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Abstract Intensive use of heating, ventilation and air conditioning (HVAC)
systems in buildings entails monitoring their efficiency. Moreover, cooling sys-
tems are key facilities in large buildings and can account up to 44% of the
energy consumption. Therefore, monitoring efficiency in chillers is crucial and,
for that reason, a sensor to measure the cooling production is required. How-
ever, manufacturers rarely install it in the chiller due to its cost. In this paper,
we propose a methodology to build a soft sensor that provides an estima-
tion of cooling production and enables monitoring the chiller efficiency. The
proposed soft sensor uses independent variables (internal states of the chiller
and electric power) and can take advantage of current or past observations
of those independent variables. Six methods (from linear approaches to deep
learning ones) are proposed to develop the model for the soft sensor, captur-
ing relevant features on the structure of data (involving time, thermodynamic
and electric variables and the number of refrigeration circuits). Our approach
has been tested on two different chillers (large water-cooled and smaller air-
cooled chillers) installed at the Hospital of León. The methods to implement
the soft sensor are assessed according to 3 metrics (MAE, MAPE and R2). In
addition to the comparison of methods, the results also include the estimation
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of cooling production (and the comparison of the true and estimated values)
and monitoring the COP indicator for a period of several days and for both
chillers.

Keywords HVAC systems · Chillers · Efficiency · Cooling production · Soft
sensor · Deep learning

1 Introduction

The proliferation of heating, ventilation and air conditioning (HVAC) systems
has caused a noticeable increase of energy consumption in buildings. Nowa-
days, it represents more than 20% of global energy consumption in developed
countries [40]. Most of that energy consumption is due to the air conditioning
systems, which consume up to 44% of the total energy consumption in com-
mercial and industrial buildings [43,47]. The main element of those systems is
the chiller, which is in charge of removing heat from inside the buildings by
means of electric power. Therefore, its performance is vital in order to achieve
energy efficiency of these buildings.

Chiller efficiency requires the computation of an energy efficiency indicator
(EEI) [4]. Most of them use the measurement of the cooling production (i.e.,
the chiller output). For that purpose, a meter inserted in the output pipe
could be used to obtain the cooling production with very low errors [33].
However, an energy meter is invasive and involves installation, maintenance
and recalibration costs [34], so manufacturers do not usually include it in their
chillers.

The energy meter can be replaced by a soft sensor [30], achieving a trade-
off between the accuracy of measurements and the cost of the sensor. For
that reason, in this paper, we propose the development of a soft sensor to
estimate the cooling production in chillers and to monitor its efficiency. The
main contributions of this paper are:

– A methodology for estimating cooling production and efficiency in chillers,
based on independent variables, without installing a cooling power meter.

– The development of a soft sensor that provides cooling production mea-
surements, based on current and past observations of internal refrigeration
variables and electric consumption.

– The validation and comparison of different alternative models, used to build
the soft sensor.

– Testing the approach and the soft sensor measurements using data from
different real chillers.

– Monitoring the actual efficiency of different real chillers.

This paper is organized as follows: Section 3 explains the motivations
for measuring the cooling production in chillers. In Section 4, the proposed
methodology to build the soft sensor is presented. Section 5 describes the
chillers used for experimentation, the datasets and the proposed experiments.
In Section 6, the results are exposed and discussed. Finally, conclusions are
drawn in Section 7.
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2 Literature review

Virtual or soft sensing is a low cost and non-invasive method to obtain mea-
surements indirectly that can provide further information from the system.
Generally, a soft sensor can be obtained using a model suitable to estimate
interesting parts without putting real sensors [31]. On one hand, these models
can be developed taking into account ideal states of the processes [28], e.g.
Kalman filters estimate state variables that define system dynamics. On the
other hand, data-based models can improve the description of process condi-
tions because they consider more realistic situations that can occurred in the
process.

Soft sensors have been applied to estimate variables in many industrial
applications [28]. However, there are other domains such as building systems
where this approach is slowly adopted. In this sense, virtual sensing develop-
ments can provide improvements in terms of monitoring, diagnostics and opti-
mization in buildings [30]. Heating, Ventilating and Air Conditioning (HVAC)
systems are widely used for thermal comfort in buildings and chillers are es-
sential parts of these systems, playing a significant role in terms of consump-
tion, maintenance and operational costs. For this reason, a number of previous
works have addressed the study of virtual models that obtain features from
chillers, such as the estimation of water flow rates [58,50,35], identification of
various faults [36,41,53] or cooling load measurements [25,26]. In this work,
a methodology for a data-based soft sensor is proposed to estimate cooling
production in chillers using explanatory variables.

Various strategies for developing soft sensors have been proposed, such as
neural networks [7] or principal component analysis [27], and they have also
been applied to model systems composed by chillers [52,6]. For instance, the
estimation of steady-state performance in chillers based on radial basis func-
tions was proposed to identify dynamic conditions [46,5]. Moreover, optimal
sequence for chiller operation was determined by estimating power consump-
tion [10] and empirical models using historical data were proposed although
their parameters cannot be easily extrapolated [51,13]. However, our proposed
approach relies on a data-based model that can be extrapolated to similar
devices and focuses on monitoring the efficiency of one chiller instead of se-
quencing a group of chillers in a plant. In [48], a neural network is proposed to
predict the efficiency of screw chillers using the COP with ±5% error, whereas
our work relies on internal variables and compares further configurations in-
cluding deep learning approaches in order to obtain enhanced results.

Recent deep learning approaches have provided significant advances in neu-
ral networks that can learn representations with higher levels of abstraction
from data [20]. Several methods have been proposed for feature engineering
in order to improve building energy prediction [15]. Moreover, deep learning
approaches have also been explored for cooling load prediction in buildings,
compared with other traditional methods in [16] and used in a hybrid model
with ensemble method in [17] in order to deal with uncertainties.
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However, deep learning approaches have been rarely applied to estimate
an output from a soft sensor and they could provide further features that
allow to obtain more complex models. Accordingly, a virtual sensor for cooling
power estimation is suggested in [3] using a deep convolutional neural network
that has obtained promising results compared to other methods, using internal
variables of three refrigeration circuits from one real chiller in a hospital facility.
An extension of that work is presented here, including temporal information of
explanatory variables and considering two chillers with different structure and
operational baselines. Furthermore, additional deep learning methods are used
in order to build a soft sensor that estimates cooling production and allows
monitoring the efficiency in chillers. These estimations can avoid the use of
industrial meters whose installation and maintenance would increase costs.

Previous works mentioned above have explored soft sensors in buildings to
improve the efficiency, considering different chiller configurations, sequencing
operations or a variety of variables. However, the soft sensor proposed here
estimates cooling production based on internal variables (gas pressures and
temperatures) and electric power from each refrigeration circuit in the chiller.
It can be used for other chillers in a similar way. Several methods are compared,
including deep learning networks that have proven to be an advanced tool to
predict energy in buildings [16] and they can be a helpful option to build
valuable soft sensors.

3 How to monitor chiller efficiency

A chiller is an HVAC system in charge of providing cooling power to building
facilities. It converts electric power (input) into cooling power (output). For
that purpose, the chiller comprises one or more refrigeration circuits (see Fig.
1) which are used to absorb heat from water or glycol and transfer it to the
atmosphere, based on a refrigeration thermodynamic cycle. Electric power is
required to modify the conditions of the refrigeration gas (evaporating and
condensing temperatures and pressures) [21]. The efficiency of a chiller is de-
fined as the ratio between the cooling production (output) and the electric
power (input) [4], i.e,

Efficiency =
Cooling Power (output)

Electric Power (input)
. (1)

Electric power can be easily measured, since most of the chillers include
current sensors in order to control their capacity in terms of full load amperes
(FLA) and the rated compressor power [56]. On the contrary, cooling power
requires a specific flow meter and two temperature sensors, whose installation
is a drawback due to the invasive measuring principle and the increase of cost.
Moreover, its measurements could be affected negatively by outside conditions.
As a result, manufacturers rarely include cooling power meters in their chillers,
hindering efficiency monitoring.
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Fig. 1: A typical refrigeration circuit.

Normally, a chiller is formed by several refrigeration circuits, with similar
or different capacities, in order to achieve a better adaptation to variable
cooling loads [45]. Each individual circuit provides cooling power according to
a central chiller control. Thus, the total cooling production of the chiller is the
sum of the cooling power from each circuit c, i.e.

Cooling Power (KWc) = KWc1 +KWc2 + . . .+KWcc. (2)

In the same way, total electric power demanded by the chiller is the sum
of the electric power from each circuit c, i.e.

Electric Power (KWe) = KWe1 +KWe2 + . . .+KWec. (3)

Typically, chiller manufacturers use the COP (coefficient of performance)
indicator as the efficiency ratio, providing theoretical values for given sur-
rounding conditions during the manufacturing process [57]. However, chiller
efficiency varies over time and depends on external conditions [55], so it is
essential to monitor this performance indicator. COP values can be easily
computed using the total cooling power and electric power [4] (see Eq. 4).

COP =
KWc

KWe
=

∑n
i=1KWci∑n
i=1KWei

∀i ∈ [1, c] (4)
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In a refrigeration circuit, the COP indicator depends mainly on enthalpies
H (given the type of refrigeration gas) [32]. To justify this claim, let us perform
an analysis of a theoretical refrigeration cycle, where the energy conservation
equation (Q −W = ∆H) is applied for each element [29]. Any system inter-
changes heat Q or work W with the environment, being the balance equal
to the variation of enthalpies ∆H. For the evaporator, we have W = 0, so
Q = ∆H. Looking at Fig. 1, points D and A represent the input and the out-
put of the evaporator, so Q = HD −HA. On the other hand, the compressor
performs an adiabatic process (Q = 0), so −W = ∆H. Considering the input
point (A) and the output point (B) in this case (see Fig. 1), the compressor
work is W = HA−HB . Analyzing the condenser, we have W = 0, so Q = ∆H.
Obtaining the enthalpies of the input (point B) and the output (point C) (see
Fig. 1), it can be seen that Q = HC − HB in the condenser. Finally, apply-
ing the energy balance in the expansion valve, we have Q = 0 and W = 0,
so ∆H = 0. It means that enthalpies before and after this element must be
equal, i.e. HD = HC (see Fig. 1).

According to the previous energy analysis, the COP value can be defined
as follows [38]:

COP =
QEvaporator

WCompressor
=
HD −HA

HA −HB
(5)

Thus, it demonstrates that chiller performance (COP) depends on enthalpies,
in the high pressure line (point B) and the low pressure line (points D and A)
(see Fig. 1).

In thermodynamics, the enthalpy is defined as H = U + PV , being U
the internal energy, P the pressure and V the volume (constant in this case)
[2]. The internal energy U of a gas depends mainly on kinetic and vibration
energies of molecules, i.e., on temperature and pressure. In turn, the enthalpy
is a magnitude which characterizes the state of a system in equilibrium, but it
does not consider how the system reaches that state [2]. Thus, enthalpies can
be computed using pressures and temperatures, given a refrigeration gas. Our
hypothesis is that these variables can define the state of the system.

For those reasons, the proposed soft sensor should be able to estimate the
cooling production and the COP value based on independent variables in the
refrigeration circuit (temperatures, pressures and electric power). A limitation
of the proposed methodology is the occasional need for a portable meter to
measure and record actual cooling power data (chillers do not usually include
such a meter) under a range of conditions for training and testing purpose,
together with the computational resources needed for that. Furthermore, that
process might require scheduled retraining after long periods to suit potential
changes in the chiller dynamics due to maintenance or wear.
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Fig. 2: Proposed approach based on a soft sensor to estimate cooling produc-
tion.

4 Methodology

4.1 Requirements and structure of the soft sensor

We propose a methodology for estimating the cooling production in chillers
from the available variables in the chiller control system, such as energy inputs
and internal states of the refrigeration circuits (see Fig. 2). To estimate the
cooling production, we develop a soft sensor which uses those variables to
provide accurate values of the cooling production and allow us to estimate
chiller efficiency. The challenge is to obtain a model for the soft sensor that is
able to yield outputs with a low error.

Based on the considerations exposed in section 3, the proposed approach
should take into account the following aspects in order to address the regression
problem:

– A chiller unit can comprise several refrigeration circuits, which provide
cooling power.
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– Cooling power and efficiency depend on the energy input (compressor work)
and the state of the refrigeration circuits, which is defined by internal
variables (pressures and temperatures of gas).

– Past inputs and states of the refrigeration circuits (not only the current
ones) can also influence the cooling power and efficiency, due to the ther-
modynamic inertias as well as the time that a gas molecule spends in going
around the circuit (higher in large chillers with longer pipes).

– Dependencies among variables are expected in the same circuit since the
refrigeration cycle is closed.

– Interactions among refrigeration circuits could appear depending on the
chiller manufacturing structure.

Therefore, the cooling production of a refrigeration circuit can be defined
as a function f of the current and past energy inputs and the internal variables
(see Eq. 6).

ŷ(t) = f (Φv,c,t) (6)

ŷ(t) is the estimated cooling production of the chiller and Φv,c,t is a tensor
with three dimensions: variables (v), circuits (c) and time (t).

To understand Φv,c,t let us first define uc as a vector with the power inputs
to each circuit c ∈ [1, . . . , q] (mainly the compressor work), i.e.,

uc = [u1, u2, . . . , uq] . (7)

Let also Xv,c be a matrix containing the internal variables v ∈ [1, . . . , p]
(temperatures and pressures of the refrigeration gas) for each circuit c ∈
[1, . . . , q]. Its dimensions will then be variables × circuits (p, q), i.e.,

Xv,c =


x11 x12 ...... x1q
x21 x22 ...... x2q
... ... ...... ...
xp1 xp2 ...... xpq

 . (8)

It is possible to define a matrix Φv,c that includes both uc and Xv,c and
therefore has dimensions (p + 1, q). But, since our approach should also con-
sider the system dynamics (t), i.e., how past inputs and states of the cir-
cuits influence the cooling production, current (t0 = k) and past observations
(t1 = k − 1, t2 = k − 2, . . . , tn = k − n) of inputs and states are introduced in
the model. Therefore, we can rewrite the Eq. 6 as follows:

ŷ(k) = f
(
Φv,c(k), Φv,c(k − 1), . . . , Φv,c(k − n)

)
(9)

where, for a given instant of time k, matrix Φ is

Φv,c(k) = [uc, Xv,c](k) =


u1 u2 ...... uq
x11 x12 ...... x1q
x21 x22 ...... x2q
... ... ...... ...
xp1 xp2 ...... xpq


(k)

. (10)
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The above matrix Φv,c(k) can be flattened, resulting in the following vector
whose length is Variables × Circuits × Time:

ϕvct =
[
ϕv1(k),ϕv2(k), ...,ϕvq(k),ϕv1(k − 1),ϕv2(k − 1), ...,

ϕvq(k − 1), . . . . . . ,ϕv1(k − n),ϕv2(k − n), ...,ϕvq(k − n)
]T
,

(11)

where ϕv1(k) =
[
u1, x11, x21, ..., xp1

]T
, ϕv2(k) =

[
u2, x12, x22, ..., xp2

]T
and so

on, for the time instant k. Analogous vectors ϕv1(k−n),ϕv2(k−n), ...,ϕvq(k−
n) are defined for past observations at time k − n.

On the other hand, Φv,c(k) can be reshaped, resulting in the following
matrix whose dimension is:

Ψvc,t =
[
ξvc(k), ξvc(k − 1), . . . . . . , ξvc(k − n)

]
, (12)

where

ξvc(k) =
[
u1, x11, x21, ..., xp1, u2, x12, x22, ...,

xp2, . . . . . . , uq, x1q, x2q, ..., xpq
]T (13)

and ξvc(k−1), ξvc(k−2), ..., ξvc(k−n) have an identical structure, but contain
the corresponding past observations.

4.2 Model for the soft sensor

The challenge is to achieve the model function f indicated in Eq. 9, which
relates output ŷ to a regressor formed by the input uc and the internal state
Xv,c. Furthermore, the model f should be as accurate as possible, in order
to obtain low measurement errors, in similar ranges to those of commercial
industrial energy meters.

To model f , we assess linear and nonlinear methods in order to select
the best model in terms of accuracy and to delimit its error range. Prior to
training the different methods, real data have to be collected and preprocessed.
Then, input data needs to be prepared and transformed according to the
requirements of each method. Once this comparison is performed, the most
appropriate method can be implemented and deployed in the chiller plant
software.

The candidate methods proposed to build the soft sensor are (see Fig. 3):

– Multiple Linear Regression (MLR): MLR is a method that models
the relationship between two or more explanatory variables and a response
variable by fitting a linear equation to observed data [22,18]. For that
purpose, the values of the independent variables or regressor (uc, Xv,c)
are associated with a value of the dependent variable ŷ. In this case, the
input vector is ϕvct (see Eq. 11) whose length is Variables × Circuits ×
Time and the output value is the soft sensor measurement, i.e. the cooling
production.
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Fig. 3: Methods used to build the soft sensor.

– Support Vector Regression (SVR): SVR derives from Support Vector
Machines and its basic idea is to map nonlinearly the data into a high-
dimensional space so that a linear regression is performed in that space
[14,42]. SVR estimates the regression function f , which relates the input
vector ϕvct (see Eq. 11), whose length is Variables × Circuits × Time and
the output ŷ. For that purpose, a cost function is minimized, subject to
certain constraints.

– Shallow Multilayer Perceptron (Shallow MLP): Shallow or classic
MLP is a type of feedforward artificial neural network with several layers
of neurons: an input layer, one or more hidden layers and an output layer
[23,39]. A nonlinear activation function is used for each neuron and the
network is trained using backpropagation algorithm. In this case, only one
hidden layer is defined. Input data ϕvct (see Eq. 11) is again structured
as a vector of length Variables × Circuits × Time and the output ŷ is the
cooling production provided by the soft sensor.

– Deep Multilayer Perceptron (Deep MLP): A deep MLP, with many
layers of neurons (an input layer, several hidden layers and an output layer),
is also considered [12]. A nonlinear activation function is used for each
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neuron. Compared to shallow MLP, the deep MLP uses a new initialization
strategy in the training process to avoid the vanishing and/or exploding
gradients caused by backpropagation in neural networks with many layers
[20]. Similar to MLP, the input data consists of a vector ϕvct (see Eq. 11)
whose length is Variables × Circuits × Time and the output ŷ is the soft
sensor measurement.

– Separable 2D Convolutional Neural Network (2D CNN): A sep-
arable 2D CNN is a convolutional neural network that works in two di-
mensions but performs its convolutions in two consecutive stages instead
of one: the depthwise and pointwise convolutions [11]. In this way, the ker-
nels are divided into two smaller ones, so that computational complexity
decreases, favoring generalization and facilitating the convergence, so the
network runs faster. The first (depthwise) convolution is performed over
the spatial dimensions (width and height of the data) whereas the second
(pointwise) convolution is performed over the number of channels of data
[49]. In this particular setup, separable 2D CNN could take advantage of
coherence among refrigeration circuits, variables (electric power input and
internal states) and time in a chiller. For that purpose, the input data is
structured as a tensor Φv,c,t with dimensions (Variables, Circuits, Time).
In the depthwise convolution, the kernels iterate only over one channel,
i.e., on time (t) and variables (uc, Xv,c) of one refrigeration circuit (c), and
then stack the resulting data together. The choice of kernel size is cru-
cial since it should consider all possible pairwise combinations among both
timesteps and variables. In the pointwise convolution, the kernels iterate
through every single previous data point, being the depth the number of
channels, i.e., the second convolution works on the refrigeration circuits (c).
After the separable 2D CNN layer, a fully connected layer and an output
layer with dimension 1 (soft sensor measurements) are used. A nonlinear
activation function is used for all neurons.

– Long-Short Term Memory (LSTM): LSTM is a recurrent neural net-
work able to process sequences of data. A LSTM layer is formed by several
neurons and each unit comprises a cell, an input gate, an output gate and a
forget gate. The cell is a memory of values and the gates enable the control
of its memorizing process. A LSTM unit has the ability of forgetting unnec-
essary information, to enable storage of new input information in the cell
state to decide how the output is built [24]. For that reason, LSTM could
take advantage of temporal information contained into sequences of data
input [1]. That is why several sequences containing the features (uc, Xv,c)
for each circuit c are fed to the network. In this scenario, the length of an
input vector ξvc (see Eq. 13) at a certain time step would be Variables ×
Circuits. However, since previous states and energy inputs should define
the current behavior of the chiller, additional timesteps of the previous
samples of features and circuits are provided to the input of the network
with the aim of reinforcing the short-term memory process. Thus, in this
case, the input data to this method is reshaped to obtain a matrix Ψvc,t

(see Eq. 12) whose dimensions are (Variables × Circuits, Time). In this
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case, a LSTM layer with several neurons is used. After that, a fully con-
nected layer and an output layer are used to provide cooling production ŷ
(i.e., the soft sensor measurement). Again, a nonlinear activation function
is used for all neurons.

5 Experimental procedure

For the proposed experiments, datasets are collected from real operation of
chillers. Data from internal variables X and energy input u and from cooling
power y are required. These data are merged and preprocessed. Next, the
proposed methods are trained and assessed to choose the best model function
f for the soft sensor and to delimit its error range. Finally, the model is
deployed as a soft sensor, enabling monitoring and providing the estimation of
cooling production and COP computation. Note that COP is computed from
the estimated cooling power ŷ and the measured electric power KWe.

5.1 Chillers at the Hospital of León

The chiller plant at the Hospital of León consists of two groups of chillers:
5 air-cooled and 2 water-cooled chillers. One chiller of each type is used in
the experimental setup. Their internal structure can be seen in Fig 4 and is
explained below.

– Water-cooled chiller (WCC): The water-cooled chiller (model Trane
CVGF650) has a maximum cooling capacity of 650 tons (approximately
2286 kW) and includes 1 refrigeration circuit (see Fig. 4a). It is composed of
a centrifugal compressor, an electronic expansion valve (EEV) and tubular
heat exchangers (for evaporator and condenser). The compressor works
using R134a refrigeration gas and its capacity can be regulated between
50–100% of the maximum value, by changing the angle of the turbine
blades. It is driven by a three-phase induction motor (400 V; 367 KW). The
condensing water flowing through the condenser is propelled to a cooling
tower, which is in charge of transferring heat to the environment when
the condensing water evaporates. An axial fan, driven by a three-phase
induction motor (400 V; 18.5 KW) and managed by a variable speed drive
helps the heat exchange. The nominal chiller COP is 6.23 (condensing
temperature: 40 oC; evaporating temperature: 0 oC).

– Air-cooled chiller (ACC): The air-cooled chiller (model Petra APSa
400-3) has a maximum cooling capacity of 400 tons (approximately 1407
kW) and includes 3 identical refrigeration circuits (see Fig. 4b). Each one
is composed of a screw compressor, an electronic expansion valve (EEV)
and a condenser in V form. A common evaporator is used for the 3 cir-
cuits. The compressor, driven by a three-phase induction motor (400 V;
109 kW), has a maximum displacement of 791 m3/h of R134a refrigeration
gas. Its capacity can be regulated between 50-100 % of maximum value
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a The water-cooled chiller (WCC) with 1 refrigeration circuit.

b The air-cooled chiller (ACC) with 3 refrigeration circuits.

Fig. 4: Different chillers at the Hospital of León.

by means of two auxiliary load and unload valves. The condensers have 16
fans of 1.5kW, driven by variable speed drives. Note that the condensing
control signal is common to the 3 circuits. The nominal chiller COP is 4.3
(condensing temperature: 40 oC; evaporating temperature: 0 oC).

In both chillers, a control board regulates the operation of the refrigeration
circuits. It communicates with a BMS (Building Management System), which
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Table 1: Variables for each refrigeration circuit of the chillers.

Symbol Name Unit
Te Evaporating temperature ◦C
Pe Evaporating pressure KPa
Tc Condensing temperature ◦C
Pc Condensing pressure KPa

KWe Compressor electric power KW
KWc Cooling power KW

acquires and stores data from main internal variables (listed in Table 1) using
Modbus protocol.

5.2 Data collection

Data are collected from two sources. First, we gather data from BMS logs
(temperatures, pressures and compressor power), which stores only these data
when changing in order to optimize storage capacity. BMS communicates with
the chiller controller using Modbus protocol, which acquires data from sensors
in the refrigeration circuits. Logs from an ultrasonic portable meter (Fluxus
F601 by Flexim) are the second data source. It makes up for the lack of a
cooling power meter in the chillers. The Fluxus F601 meter consists of an
ultrasonic flow sensor and two Pt100 sensors (leaving and return chilled water
temperatures) and provides measurements of the cooling power. This meter is
configured to record cooling power data each minute. Note that the portable
meter is only exceptionally used to obtain cooling power data for training and
testing purposes. Both data sources (in CSV format) are preprocessed. To
carry out that, data from BMS logs are resampled with 1 minute and then
synchronized and merged with data from Fluxus F601 logs.

5.3 Experiments

Two experiments have been performed to test the soft sensor. For that purpose,
data from both chillers at the Hospital of León were collected for 2 months,
with the aforementioned sampling time of 1 minute. The selected data from
the water-cooled chiller #2 (WCC2) corresponded to August and September,
2019; whereas the data from the air-cooled chiller #5 (ACC5) corresponded
to December 2018 and January 2019. The resulting sizes of the datasets are
56, 780 samples for WCC2 and 38, 134 samples for ACC5. Note that the op-
eration of these chillers is alternated with other chillers in the plant, which
explains the different size of the datasets for two months. Both datasets are
split into 2 parts:

– Training and validation of the model: In both cases, 70% of total data
is used to train and validate all methods proposed to build the soft sensor.
A 10-fold cross validation is applied to set the hyperparameters of each



Monitoring efficiency in chillers using a soft sensor 15

method. Average errors and standard deviations of each 10-fold iteration
have been computed.

– Testing the soft sensor: 30% of data (both datasets WCC2 and ACC5)
is used to test the soft sensor approach by assessing the error of the cool-
ing production estimation. For that purpose, we suppose that the F601
portable meter is disconnected from the chiller and the soft sensor is used
to estimate cooling production. Finally, the chiller efficiency (COP) is com-
puted using the estimated cooling power and the measured electric com-
pressor power.

The estimated variable is then the cooling production KWc for all cases.

ŷ = KWc, (14)

Five regressor variables are used: the variables Te, Pe, Tc, Pc and energy
input KWe (see Table 1) for each refrigeration circuit c. WCC2 has 1 refrig-
eration circuit, so using the WCC2 dataset we have

uc = [KWe1] , (15)

Xv,c = [Te1, P e1, T c1, P c1]
T
, (16)

Φv,c = [uc, Xv,c] = [KWe1, T e1, P e1, T c1, P c1]
T
. (17)

In turn, for the ACC5 dataset (with 3 refrigeration circuits), we have

uc = [KWe1,KWe2,KWe3] , (18)

Xv,c =


Te1 Te2 Te3
Pe1 Pe2 Pe3
Tc1 Tc2 Tc3
Pc1 Pc2 Pc3

 , (19)

Φv,c = [uc, Xv,c] =


KWe1 KWe2 KWe3
Te1 Te2 Te3
Pe1 Pe2 Pe3
Tc1 Tc2 Tc3
Pc1 Pc2 Pc3

 . (20)

Nevertheless, our experiments should use not only current energy inputs
and states of the refrigeration circuits, but also past ones, in order to consider
the dynamics of the system, so instead of fitting a model for ŷ(k) = f

(
Φv,c(k)

)
,

we have

ŷ(k) = f
(
Φv,c(k), Φv,c(k − 1), . . . , Φv,c(k − n)

)
. (21)
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Table 2: Overview of the hyperparameter tuning.

Hyperparameter Range Best value Best value
(WCC2 model) (ACC5 model)

SVR
ε-tube (ε) 0.001, 0.01, 0.1 0.01 0.01

Regularization (C) 0.1, 1, 10 10 0.1
RBF kernel (γ) 0.01, 0.1, 0.2 0.1 0.1

Shallow MLP
Neurons 16, 32, 64 16 32
Epochs 10, 20, 40 20 40

Deep MLP (for all layers)
Neurons 16, 32, 64 16 32
Epochs 10, 20, 40 10 20

Separable 2D CNN
Filters 16, 32, 64 16 64
Kernels (1,2), (1,3), (2,2), (3,3) (1,3)n=0 (1,3)n=0

(4,2), (5,3), (8,2), (9,3) (3,3)n>0 (3,3)n>0

Epochs 10, 20, 40 20 40
LSTM

Neurons 8, 16, 32 8 32
Epochs 10, 20, 40 20 40

Several runs of both experiments have been performed using different time
window lenghts n = [0, 4, 9, 19, 29], spanning the dynamics of the chillers be-
tween 1 min and 30 min.

A range of hyperparameters is established after several preliminary runs.
Then, a grid search is performed to tune the hyperparameters of each model,
choosing the best values in each scenario according to the results obtained
with 10-fold cross validation. Table 2 summarizes the hyperparameter tuning
for the best WCC2 and ACC5 models.

MLR linear approximation provides a closed-form and fast solution and
does not requires tuning. The SVR method uses a radial basis function as
kernel with 0.1 gamma coefficient in both models. The penalty parameter C
of the error is established to 10 (WCC2 model) and 0.1 (ACC5 model) and
the epsilon-tube, within which no penalty is associated in the training loss
function, is set to 0.01 (in both models).

The shallow MLP method consists of 3 layers, an input layer with a di-
mension that depends on circuits and time, a hidden layer (16 neurons for
WCC2 model and 32 neurons for ACC5 model) and an output layer (1 unit).
Shallow MLP is trained with backpropagation algorithm and a rectified linear
unit (ReLU) is selected as activation function. The training epochs are 20 for
WCC2 model and 40 for ACC5 model. The deep MLP method consists of 12
layers, an input layer with a dimension that depends on circuits and time, 10
hidden identical layers (with 16 neurons for WCC2 model and 32 neurons for
ACC5 model), and an output layer (1 unit). ReLU is again selected as activa-
tion function. The training epochs are 10 for WCC2 model and 20 for ACC5
model. As described in Section 4.2, for all the above methods the length of
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the input vector is given by Variables × Circuits × Time. For that reason, the
length of the input vector for the WCC2 model ranges from 5 (n=0) to 150
(n=29). On the contrary, for the ACC5 model the dimension of input data
varies from 15 (n=0) to 450 (n=29).

The separable 2D CNN consists of 5 layers, an input layer (Time, Variables,
Circuits), a separable 2D CNN layer comprising two convolutions, a flattening
layer, a dense layer and an output layer (with a dimension of 1). For the WCC2
model, the dimension of the input data ranges from (1,5,1) (n=0) to (30,5,1)
(n=29). On the contrary, for the ACC5 model the dimension of input data
varies from (1,5,3) (n=0) to (30,5,3) (n=29). In the depthwise convolution, a
filter kernel of (3,3) is used to detect patterns among time and variables for
each circuit. Note that a kernel of (1,3) must be applied when input data con-
tains only a timestep (n=0) and the number of depthwise convolution output
channels is 16 (WCC2 model) and 64 (ACC5 model). In the pointwise con-
volution, a filter kernel of (1,1) is applied for all refrigeration circuits, using
the same number of filters that in the depthwise convolution (16 and 64). The
ReLU activation function is selected. No padding is applied, achieving feature
maps with a lower dimension. No downsampling is required due to small size
of input data. After the separable 2D CNN and flattening layers, a fully con-
nected layer for processing the extracted patterns and an output layer with
dimension 1 (soft sensor measurements) are used. The training epochs are set
to 20 for WCC2 model and 40 for ACC5 model.

Finally, the LSTM network consists of 4 layers, an input layer (Time, Vari-
ables × Circuits), a LSTM layer with 8 neurons for WCC2 model and 32
neurons for ACC5 model, a fully connected layer with the same neurons (8
and 32) and the output layer (1 unit). For the WCC2 model, the dimension
of the input data ranges from (1,5) (n=0) to (30,5) (n=29). On the contrary,
for the ACC5 model the dimension of input data varies from (1,15) (n=0) to
(30,15) (n=29). Both hyperbolic tangent and sigmoid are used as activation
functions for all neurons. The training epochs are 20 for WCC2 model and 40
for ACC5 model.

For most methods described above, ReLU is selected as the activation
function since it provided better results than Tanh and Sigmoid in all prelimi-
nary runs. Despite of some ReLU variants have provided slight improvements
in previous works [54], ReLU is simple, requires low computational resources
and speeds up and makes uniform the learning process [19]. A dropout regu-
larization [44] is not used since, in general, it worsens the results, specifically
for Separable 2D CNN that would require a more efficient dropout variant [9].

Experiments are executed on a PC equipped with an Intel Core i7-6700
3.40GHz CPU and 16GB RAM. No GPU memory is used.

5.4 Evaluation metrics

The MAE (Mean Absolute Error) (see Eq. 22), MAPE (Mean Absolute Per-
centage Error) (see Eq. 23) and R2 (coefficient of determination) (see Eq.
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24) have been selected as metrics for evaluation since their values are easily
understood by any engineer [8,37].

MAE =
1

n

n∑
i=1

|yi − ŷi| (22)

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣ (23)

R2 =

(
1−

∑n
i=1(yi − ŷi)2∑n
i=1(yi − ȳi)2

)
100; ȳi =

1

n

n∑
i=1

yi (24)

Any of them provides a direct measurement of the accuracy of the soft
sensor and delimits the error in the cooling production estimation.

6 Results and discussion

In this section, the results obtained for both experiments, i.e., the one with
the water-cooled chiller WCC2 and the one with the air-cooled chiller ACC5,
are presented.

6.1 Validating models for the soft sensor

All methods are trained and validated using a 10-fold cross validation carried
out on 70% of total data for each method and both datasets (WCC2 and
ACC5), considering different dynamics (including previous timesteps). Aver-
age MAE, MAPE and R2 errors are computed, together with the standard
deviations, from the 10 folds. The aim is to validate all candidate models for
the soft sensor.

Table 3 presents the validation results for the WCC2 dataset, where SVR
provides the lowest errors (11.37 KW with regard to 2286 kW and 1.75%)
using 10 minutes of data as input. This model fits almost perfectly the cooling
power data (99.80%). In the worst scenario, the MAE, MAPE and R2 amount
to 12.99 KW, 2.23% and 99.68%, which are similar to those obtained with
any commercial industrial sensor. LSTM and separable 2D CNN methods
also provide low percentage errors, almost always below 2%, and the cooling
production estimation is fitted higher than 99%. Except for MLR, the errors
do not decrease by considering longer periods of previous data. In fact, the
errors are stable in the range of 1-20 minutes for SVR, Separable 2D CNN and
LSTM and increase with the number of timesteps for the shallow and deep
MLP.

Table 4 presents the validation results for the ACC5 dataset. In this case,
the LSTM method provides the lowest errors (13.18 KW with regard to 1407
kW and 2.78%) using 5 minutes of data as input, closely followed by the sep-
arable 2D CNN (13.82 KW with regard to 1407 kW and 2.86%). According
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Table 3: Validation errors for the WCC2 dataset.

WCC2 dataset Time
1min 5min 10min 20min 30min

Methods n=0 n=4 n=9 n=19 n=29
MAE (mean±std)

MLR 25.62±3.59 25.27±3.57 24.83±3.50 24.01±3.44 23.27±3.39
SVR 11.95±1.50 11.42±1.64 11.37±1.62 11.71±1.76 11.84±1.62

Shallow MLP 13.08±2.13 13.33±3.01 14.01±3.37 15.75±3.88 15.01±1.93
Deep MLP 12.95±2.52 13.10±1.71 14.11±3.49 15.91±3.66 14.39±2.37

Sep. 2D CNN 13.02±1.97 12.73±3.42 12.90±2.09 12.90±1.72 15.69±7.53
LSTM 12.49±2.37 12.04±2.57 12.01±2.39 11.56±1.89 12.49±2.32

MAPE (mean±std)
MLR 3.80±1.26 3.76±1.25 3.71±1.22 3.60±1.19 3.50±1.16
SVR 1.83±0.44 1.76±0.48 1.75±0.48 1.80±0.50 1.83±0.52

Shallow MLP 2.00±0.56 2.03±0.66 2.11±0.63 2.31±0.59 2.23±0.40
Deep MLP 1.93±0.44 2.00±0.63 2.14±0.90 2.35±0.73 2.13±0.46

Sep. 2D CNN 1.96±0.59 1.92±0.64 1.96±0.56 1.92±0.55 2.20±0.83
LSTM 1.88±0.46 1.90±0.75 1.81±0.45 1.80±0.54 1.88±0.45

R2 (mean±std)
MLR 98.73±0.92 98.76±0.90 98.80±0.88 98.86±0.85 98.92±0.81
SVR 99.77±0.14 99.79±0.13 99.80±0.12 99.78±0.13 99.77±0.14

Shallow MLP 99.71±0.18 99.71±0.17 99.68±0.17 99.54±0.33 99.64±0.15
Deep MLP 99.72±0.16 99.72±0.17 99.65±0.28 99.60±0.24 99.65±0.21

Sep. 2D CNN 99.72±0.17 99.73±0.19 99.74±0.15 99.72±0.19 99.57±0.38
LSTM 99.74±0.15 99.77±0.15 99.77±0.14 99.78±0.14 99.74±0.17

to R2 metric, the separable 2D CNN fits the cooling power data slightly bet-
ter than the LSTM (95.98% vs 94.34%). In general, the separable 2D CNN
provides better results than the LSTM with other numbers of timesteps. Fur-
thermore, separable 2D CNN brings the lowest standard deviation throughout
the 10 folds. In the worst scenario, the MAE, MAPE and R2 amount to 18.58
KW, 4.15% and 85.23% (using LSTM) or 18.55 KW, 3.91% and 92.4% (using
the separable 2D CNN), which would again be considered admissible values in
industrial applications. SVR also provides low absolute and percentage errors,
around 15 KW and 3%, and a fairly good fit (94%). Most of the methods
(except MLR and separable 2D CNN) provide higher errors as more timesteps
are included as input. In general, we could argue that short periods (1-20
min) of previous data are more appropriate for the estimation of the cooling
production.

Summarizing, from validation results we can observe that, on the one hand,
SVR seems an appropriate method for cooling production estimation in large
chillers with slow variations whereas LSTM and separable 2D CNN are note-
worthy. On the other hand, both LSTM and separable 2D CNN are useful
methods for estimating cooling production in small chillers with fast capacity
changes and several refrigeration circuits. In general, short periods (1-20 min)
of previous data provide more accurate estimations of the cooling production.
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Table 4: Validation errors for the ACC5 dataset.

ACC5 dataset Time
1min 5min 10min 20min 30min

Methods n=0 n=4 n=9 n=19 n=29
MAE (mean±std)

MLR 19.79±5.97 19.62±5.97 19.59±5.94 19.48±5.85 19.36±5.72
SVR 14.69±5.66 14.25±5.86 14.36±5.76 14.22±5.06 14.50±4.82

Shallow MLP 14.81±4.96 16.67±5.45 15.68±7.01 15.30±4.59 16.60±6.56
Deep MLP 14.72±4.34 15.24±5.91 15.13±5.53 15.63±5.26 17.86±5.80

Sep. 2D CNN 14.24±4.66 13.82±4.73 13.61±4.54 14.01±3.88 14.05±4.39
LSTM 14.48±6.33 13.18±5.40 14.42±6.59 17.04±7.23 14.60±5.47

MAPE (mean±std)
MLR 4.19±1.57 4.18±1.59 4.18±1.58 4.16±1.58 4.14±1.56
SVR 3.11±1.47 2.98±1.47 3.00±1.41 2.98±1.22 3.07±1.15

Shallow MLP 3.07±1.22 3.48±1.31 3.30±1.71 3.26±1.27 3.46±1.63
Deep MLP 3.09±1.18 3.23±1.55 3.18±1.41 3.22±1.31 3.67±1.26

Sep. 2D CNN 2.99±1.17 2.86±1.05 2.84±1.08 2.89±0.93 2.92±1.07
LSTM 3.06±1.54 2.78±1.37 3.03±1.61 3.48±1.65 3.01±1.29

R2 (mean±std)
MLR 89.07±12.6 89.72±12.1 89.87±11.8 90.04±11.5 90.30±10.9
SVR 91.94±12.8 93.11±11.1 93.79±9.05 94.73±5.94 94.88±4.41

Shallow MLP 93.86±8.08 91.98±9.98 92.79±11.8 93.36±9.43 91.60±12.2
Deep MLP 93.55±9.44 93.33±14.3 92.81±10.9 92.69±10.1 91.01±9.69

Sep. 2D CNN 95.17±5.07 95.98±3.58 95.11±5.47 95.53±3.82 95.41±4.81
LSTM 93.44±10.3 94.34±9.11 92.37±13.3 92.55±8.16 94.57±6.13

6.2 Testing models for the soft sensor

After validation stage, we proceed to evaluate the models using the test set
(i.e., the remaining part, 30% of the total data) of both datasets (WCC2 and
ACC5). The model estimations are compared with real measurements from
Fluxus F601 meter.

Table 5 presents the test results for the WCC2 dataset. Again, SVR pro-
vides the lowest MAE, MAPE and R2 (13.22 KW, 2.36% and 99.84%, respec-
tively), using 1 minute of data as input (although there are little differences
with other selections of timesteps). It can be seen that test errors are slightly
worse than validation errors for the worst case scenario, for SVR (12.99 KW,
2.23% and 99.68%) and the other methods, likely due to some novelty in the
test dataset. Anyway, all the methods except MLR provide low errors compa-
rable to any commercial industrial sensor with MAE, MAPE and R2 around 16
KW, 3% and 99%. Again, only MLR provides lower errors as more timesteps
are included as input, whereas the nonlinear methods provide slightly higher
errors, with no significant differences in the range 1-10 min.

Table 6 presents the test results for the ACC5 dataset. In this case, sep-
arable 2D CNN obtains the best values of MAE, MAPE and R2 (17.37 KW,
3.44% and 94.92%, respectively), using 30 minutes of data as input. We can
observe that test errors remain in the range of the validation errors for the
worst case scenario for most of the methods, especially for separable 2D CNN
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Table 5: Test errors for the WCC2 dataset (30% of data).

WCC2 dataset Time
1min 5min 10min 20min 30min

Methods n=0 n=4 n=9 n=19 n=29
MAE

MLR 31.96 31.21 30.38 29.00 27.91
SVR 13.22 13.54 13.89 14.15 14.46

Shallow MLP 14.53 15.30 15.63 17.43 17.03
Deep MLP 15.69 15.33 15.77 16.51 17.56

Sep. 2D CNN 14.85 14.72 14.73 15.91 16.80
LSTM 14.12 14.25 14.49 13.80 14.35

MAPE
MLR 4.73 4.64 4.53 4.35 4.20
SVR 2.36 2.39 2.42 2.43 2.43

Shallow MLP 2.55 2.62 2.65 2.81 2.73
Deep MLP 2.72 2.73 2.71 2.81 2.95

Sep. 2D CNN 2.58 2.59 2.59 2.74 2.76
LSTM 2.48 2.56 2.49 2.43 2.50

R2

MLR 98.36 98.46 98.56 98.70 98.80
SVR 99.84 99.82 99.79 99.79 99.77

Shallow MLP 99.79 99.77 99.75 99.64 99.66
Deep MLP 99.74 99.77 99.74 99.72 99.70

Sep. 2D CNN 99.79 99.79 99.80 99.76 99.72
LSTM 99.81 99.81 99.78 99.82 99.79

(18.55 KW, 3.91% and 92.4%). In general, MLR, SVR and shallow MLP have
worse results than separable 2D CNN, LSTM or even deep MLP, which are
able to estimate the cooling production with a high accuracy. Moreover, sepa-
rable 2D CNN provides lower errors as more timesteps are included as input,
whereas MLR have higher errors as well as other nonlinear methods (SVR,
shallow MLP or LSTM). Separable 2D CNN is able to extract temporal pat-
terns efficiently, but it requires longer periods of previous data, whereas other
methods achieve better results using previous data in the range of 1-10 min.

Summarizing, test results confirm the findings from validation results. On
the one hand, SVR seems the best option for estimating cooling production in
large chillers with slow variations although LSTM and separable 2D CNN also
provide acceptable results. On the other hand, separable 2D CNN seems the
best option for estimating cooling production in small chillers with fast capac-
ity changes and several refrigeration circuits, followed by LSTM. With regard
to the time window lengths, short periods (1-10 min) are in general prefer-
able. However, there is not a clear correlation between errors and timesteps
and it depends on the each method and chiller model. For example, for large
chillers (WCC2), the more timesteps are considered the lower errors are ob-
tained using MLR but the higher errors are obtained using separable 2D CNN.
On the contrary, for small chillers (ACC5), the more timesteps are considered
the higher errors are obtained using MLR but the lower errors are obtained
using separable 2D CNN. Indeed, in this case (ACC5 dataset) the separable
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Table 6: Test errors for the ACC5 dataset (30% of data).

ACC5 dataset Time
1min 5min 10min 20min 30min

Methods n=0 n=4 n=9 n=19 n=29
MAE

MLR 28.04 28.92 29.23 30.97 31.60
SVR 19.05 18.89 19.58 19.86 21.13

Shallow MLP 19.10 18.45 18.39 19.09 22.89
Deep MLP 18.65 19.49 18.24 18.82 18.61

Sep. 2D CNN 17.57 17.95 17.92 19.06 17.37
LSTM 17.99 17.93 17.44 18.55 19.20

MAPE
MLR 6.26 6.51 6.59 7.11 7.30
SVR 4.36 3.93 3.96 4.00 4.24

Shallow MLP 3.97 3.86 3.89 4.15 4.89
Deep MLP 3.72 3.87 3.63 3.78 3.75

Sep. 2D CNN 3.63 3.58 3.54 3.74 3.44
LSTM 3.72 3.70 3.59 3.80 3.89

R2

MLR 85.31 83.49 82.86 71.49 66.24
SVR 92.83 94.46 94.42 93.99 92.85

Shallow MLP 93.66 94.30 94.04 91.18 86.67
Deep MLP 94.28 93.43 94.73 94.46 94.34

Sep. 2D CNN 94.84 94.91 94.85 94.02 94.92
LSTM 94.60 94.88 94.90 94.43 93.84

2D CNN provides better results with 30 min. It takes better coherence of
the spatio-temporal relationships in complex data structures (modular chillers
with several circuits and longer time windows).

The aim of this study is to select the most appropriate model in order to
build a soft sensor which estimates cooling production in chillers. A versatile
soft sensor should provide good estimations regardless the kind of chiller. For
that reason, separable 2D CNN will be chosen, since it was found the best
option for small chillers with several refrigeration circuits and the third option
for larger chillers.

Fig. 5 shows the test results (30% data) of cooling production estimation
for both chillers (WCC2 and ACC5) using separable 2D CNN (with a time
window of 1 and 30 min, respectively). For WCC2 (see Fig. 5a), cooling power
can be estimated with MAE, MAPE and R2 of 14.85 KW (with regard to
2286 kW), 2.57% and 99.79%. This accuracy encourages to deploy the soft
sensor, instead of installing a real sensor in the output pipe. For ACC5 (see
Fig. 5b), MAE, MAPE and R2 are 17.37 KW (with regard to 1407 kW), 3.44%
and 94.92%. In this case, the accuracy worsens slightly due to the number of
changes in chiller capacity, needed to cover a varying building cooling load.
However, it can still be considered admissible. Furthermore, errors are clearly
lower when focusing only on stable regions.
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Fig. 5: Cooling production estimation using the soft sensor (separable 2D
CNN).

6.3 Monitoring COP using the soft sensor

The final aim of the soft sensor is to assess the chiller efficiency. For that
purpose, the estimated COP value is reported, computed using the cooling
power estimation and the measured electric power for the test set of both
chillers (WCC2 and ACC5). Fig. 6 shows the COP ranges for both chillers.

For WCC2 (see Fig. 6a), estimated COP spans from 2.6 to 8, being its
average 5.25. Extreme values correspond to unstable periods such as chiller
starts/stops and to low cooling capacities, what certainly worsens the effi-
ciency in large chillers. Although the refrigerant conditions are slightly differ-
ent, the average COP (5.25) is lower than the nominal value (6.23). Moreover,
that chiller runs for a long time with a COP below the average value. This
situation reveals an amendable operation, especially with low cooling capaci-
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Fig. 6: Monitoring COP using the soft sensor.

ties. Therefore, actions lead to improve the operation of this chiller should be
carried out.

For ACC5 (see Fig. 6b), estimated COP spans from 2.6 to 6.8, being its
average 4.27. In this case, COP values are more concentrated around the aver-
age value, revealing a more efficient operation. Furthermore, the average COP
(4.27) is almost equal to the nominal value (4.3), despite slightly different
refrigerant conditions. Note that extreme values correspond mainly to chiller
starts/stops.

7 Conclusions

In this paper, a methodology is proposed to build a soft sensor, which allows us
to estimate cooling production and monitoring efficiency in chillers. It requires
a relatively low-cost and simple infrastructure. During the production period,
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the estimation of the cooling production is done in the inference phase of the
designed model, thereby demanding low computational effort. For training and
testing periods, however, it involves more computational resources, as well as
the exceptional availability of a portable cooling power meter to measure and
record actual cooling power data under a range of conditions. The proposed
soft sensor uses independent variables, such as internal states of the chillers
(temperatures and pressures of the refrigeration gas) and input electric power,
for the estimation of cooling power. The development of the soft sensor can
benefit from current or past observations of those independent variables.

Six methods (MLR, SVR, shallow MLP, deep MLP, separable 2D CNN
and LSTM) are considered to develop the model for the soft sensor. A 10-
fold validation is performed to set their hyperparameters and, after test stage,
the most appropriate method (according to MAE, MAPE and R2 metrics) is
chosen to implement the soft sensor. Experiments have been performed using
two different chillers located at the Hospital of León (one water-cooled and
one air-cooled chiller).

Deep learning methods, such as separable 2D CNN and LSTM, seem
promising with relative errors from 2.5% to 3.5% in the cooling production
estimation and justify the use of the soft sensor in real installations. Although,
for large chillers with slow dynamics and one refrigeration circuit, traditional
methods such as SVR can provide accurate measurements, even with a lower
computational cost than deep learning methods, they are not as successful for
the estimation of cooling production in small chillers with fast dynamics and
many refrigeration circuits. On the contrary, deep learning methods such as
separable 2D CNN provide accurate measurements for both small and large
chillers, considering different timesteps in each case. Separable 2D CNN takes
advantage of the structure of data (time, variables and refrigeration circuits),
providing excellent results in all scenarios and so it is the method chosen to
build the soft sensor.

The development of the soft sensor is valuable for several reasons: First, the
estimations of the soft sensor can avoid the installation of expensive industrial
flow and energy meters or can replace portable measuring systems. Second, the
estimation of cooling power (output) together with the electric power (input)
enables monitoring and tracking the efficiency in chillers. In this paper, COP is
chosen as the energy efficiency indicator and so the histogram with COP values
is presented for both chillers. Third, this methodology can be applicable to any
chiller, resulting in a low cost and easy approach to monitor its efficiency.

As future work, it would be interesting to analyze a finer-grain selection of
hyperparameters, which might lead to more accurate conclusions about their
effect in the performance. Furthermore, this work can be extended by imple-
menting the best-performing model in a low-cost embedded board in order to
develop a prototype of portable sensor, which can be deployed in production
environments. The implementation of the soft sensor would require deploying
and running the models into a single-board computer, adjusting sensor pa-
rameters and communicating with the chiller control board or building man-
agement system to acquire independent variables.
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