f(x), the set of
stationary points has to satisfy the following requirements:

S={xeR}|Vf(x)=0andx[Vf(x)]j=0,i=1...n}

The condition X[V f(x)]; =0, i=1...n expresses that, for ev-
ery direction i, the solution must be either clipped to the positivity
borders (x; = 0) or lay on x; > 0 being a fixed point ([V f(x)]; = 0).
One representation of this condition is shown in Fig. 1 which un-
derlines that the possible stationary points might be located on the

boundary of the constrained space of possible values of X, explain-
ing why many elements of W and H are zero, making the NMF
a sparse positive decomposition. Despite this tendency to yield
sparse results, some approaches [31] integrate new terms in the
cost function in order to ensure the sparsity of the results. In this
paper, we consider that the results obtained by the basic NMF are
sparse enough, so that we do not integrate measurements of spar-
sity in the cost function.

3.5. Structure of matrix V

If we consider electrical consumption data as a time series
{x(t)}, a restructuring is needed in order to construct V as an input
matrix to NMF. Thus we can restructure the sequence by breaking
it up into N contiguous windows of length M:

{x(0),x(1),....,.x(M—1),...,
Vi

X((N=1DM),x((N=1)M+1),...,x(NM - 1)}

VN

The new windows conform the matrix V of observations as fol-
lows:
x(0) x(M)
x(1) x(M+1)

x((N-1)M)
X(N=1DM+1)
. (3)

X(M-1) x2@M—1) X(NM — 1)

Power demand time series in large buildings typically present
a strong cyclic structure for periods of days, weeks, seasons or
years. If the size of the window is chosen according to these peri-
ods of time, more interpretable results will be obtained, since the
structure of the results allows a better association between ba-
sis consumptions and events in the network. The results of NMF
are strongly dependent on the length of the windows. Thus, if we
choose a weekly or annually instance of the load profile, NMF will
decrease resolution in the obtained patterns, revealing weekly or
annual patterns, losing resolution in daily events. Therefore, the
size of the window should be chosen according to the desired
analysis. In our work, we will focus on interpretable events in daily
scale because they can be associated with daily behaviors that can
be easily corrected, so each window will be a daily instance of the
load profile.

3.6. Data cube paradigm and NMF

In some cases, the number of resulting components is very
high, making it difficult to understand the representation based
on parts. In order to achieve a better intuition of the results, in
Section 1, we exposed the need of a visual interactive representa-
tion of the energy disaggregation, which permits to associate the
components with characteristic behaviors of the system. One in-
tuitive way to make these associations is to formulate hypothe-
ses in form of questions such as: when does this component take
the highest value?; where is this component more relevant?; is
there any correlation between this component and any of the at-
tributes?; which components show strong temporal patterns?

In this paper, we suggest that an interactive approach of a data
cube allows us to formulate these questions in a visual and in-
teractive way, through interaction mechanisms. Data cubes (OLAP,
on-line analytical processing) [23,24] can be seen as data structures
storing multidimensional records. Each record is composed of val-
ues of both measures and attributes. We call measures those fields!

1 Some works [22-24] use the term dimension. We preferred the term field to
avoid confusion with the geometrical dimension of the cube.
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which are object of analysis. Each attribute takes values from a fi-
nite set, resulting from a group operation? on the field values. At-
tributes are the indices of the data cube, and their values define
the coordinates of each cube cell. In this way, attributes can be
seen as the sides of the data (hyper)cube. Specifically, each register
is assigned to a cube cell according to its values of the attributes,
it being possible for a cell to contain multiple records (or none).
For each cell, representative values of the records it contains can
be calculated by means of aggregation operations, such as sum-
mation, average, maximum, etc., applied on the measures. We will
refer to these values as the outcome of each cell.

Data cubes admit operations that modify both the number of
possible cells and the way in which their aggregated value is ob-
tained, adjusting the hypercube outcome to the queries of the user.
Our approach will enable the following three operations:

o Selection operation. We shall define the selection operation as
the act of filtering the records according to a logical expres-
sion. Thanks to selection it is possible to set up the outcome
of the data cube according to the constraints imposed by the
user. Dice selection is a particular case of selection whereby the
logical expression is only true for a contiguous subset of bins
in one or more attributes, and therefore the analysis is focused
on a region of the hypercube. In our approach, dice selections
can be defined by filters of contiguous values in one or several
attributes.
Projection operation. A common practice in multiway problems
is to focus the analysis on a subset of attributes in order to
understand the whole problem incrementally. Within the data
cube paradigm, this is addressed by the projection operation
which reduces the sides of the cube by dimensionally squash-
ing it into a subset of the initial attributes, thereby decreasing
the number of cells.

o Aggregation operation. We shall define the aggregation function
as the operation which returns a single value (more generally
a set of values or even an object) that summarizes the set of
records on each cell. In our approach, the aggregation function
can be chosen among count, sum or mean. In the case of sum
and mean operations, the user decides which measure will be
aggregated.

In [22], an interactive data cube was proposed that allows the
user to implement these operations on large datasets in a highly
efficient manner (using the Javascript library crossfilter.js), being
able to represent the results on “live” coordinated views such as
conditional histograms, barcharts of average values, that are up-
dated in real time (with latencies well below 0.1 seconds) upon
changes in the filters. Our approach includes the functionalities of
[22] and add new ones such as the incorporation of the NMF re-
sults as new dimensions and 2D projections of the data cube.

The highly interpretable parts-based representation that can be
obtained algorithmically by means of NMF can be complemented
by sensor measurements and features, thereby providing additional
insight into the problem. We suggest turning each NMF component
into both a new attribute of the data structure and a new mea-
sure object of analysis, so that the user can not only arrange the
cube by the NMF components but also obtain aggregated values of
the components as the outcome of the data cube cells. In order to
achieve that, a transformation of the NMF outcome is needed. The
resulting decomposition can be seen as

V=w;h! + w,h] + ... + w;h!

2 A partitioning process of the field values into a finite number of subsets (e.g.
bins on a continuous variable, or specific classes such as day at week, etc.) assigning
a unique value to each subset.

where w; is the ith column of W and hl.T is the ith row of H, so
that the outer product w;h! e RM*N, Each of the summed matrices
contains the components of the decomposition for a specific factor
throughout the observations. These matrices should be rearranged,
undoing the operation (3) in order to obtain a vector of dimensions
MN which can be integrated into the data cube structure. Once the
components are integrated, their interpretation is dramatically im-
proved, since insightful correlations between the resulting latent
patterns and initial measures of the data cube (external tempera-
ture, active power of cooling machines, etc.) can be discovered in
a highly interactive way through dice and projection operations on
the new NMF-based attributes.

In [22] only 1D projections are included, but we include new
2D projections onto certain combinations of attributes in order to
provide a bidimensional representation of the cube like a pivot
table. For instance, an efficient representation of temporal 2D
projections on the pair of attributes DayOfWeek/Hour or Day-
OfWeek/WeekOfYear provides an adequate feedback in temporal
context which can be easily connected to the desired analysis by
selecting both the specific aggregation function and the measure
which is aggregated.

Although the data cube approach achieves an efficient compu-
tation of the aggregated results, they are composed of numeric val-
ues which have to be visually encoded in order to provide an effi-
cient feedback according to the principles of human visual system.
Moreover, the interaction with the data cube through its opera-
tions has to be implemented by means of low latency interaction
mechanisms which allow the user to explore the data in a fluid
manner, being able to get a fast feedback on her hypotheses.

3.7. Visualization of the data cube and interaction mechanisms

Although the data cube approach is a useful tool for generating
numeric reports of how the energy is spent, in this paper we aim
to encode efficiently this information in an interactive web visual-
ization. It can be noted that the data cube is based on the binned
aggregation principle [34], since the records are arranged into bins
along the attributes. This principle is a well-known data reduction
technique which is often applied to manage large datasets (more
than a million of records) in interactive visualizations [22,35,36].

Specific visual designs suitable for representing the aggregated
values resulting from the data cube projections can be found in
the literature [35] (such as barcharts, heatmaps, scatterplots, etc).
In this paper, we do not only suggest representing the aggregated
values with the mentioned static visual approach, but also inte-
grating the data cube operations through interactive mechanisms
in two types of interactive visualizations:

3.7.1. Barchart

The so-called barchart, which is shown in Fig. 2, is an efficient
visual design for representing 1-D projections of the data cube, in
which the aggregated values resulting from each cell are encoded
by means of the height of the bars. The color is not relevant in the
visual encoding, only the height is employed to encode the result-
ing aggregated value of each cell, since in order to compare mag-
nitudes, length is a more effective channel than color, according
to the principles of human perception [37,38]. At the top of each
barchart in Fig. 2, there are three combo boxes by which the user
defines both the projection and aggregation operations. The first
combo box defines the attribute on which the data cube is pro-
jected, whereas the second combo box indicates which aggrega-
tion function is applied. If the selected function is either mean or
sum, the measure to be aggregated is defined by the third combo
box. The selection operation is implemented by means of brush
and drag gestures as it is shown in Fig. 2. The brush event defines
a selection of contiguous values (dice selection) in the attribute
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Fig. 2. Interactive barchart representing 1D projections of the data cube.

represented in the x-axis. This selection can be quickly redefined
by means of drag events, so that the user can limit the analysis
to different regions of interest, being able to spot insightful visual
correlations in the rest of the represented projections.

3.7.2. Heatmap

An advisable visualization for representing 2D projections
are the binned heatmaps [35], as shown in Fig. 3. In these
kinds of visualizations, the bins of the 2-D projection are vi-
sually represented by a square whose color encodes the result-
ing aggregated value. Although the heatmap integrates combo
boxes whereby the user defines the aggregation operation, the
projection and selection operations are disabled. Our heatmaps
are associated with DayOfWeek/Hour, shown in Fig. 3(a), and
DayOfWeek/Week0fYear, shown in Fig. 3(b). In the last one, the
bins are arranged as a calendar, which is a widely used visualiza-
tion. The calendar arrangement provides insight on many kinds of
periodicities closely related to the human activity.

Applying the previous approaches to the NMF outcome, the
user can visually explore the NMF decomposition together with
all the fields gathered from the building, being able to get useful
correlations between them. Thus, visualizing interactively a data
cube which integrates the discovered patterns, results in significant
cross-fertilization between both approaches.

4. Results

The described approach was tested with real electric power
demand from a hospital complex, developing the visual energy
monitoring tool shown in Fig. 4. Only the total power demand
(PotenciaPF) from Table 1 was the input to the NMF model,
while the rest of the variables were only incorporated into the data
cube structure. The measurements were gathered with a sample
period of one minute, so the dataset obtained throughout one year
contains a large amount of records which might be computation-
ally hard to analyze. For this reason, we suggested to reduce the
number of records by means of a 1:3 downsample operation (av-
erage as aggregation function), obtaining a resolution of three min-
utes in the records.

Applying NMF decomposition requires to split the time series
PotenciaPF into windows in order to generate the columns of
the input matrix V described in (3). We set the size of the win-
dows so that the obtained columns were daily observations of the
total demand of the hospital. With this arrangement, the result-
ing coefficient vector h; represents the daily contributions of basis
consumption w; throughout the year.

In this process, we discarded those days which presented miss-
ing records, because NMF would learn the gaps in the data as com-
ponents, instead of other relevant patterns in the network. Both
the preprocessing of the data and the NMF decomposition were
developed in a Python script which makes use of several well-
known data analysis libraries such as Pandas or Scikit-learn. This
script was called from a Python web server based on Flask, which
hosts the Javascript visualizations, and thereby both approaches
were merged into one website allowing the user to configure the
data analysis and the visualization within the same interface.

The hyperparameters of the NMF algorithm, such as the num-
ber of components L or the maximum number of iterations, are
chosen by the user in a dialog window as it is shown in Fig. 5. By
default, we suggest the configuration shown in Fig. 5, which en-
sures a representative set of sparse components.

In order to improve the interpretation of the NMF outcome, we
represent the basis consumptions wj;, integrating a new visualiza-
tion outside of the data cube visualization shown in Fig. 6. Repre-
senting the basis consumptions through sparklines allows the final
user to spot and compare the learned daily patterns, using a small
area of the dashboard.

In the remainder of the section, we shall discuss the NMF anal-
ysis according to different number of components. Then, we shall
present the most relevant patterns discovered through NMF and
we shall show how powerful the interactive visualization of the
data cube is in order to interpret the NMF decomposition.

4.1. Analysis and interpretation of NMF components

In order to analyze the NMF decomposition we trained several
NMF models with different numbers of components L, collecting
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hour and day of week. (b) Represents the average of the total power demand grouped by days of year arranged in a calendar distribution.
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Fig. 4. Application snapshot.

the Frobenius norm of V- WH as the reconstruction error of the number of components is increased. We consider that a decompo-
trained models. sition of 20 factors is sufficient. Therefore, in our application this
will be the number of components by default.

Fig. 8 shows some of the 20 trained basis consumptions
Thus, 29 models were trained with L = 2. 3, ..., 30 numbers of and their coefficients, where, due to the svd-based initialization

components. In Fig. 7, it is shown how the error falls when the ~ method, the first basis consumptions, such as wj, w; and ws,

reconstruction error = ||V — WH]|?
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are the most relevant, revealing patterns which are associated to
weekly or seasonal consumptions throughout the year as it can be
seen in their coefficients. The last basis consumptions (from the
fourth onwards) learnt the unlikely events associated with devia-
tions in normal behavior or occasional faults, being relevant only
in a few hours of specific days.

The first factor (wq, hy) is the most relevant, having influence
throughout the year, specially in weekdays.? It has the form of a
normal daily profile in the hospital and it can be interpreted as
a “canvas” on which the rest of the components will be aggre-
gated. The second factor (w,, hy) shows an important influence
in weekends and holidays, where the first factor takes less signifi-
cance. Thus, the NMF has recognized two kinds of days in its two
most relevant factors which can be associated with the human ac-

3 Fig. 8 is not big enough to see clearly the weekly patterns due to space prob-
lems but it is possible to see the periodicity of the peaks and the seasonal patterns.

tivity in the hospital. The third factor (w3, h3) shows a significant
influence during summer, revealing a rise of the power demand
from 2:00 p.m. to 8:30 p.m. Moreover, its coefficients (hs) show
a large peak at the end of May which coincides with a heavy de-
crease of h;. The decomposition underlines this day as a deviation
from the normal profile which had a large consumption in the af-
ternoon and evening, demonstrating the capacity of NMF to detect
anomalies. From the tenth factor onwards, the magnitude of the
coefficients decreases, obtaining basis consumptions that are only
relevant in specific days, as can be observed in hy;, hig and hy.
Such factors are often composed of basis consumptions that have
a large peak of consumption for a couple of hours, being patterns
without periodicity. Hence, NMF decomposition not only finds pe-
riodic and relevant patterns in electric power demand but also can
learn non-periodic and less relevant patterns which would be more
difficult to obtain by other methods.

So far, hidden latent patterns have been found by means of
NMF and they have been temporally located, but the cause of the
consumption is yet to be found. This is a difficult issue in NILM de-
compositions which may require to integrate extra expert knowl-
edge into the analysis by means of the interactive data cube visu-
alization.

4.2. Analysis using the visual analytics application

The factors presented above were integrated into the interac-
tive data cube by developing the application shown in Fig. 4, which
includes the methods explained in Section 3.7. By using different
configurations of the available interactive tools, the NMF factors
can be contextualized with the rest of the attributes, thereby re-
inforcing their analysis. Such configurations are given by:

o NMF parameters. Although in this section the number of factors
obtained is set to 20, the user could redefine it. The maximum
number of iterations of the decomposition can be also indicated.
The selected attributes in the projection operation in each 1D
visualization of the data cube (barcharts).

The aggregation operation in each visualization of the data cube
that in turn is defined by the aggregation function and the mea-
sure on which it is applied.

The filters that the user has defined in any of the data cube
views.

Thanks to this approach, the user is part of an incremental anal-
ysis in which, after acquiring new knowledge from the representa-
tion of the NILM analysis, both the number of factors and the data
cube representations can be redefined. This process is shown in
detail in Fig. 9. It is not possible to recompute a new decompo-
sition in a fluid way, so changes in NMF parameters involve long
latencies in the application. On the other hand, changes in visual-
izations and data cube operations involve low latencies. In the rest
of the section we suggest useful configurations of the application
in order to get new knowledge of the system from the NMF de-
composition.

4.2.1. Large coefficients/weights in the components

One of the most powerful configurations in order to understand
the NMF outcome is to filter those records that have the highest
values in each of the obtained components, spotting the emergent
patterns in the rest of the data cube visualizations. Under this con-
figuration, the analysis is focused on the records where the filtered
component has the largest influence. After this kind of filtering,
several components reveal periodic patterns which are easily rec-
ognizable by the user as it is shown in Fig. 10. The components
that present periodic patterns are often associated with human ac-
tivity in the hospital. For instance, Fig. 10a shows how after filter-
ing by the largest values of the component 1, an emerging week-
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day pattern can be spotted in the heatmaps, which have count as
the aggregation function. On the other hand, in Fig. 10b, when the
largest values of the second component are filtered, weekends and
holidays are highlighted in the heatmaps. Other components show
seasonal patterns, such as the third component which is filtered
by its largest values in Fig. 10c. In the calendar the largest val-
ues of the third component are related to the seasonal behavior of
the hospital and its week heatmap shows how this component has
more influence between afternoons and evenings.

These findings may lead to new questions or hypotheses like
“why is the third component higher in the afternoons?” or “does
this have some connection with cooling machines?” which can be
answered with other configurations of the application.

4.2.2. Visual correlation between factors and the rest of the attributes

Establishing correlations between attributes, in a visual way, al-
lows the user to find hidden relations between NMF components
and the rest of the attributes. Although the possible correlations
established visually through the different views of the data cube do
not necessarily imply causation, such relations may lead the expert
user to the right connection between the variables of the system.
The configuration whereby the user can achieve visual correlations
is set when an NMF attribute is projected on a barchart whose ag-
gregation function is the averaged value of another measure. Two
correlated variables return a barchart where the y-axis values in-
crease or decrease monotonically along the x-axis as it is exempli-
fied with two examples in Fig. 11. The components 3 and 8 were
chosen to get visual correlations through the average aggregation
operation.

The first two barcharts in Fig. 11(a) show how the third com-
ponent has a strong influence on summer afternoons, so that one
might think that this component is correlated with the ambient
temperature. After that, the user could configure a new barchart to
project the averaged values of the ambient temperature on the at-
tribute corresponding to the third component and thus, confirming
that the temperature and the component are directly related. With
this information, the user might reformulate the hypotheses, look-
ing for relations between the third factor and the cooling machines
which would explain the increment of consumption in the hospi-
tal from 1:00 p.m. These hypotheses may be argued by setting a
data cube view in which the averaged values of consumption of
a cooling machine of type T are grouped by the third component
as it is shown in the last barchart in Fig. 11(a). After that config-
uration, the barchart shows a strong positive correlation between
the consumption of the cooling machine of type T and the third
component.

In the same way, Fig. 11(b) shows how in the winter months,
the 8th component has learnt a peak of consumption at 9:00 a.m.
Analyzing this component by means of the configuration of the in-
teractive data cube described above, it is found that the ambient
temperature is inversely related to the 8th component for medium
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Fig. 10. Filtering the largest values of the first three components by means of drag gestures in their associated barcharts. (a) Weekday patterns are spotted in both the
calendar and weekly heatmaps of the largest values of the first component. In (b), the highest values of the second component highlight the weekends and holidays. The
calendar in (c) shows that the largest values of the third component are related to the seasonal behavior.

and low values of this component. On the other hand, the last bar-
chart in Fig. 11(b) shows that the consumption of the P1 is slightly
related to the 8th component.

This visual-based correlation analysis allows us to establish re-
lationships by sections between two attributes. Thus, for exam-
ple, in the barchart in Fig. 11(a) that shows the correlation be-
tween component 3 and the T2 machine, two well-differentiated
sections can be observed: a section of strong correlation for low
and medium values of the component; and another section with
weaker correlation for high values of the component. Such kind of
analysis can not be achieved in a typical approach based on global

statistical descriptors, such as linear correlation. In these cases, the
outcome is composed of a unique global measure in which the lo-
cal relations are not appreciated.

The Tables 2 and 3 help us to validate this visual-based corre-
lation analysis. Table 2 shows the Pearson correlations of the com-
ponents 8 and 3 against the consumption of machines P1 and T2
as well as the ambient temperature, conditioned to several ranges
of the components. These ranges are: low values (L) between [0-
100], medium values (M) between [100-200], high values (H) be-
tween [200-350]. We also include a whole-range correlation (WR)
spanning the three previous ranges [0-350]. Table 2 shows that the
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Table 2

Sample-based Pearson coefficients between the components 3 and 8 and both the indi-
vidual consumptions of the cooling machines P1 and T2 and the ambient temperature
conditioned to low (L), medium (M), high (H) values of the component as well as the
whole-range correlation (WR).

comp3 comp8

L M H WR L M H WR
P1 0.03 -0.10 -0.04 -0.10 0.09 0.05 0.08 0.09 I 1
T2 0.22 0.27 0.03 0.46 ROSID) -0.08 0.02 SONIE 0
Temp 041 @ 032 0.13 0.63 -021  -0.04

0.04  -0.22
B

Table 3

Group-based correlations between the components 3 and 8 and both the individ-
ual consumptions of the cooling machines P1 and T2 and the ambient temperature
conditioned to low (L), medium (M), high (H) values of the component as well as
the whole-range correlation (WR).

comp3

L M H WR L M H WR

P | 0m - 060 - 025 - T |

comp8

0.48 -0.44 0

results obtained analytically have the same sign but are weaker
than the visually inferred relationships. For example, the correla-
tion between component 3 and the ambient temperature spotted
in Fig. 11(a) is strong and positive for medium values, while the
corresponding linear correlation in Table 2 is 0.32, weaker than
we expected. This is because each bar of the chart represents the
average value of several samples, attenuating the effect of noise
and variations at the local level, so that the observed relation-
ships between atributes represent the global trend more clearly.
The same correlations of the previous table, but this time on the
average values within each group defined on the components (100
groups per component), are shown in Table 3. Comparing these
two tables we can validate that the group-based correlations are
much stronger than the sample-based correlations. A limitation of
the group-based correlation approach appears when the number
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Fig. 12. The exploration of the 18th component as an example of analysis of a non periodic component. The user focus the analysis on one of the highlighted days, looking
for evidences in the rest of the measures that can explain the causation behind the component.

of records arranged in the groups are not sufficient to produce a
representative mean and thereby introduce noise in the barcharts.
This kind of noise can be spotted in the groups which include the
highest values of the components in Fig. 11(a) and (b). For this rea-
son, in the aplication, those bars which contain less than 100 sam-
ples have been represented with a high transparency, losing visual
relevance. Otherwise, they are totally opaque.

By focusing the analysis on average values we are losing local
information, which in certain scenarios may be useful. Following
the approach of the interactive data cube it is possible to focus the
analysis on local behaviors, by means of filters in other attributes
such as the time or month of the year, reducing the samples ar-
ranged into each group to those specific to certain condition.

The former examples show how to extract insight of the system
through the synergies between the NMF decomposition and the in-
teractive data cube approach since the recognized patterns such as
the former components are related to important subsystems (cool-
ing machines), revealing when they have more demand. For in-
stance, in the previous analysis, it was found that in cold days the
hospital presents a peak of consumption at 9:00 a.m. learned by
the eighth component which is weakly related to the consumption
of P machines, while the consumption of the machines of type T
can be related to the increase of total consumption on summer af-
ternoons learned by the third component.

4.2.3. Study of the non-periodic components

Resulting patterns do not necessarily appear in temporal 2-D
projections of the data cube but they may emerge in attributes
outside the NMF, such as the consumptions of specific large sub-
systems. For instance, the calendar representation of the 18th com-
ponent, which represents the averaged values of that component
grouped by day of year, shows no recognizable pattern as it is
shown in Fig. 12. Thus, it is difficult to associate the peak of con-
sumption at midnight learned by this component with an obvious
behavior of the hospital.

One possible way to interpret this kind of components is to fo-
cus the analysis on those days where the component of analysis is
more relevant and then trying to look for the causes of this rele-
vance through filters on the rest of the attributes. In the example
shown in Fig. 12, the 10th of June is selected, since the 18th com-
ponent presents a large influence in this day. Then, thanks to pre-
vious explorations we know that machines of type T are activated
in summer. Therefore, the attributes chosen to filter were the elec-

tric power demands of the two machines of type T, finding that
the peak at midnight of the component is because one of the T
machines is turned off. This fact caused the active T machine had
to handle all the cooling demand, increasing its consumption, and
therefore the total electric demand increased too. In a similar way,
it can be proved that in winter days, where the 18th component is
relevant, a machine of type P is turned off instead of a machine of
type T. Thus, the user can identify the peak of the 18th component
as the increment of the total consumption due to the shutdown of
a cooling machine.

The former analysis not only confirms that NMF factors learn
patterns associated with real events in the network but also that
the synergies between NMF and interactive data cube allow to find
these relations insightfully even when the components are not pe-
riodic.

4.2.4. Going deeper into the anomalies

Throughout the exploration of the components, we noted that
some NMF factors highlight days in which their coefficients are
much greater than in their neighboring days, revealing an abnor-
mal behavior. These components learnt a fault which can be ana-
lyzed in detail by means of the data cube functionalities explained
above. Within the hospital electric power demand, the component
3 shown in Fig. 13 learnt an anomaly on the second of May where
its influence is greater than in the rest of May. Filtering by that day,
we found that only P1 was active until 4:00 p.m. when a second
cooling machine was required likely due to a rise in cooling de-
mand. The control program which regulates the activation of the
cooling machines interpreted that a machine of type T was neces-
sary so T1 was started. T machines have a higher cooling capac-
ity than P machines, being more efficient to use one machine of
type T instead of two machines of type P. The situation illustrated
in Fig. 13 is an example of how the control sent the “start” com-
mand to T1 and then sent the “stop” command to P1, but some-
thing wrong happened, since P4 was chilling only a few minutes
about 5:00 p.m. after P1 was turned off. This inefficient start-up of
P4 is learned by the third component as a peak at 5 p.m. The start-
ing of P4 was probably due to the fact that the machines of type
T take a long time to start up, so T1 could not handle the cooling
demand, making it unavoidable that a machine of type P had to be
turned on again.
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Fig. 13. Searching for the causes of the anomalies. After selecting the second of May, an anomaly in the starting of the cooling machines is discovered by means of filters in

the individual consumptions of the cooling machines.

5. Conclusions

This paper presents a novel power demand monitoring ap-
proach where intelligent data analysis, data visualization and in-
teraction have been successfully integrated into a web applica-
tion in which the results of a state-of-the-art NILM technique can
be insightfully interpreted, finding relevant hidden patterns in the
power demand of a hospital complex. On the one hand, we have
shown that NMF is a suitable NILM technique, since the non neg-
ativity constraints result in compatible solutions with the under-
lying physical nature of the problem (positive aggregated demand
is a sum of positive demands). Under such constraints, solutions
that are not feasible are naturally dismissed, thereby increasing the
chances of achieving interpretable parts-of-a-whole description of
daily electric power demand. In NMF analysis, it is necessary to in-
dicate the number of factors into which the aggregated consump-
tion will be decomposed. Thus, we suggest that the application
provides to users the possibility of defining interactively this pa-
rameter. Once the number of factors have been set, the application
recalculates the decomposition, showing visually the new results
so that the user can evaluate how interpretable is the decomposi-

tion according to both the number of chosen components and his
own expert knowledge.

On the other hand, it is shown that a large number of factors
are needed in order to achieve an accurate decomposition, making
the interpretation of the decomposition less insightful. This paper
addresses this common issue in NILM decompositions through the
interactive data cube approach which allows the user to set and/or
modify a broad set of conditions (filters) over both sensed data and
NMF components, getting immediate visual feedback on the rep-
resentation of the results. The fluidity in the filtering mechanisms
establishes a continuous loop of analysis whereby the pre-attentive
abilities of the visual perception system allow to spot any signifi-
cant or recognizable relations between sensed data and NMF com-
ponents. Moreover, the discovered relations are contextualized on
a temporal framework thanks to specific visualizations such as cal-
endar or week heatmaps, where the association between them and
real consumptions or events in the electric network is improved.
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