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14 ABSTRACT: 

15 This study describes a method for delineating management zones using interpolated maps of grape 
 

16 characteristics recorded in 2013 and 2014 in a Godello vineyard located in the Bierzo Denomination of 
 

17 Origin (León, Northwest Spain). Ten variables were analyzed and recorded for the sampled vines (50 
 

18 vines/ha). Interpolated maps reflecting each variable and year were created by spatial interpolation 
 

19 (kriging) from the sampled points. Principal component analysis was used to detect relationships 
 

20 between variables and to select the variables to be used to create the cluster classification. Using the 

21 fuzzy k-means classification algorithm implemented in the Management Zone Analyst (MZA v.1.0.0) 
 

22 software, several zones were delineated by combining the studied variables. The results delineated 2 
 

23 different management areas composed of 3 zones each based on winery objectives: (1) to increase grape 
 

24 production (combining the yield for 2013 and 2014); and (2) to improve grape composition (combining 
 

25 the pH for 2013 and 2014). 
 

26 
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30 Highlights 

 
31 

 
32 Delineate management zones improves the management of vineyards. 

 
33 Management zones were delineated using interpolated maps of grape variables. 

 
34 PCA was used to select variables as inputs for the fuzzy k-means classification. 

 
35 Zone location and number were optimized using MZA software and the fuzzy k-means algorithm. 

 
36 The results were 2 new zones: one to raise grape production and other to improve grape composition. 

 
37 Abbreviations 

38 TA: titratable acidity (kg·m-3) 

39 BW: weigh of 100 berries (kg·10-3) 

40 MI maturity index (TSS·TA-1) 

41 CW: cluster weight (kg·10-3) 

42 PW: shoot pruning weight (kg·10-3m-1) 

43 RI: Ravaz index (Y·PW-1) 
 

44 TSS: TSS: total soluble solids (ºBrix) 
 

45 WS: weight of shoots (kg·10-3) 
 

46 Y: yield (kg·10-3m-1) 
 

47 
 

48 
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49 1. Introduction 

50 Grape production and quality are not even within the same parcel. Moreover, the spatial variability of 
 

51 the variables that define grape production and quality are not stable between campaigns, although the 
 

52 distribution pattern tends to remain the same (Arnó et al., 2011). One approach to optimize production 
 

53 goals is to delineate homogeneous blocks for separate management (Proffitt et al., 2006). The use of 
 

54 different management zones means better management of cropping practices, including segregated 
 

55 harvests and the establishment of monitoring points (Santesteban et al., 2010). The management zoning 
 

56 approach is usually used in vineyards in Australia, Chile, New Zealand, South Africa and the USA. For 
 

57 Australian vineyards, Bramley and Hamilton (2004) identified zones with similar yield characteristics, 
 

58 and Bramley (2005) identified zones based on maturation and quality variables. For Chilean vineyards, 
 

59 Esser and Ortega (2002) delineated homogeneous zones according to soil characteristics and related 
 

60 these with grape composition, production and vigor variables. In USA, California, Johnson et al. (2001) 
 

61 delineated management zones according to vine vigor. In Spain, Arnó et al. (2005) related yield maps 
 

62 with leaf petiole composition, and González-Fernández et al. (2016) identified homogeneous zones on 

63 the basis of a combination of grape composition, production and vigor variables. 

64 Delineating zones with similar characteristics requires an understanding of the spatial stability of the 
 

65 variables that define final grape characteristics (Keller, 2015), such as grape composition and production 
 

66 (Cortell et al., 2005). Grape composition is usually defined by total soluble solids (TSS), which 
 

67 estimates the probable alcohol content of the wine (Alburquerque et al., 2007). pH and titratable acidity 
 

68 (TA) define the acidity of grapes and the organoleptic characteristics of a wine (Blouin and 
 

69 Guimberteau, 2003). Production variables like yield (Y), Mean weight of one cluster calculated from the 

70 ratio Y/number of clusters (CW) and the weight of a sample of 100 berries (BW) depict the productive 

71 potential of a vineyard. The inverse relationship between grape composition and production variables 



4  

72 has been widely documented (González-Fernández et al., 2012). At maturity, grape size increases due to 
 

73 water accumulation in the berry; however, if water accumulation is excessive, the concentrations of the 
 

74 components that determine quality drop, although the quantities remain the same (Walker et al., 2005). 
 

75 Production variables are directly related to vine vigor variables like mean shoot weight (WS) and total 
 

76 pruning weight (PW). Production variables are directly related to vine vigor variables like mean shoot 
 

77 weight (WS) and total pruning weight (PW). To produce quality wine, some authors (Cortell et al., 
 

78 2005) recommend ensuring vine balance, estimated using the Ravaz index (RI), which is the ratio 
 

79 between Y and PW (Ravaz, 1911). The recommended RI range is between 4 and 10 (Champagnol, 
 

80 1984). 
 

81 For financial and practical reasons, determination all variables related to production and quality for all 
 

82 vines in a vineyard is not possible. One solution is to select a sample of vines from a plot and interpolate 
 

83 the data to the whole area. Goovaerts (1999) indicated that the value of a variable studied in 2 different 
 

84 locations will be more similar for nearer locations. Of several interpolation techniques available (inverse 
 

85 distance, triangulation, etc.), kriging is widely used because it considers data variability from the 

86 variogram and usually results in lower error than other techniques (Brooker, 1986). 
 

87 Several multivariate analysis methods are available to delineate management zones. A useful tool for 
 

88 delineating management zones is cluster classification analysis, which classifies individual data into 
 

89 different classes (clusters). The individuals belonging to each homogeneous cluster are grouped 
 

90 according to proximity criteria defined by a distance function (Urretavizcaya et al., 2014). One of the 
 

91 most widely used cluster algorithms is fuzzy k-means, which groups data into k classes whose centroid 

92 reflects the minimum Euclidean distance from each data point (Tagarakis et al., 2013). In a study of 

93 management zone delineation according to yield, Arnó et al. (2011) compared the k-means and fuzzy k- 

94 means algorithms, concluding that fuzzy k-means led to more compact and balanced zones over time. 
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95 Baluja et al. (2013) used fuzzy k-means classification to identify management zones for the production 
 

96 of different types of Spanish wines. For a study of Greek vineyards, with yield and grape composition as 
 

97 the reference variables, Tagarakis et al. (2013) used fuzzy k-means to delineate homogeneous blocks 
 

98 according to the vegetation index and soil characteristics. Urretavizcaya et al. (2014) used fuzzy k- 
 

99 means to investigate the importance of early berry sampling in defining management zones. 
 

100 Our aim was to optimize the management of the plot by delineating management zones according to 
 

101 grape composition, production and vigor variables using the fuzzy k-means algorithm. The novelty of 
 

102 this study in relation to previous studies is that input are grape composition and production variables 
 

103 using variables measured by winegrowers that do not require specific additional variables for 
 

104 delineation. 
 

105 
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106 2. Materials and Methods 

107 2.1. Study site and experimental layout 
 

108 The study was conducted in a vineyard cv. Godello (rootstock SO4: Vitis berlandieri and Vitis riparia) 
 

109 measuring 22704.3 m2, located in the Bierzo Denomination of Origin (León, Northwest Spain; 42.606 
 

110 N, 6.692W (WGS84)). The vineyard, planted in 1992 in a 1.1 m x 3.0 m pattern, is formed of bilateral 
 

111 cordons and vertical shoots positioned with 2 pairs of wires. Cultivation practices (weed control, 
 

112 fertilization, tillage, phytosanitary treatments, etc.) are the same for the whole plot. 
 

113 To create the management zones, 50 vines/ha were sampled by choosing 1 line in 5 and 1 vine in 10 in 
 

114 each line. Each sampled vine was geo-referenced using a centimeter-precision Topcon Hiper+ GPS 
 

115 receiver (Topcon Corporation, Tokyo, Japan) with real-time kinematic correction. The vineyards were 
 

116 sampled in 2013 and 2014 in order to characterize grape composition, production and vine vigor 
 

117 variables. 
 

118 
 

119 2.2. Workflow 

120 The methodology involved 3 main steps: (1) data collection (physical and chemical analyses of grape 

121 composition, production and vine vigor variables); (2) statistical characterization; and (3) mapping 
 

122 (spatial interpolation, clustering and delineation of zones) and selection of suitable cluster classifications 
 

123 (Fig. 1). Grape composition and production variables were measured immediately after data collection. 
 

124 Principal components analysis (PCA) was implemented to study the relationship between variables and 
 

125 to select cluster combinations. Spatial autocorrelation was depicted in a semivariogram aimed at fitting 
 

126 the best model to interpolated maps created for each variable and year. Spatially interpolated maps of 

127 grape composition, production and vine vigor variables were included in a cluster classification and the 

128 optimal number of zones and the most suitable cluster classification were selected. 
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129 
130 Fig. 1: Flowchart of the most suitable variables for delineating zones identified by the fuzzy k-means 

 
131 algorithm. 

 
132 

 
133 2.3. Data collection 

 
134 2.3.1. Grape composition 

135 In September of each year (2013 and 2014), 30 berries were picked from each of the 2 cordons of the 

136 selected vine, and another 30 were picked from the nearest cordon of the 2 adjacent vines (total 120 
 

137 berries). Immediately after picking the berries were placed in hermetically sealed plastic bags and stored 
 

138 in a cooler to preserve their characteristics. They were then crushed and the juice filtered through 
 

139 cheesecloth to determine TSS, pH and TA. 
 

140 The wet chemical analyses were performed following standard methods (European Commission 
 

141 Regulation (EC) No 2676/90). TSS (ºBrix) was determined at 20°C using an Atago PR1 digital 
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142 refractometer (Atago Co., Tokyo, Japan); pH was measured using a Crison GLP21 electronic pH-meter 
 

143 (Crison Instruments, S.A., Alella, Barcelona, Spain); and TA was determined by acid-base titration 
 

144 using sodium hydroxide (0.1 N) to an endpoint pH of 8, with values expressed as tartaric acid (g/L). 
 

145 Grape maturity was defined by the maturity index (MI) as the ratio between TSS and TA (Bisson, 2001). 
 

146 
 

147 2.3.2. Production 
 

148 Picked grapes were weighed to calculate the weight of 100 berries (BW; kg·10-3). At harvest time, 
 

149 following the same criterion as applied to the sampled grapes, all the clusters were weighed and counted. 
 

150 Distance between the nearest cordon of 2 adjacent vines was measured, and total grape production was 
 

151 expressed per linear meter so as to obtain Y (kg·10-3 m-1). The number of clusters was used to calculate 
 

152 CW (kg·10-3). 
 

153 
 

154 2.3.3. Vigor 
 

155 The vigor variables were determined during dormant periods in December in 2013 and 2014. All 

156 sampled vines were pruned. Shoots were weighed and counted in order to calculate PW (kg·10-3m-1) and 
 

157 WS (kg·10-3). RI was calculated as the ratio between Y and PW (Ravaz, 1911). 
 

158 
 

159 2.4. Statistical preprocessing 
 

160 The collected data were first analyzed to detect and delete potential outliers and then PCA without 
 

161 rotation was applied to the grape composition, production and vine vigor values. These statistical 
 

162 analyses were carried out using the software package SPSS v.21.0 (SPSS Inc., Chicago, Illinois, USA). 
 

163 
 

164 2.5. Mapping 
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165 2.5.1. Variogram analysis and spatial interpolation 
 

166 Experimental variograms were calculated for each variable measured in 2013 and 2014 and for the 
 

167 mathematical average for both years. The variogram estimator used was the classical variogram 
 

168 (Panatier, 1996). No restrictions for distance were applied as we used a lag distance greater than the size 
 

169 of the work area. A variogram grid of 200 radial divisions was used and 180 angular divisions were also 
 

170 considered in order to allow subsequent anisotropic analysis. The experimental variograms were 
 

171 modeled using 2 components; the first was a nugget effect (Cressie, 1991) and the second was either a 
 

172 linear or spherical component (Panatier, 1996), depending on whether or not model length was greater 
 

173 than the maximum lag distance. Anisotropy with 2 perpendicular main directions and a tolerance of 60 
 

174 degrees was considered. The parameters of the model components were fitted manually with the help of 
 

175 interactive graphics that considered different numbers of lags and different anisotropy directions. The 
 

176 experimental variograms were used to obtain continuous grids or maps for each vineyard variable. Point 
 

177 kriging was the interpolation method used (Isaaks and Srivastava, 1989). Variogram analyses and 
 

178 interpolations were performed using Surfer 11.0.642 software (Golden Software Inc, Golden, Colorado, 

179 USA). 
 

180 
 

181 2.5.2. Cluster and zone delineation 
 

182 Mapped grape composition, production and vine vigor variables were input to the cluster classification 
 

183 by fuzzy k-means algorithm using Management Zone Analyst (MZA) 1.0.0 software (Agriculture 
 

184 Research Service, University of Missouri-Columbia, USA), which creates potential management zones 

185 using unsupervised fuzzy classification. MZA software provides concurrent output for a range of 

186 numbers of clusters, so that the user can identify the optimal number of management zones (Fridgen et 

187 al., 2004). MZA calculates statistical data, including the variance-covariance matrix values used to 
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188 select the method of similarity in the zone delineation process, depending on the case: one classification 
 

189 variable (Euclidean), equal variances and covariances nearest to 0 (Euclidean), unequal variances and 
 

190 covariances  nearest  to  0  (Diagonal),  or  unequal  variances  and  covariances  different  from  0 
 

191 (Mahalonobis). The optimal number of management zones is defined by normalized classification 
 

192 entropy (NCE) and the fuzziness performance index (FPI). NCE indicates the disorganization resulting 
 

193 from dividing the dataset into different classes. FPI (values between 0 and 1) denotes the degree of 
 

194 separation between created classes, with values closer to 0 indicating greater separation between classes 
 

195 (Fridgen et al., 2004). In both NCE and FPI, the optimal number of zones is indicated by a minimum 
 

196 value. 
 

197 PCA was used to plot the scores and to identify variable clusters as a criterion to select variables to be 
 

198 used as inputs for the MZA software. In order to optimize the selection of variables for zoning 
 

199 delineation, we sought the minimum number of variables that contained the maximum of information 
 

200 about the vineyard. In this research, the delineation zones corresponded to cluster classifications created 
 

201 by using (1) different input combinations for each variable for both study years, (2a) different input 

202 combinations in function of PCA groups for both study years, and (2b) different input combinations in 
 

203 function of PCA groups for each study year separately. 
 

204 Visualizing the spatial distribution of site-specific management units resulting from the delineated zones 
 

205 is crucial. Moreover, given that the study was conducted in a commercial vineyard, the selected zones 
 

206 had to be based on both statistical results (lowest FPI and NCE) and implementation feasibility (shape of 
 

207 the delineation zones). The management zones defined by the MZA were thus mapped using ArcGIS 

208 v10.2 software, with the spatial location of the zones used as a criterion to compare the different zones. 
 

209 
 

210 



11  

211 3. Results 

212 3.1. Principal components analysis 
 

213 PCA was conducted on the correlation matrix produced from the 10 variables for the Godello grape 
 

214 variety over 2 years (Fig. 2). The PCA plots provided a visual overview of how different variables were 
 

215 influenced by years. Principal components (PC) 1, 2 and 3 had eigenvalues that were greater than 1.0. 
 

216 The first 3 PCs explained 73.88 % of the total variance (PC 1: 30.37%; PC 2: 24.29%; PC 3: 19.22 %) 
 

217 (Fig. 2). Furthermore, loading for PC 1 and PC 2 indicated that some variables described the same 
 

218 variation among samples. The underlying dimension for PC 1 was grape composition and vigor 
 

219 variables, with positive loading for WS (0.77), PW (0.76) and TA (0.68) but negative loading for MI (- 
 

220 0.79), TSS (-0.61) and RI (-0.61) on the left side of the plot. PC 2, which referred to production 
 

221 variables, was loaded positively for CW (0.82), Y (0.73) and BW (0.53). PC 3 was loaded positively for 
 

222 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

223 
224 

pH (0.65). 
 

Fig. 2: Principal components extracted by factorial analysis of all the studied parameters. The main 
 

225 components were calculated for grape, production and vigor parameters measured in 117 vines for the 2 
 

226 studied harvests (A 2013 and B 2014). 
 

227 Input variables: Composition variables: TSS: total soluble solids (ºBrix); TA: titratable acidity (g·L-1); MI maturity index. 
228 Production variables: BW: weigh of 100 berries (kg·10-3); CW: cluster weight (kg·10-3); Y: yield (kg·10-3m-1). Vigor 
229 variables: PW: shoot pruning weight (kg·10-3m-1); WS: weight of shoots (kg·10-3); RI: Ravaz index. 
230 
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231 Since the relationships between variables had to be studied while minimizing the influence of the 
 

232 environment, all variables for the 2 years were included in the PCA. The above results indicate that the 
 

233 grape composition and vigor variables were related to PC 1, while the production variables were related 
 

234 to PC 2. 
 

235 
 

236 3.2. Fuzzy k-means 
 

237 A total of 22 cluster classifications were created following the criteria cited in Materials and Methods 
 

238 (Table 1), 10 obtained by combining data for each variable for both study years (1), 4 obtained as 
 

239 different input combinations in function of PCA groups for both study years (2a), and 8 obtained as 
 

240 different input combinations in function of PCA groups for each study year separately (2b). Note that 
 

241 CC21 cluster classifications remained once pH for the 2 study years was combined, following the 
 

242 criterion of combining variables for both study years (1) and for combining variables detected by the 
 

243 PCA for both study years (2a). 
 

244 Looking at the combined data for the 2 study years for each variable (1), FPI and NCE values were 

245 lowest for the cluster classification created with Y for 3 zones (CC5; FPI=0.0327 and NCE=0.0157); 
 

246 next lowest were those for CC2 (FPI=0.0359; NCE=0.0195) and CC3 (FPI=0.0449; NCE=0.0215). The 
 

247 highest FPI and NCE values were obtained for CC8 (0.0750 and 0.0372, respectively). All cluster 
 

248 classifications were created using the Mahalanobis method to measure similarity. The results indicate 
 

249 that 3 was the optimal number of zones for most of the cluster classifications created by combining data 
 

250 for each variable for the 2 study years. 

251 Looking at the different input combinations in function of PCA groups for both study years (2a), CC3 

252 obtained the lowest PFI and NCE (0.0449 and 0.0215, respectively), while CC11 obtained the highest 
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253 PFI and NCE (0.176 and 0.0948, respectively). The Mahalanobis method was again the measure of 
 

254 similarity used and the optimal number of zones was 3. 
 

255 
 

256 Table 1: Parameters of the cluster classifications (Fuzzy K-Means) used to the study 
 

Classification Cluster Input Method of N FPI NCE 
type classification variables similarity    

 CC1 TSS 13; TSS 14 Mahalanobis 3 0.0529 0.0258 
 CC2 TA 13; TA 14 Mahalanobis 4 0.0359 0.0195 
 CC3 pH 13; pH 14 Mahalanobis 3 0.0449 0.0215 
 CC4 MI 13; MI 14 Mahalanobis 3 0.0574 0.028 

1 CC5 Y 13; Y 14 Mahalanobis 3 0.0327 0.0157 
 CC6 CW 13; CW 14 Mahalanobis 3 0.0488 0.024 
 CC7 BW 13; BW 14 Mahalanobis 3 0.0537 0.0261 
 CC8 PW 13; PW 14 Mahalanobis 3 0.0759 0.0372 
 CC9 WS13; WS 14 Mahalanobis 3 0.0516 0.0254 
 CC10 RI 13; RI 14 Mahalanobis 3 0.0469 0.0226 
 CC11 TA 13; TA 14; WS 13; WS 14; PW 13; PW 14 Mahalanobis 3 0.176 0.0948 

2a CC12 TSS 13; TSS 14; RI 13; RI 14; MI 13; MI 14 Mahalanobis 5 0.1107 0.0735 
 CC13 CW 13; CW 14; BW 13; BW 14; Y 13; Y 14 Mahalanobis 3 0.1481 0.0815 
 CC3 pH 13; pH 14 Mahalanobis 3 0.0449 0.0215 
 CC14 TA 13; WS 13; PW 13 Mahalanobis 3 0.0963 0.0496 
 CC15 TSS 13; RI 13; MI 13 Mahalanobis 3 0.0907 0.0467 
 CC16 CW 13; BW 13; Y 13 Mahalanobis 4 0.0711 0.0399 

2b CC17 pH 13 Euclidean 2 0.0199 0.0071 
 CC18 TA 14; WS 14; PW 14 Mahalanobis 4 0.0863 0.049 
 CC19 TSS 14; RI 14; MI 14 Mahalanobis 4 0.0665 0.0378 
 CC20 CW 14; BW 14; Y 14 Mahalanobis 2 0.0729 0.0411 
 CC21 pH 14 Euclidean 2 0.0308 0.0109 

257 Type of classification: 1: using different input combinations of each variables combining the 2 years of the study. 2a: 
258 different input combinations in function of PCA groups combining the 2 years of the study. 2b different input combinations 
259 in function of PCA groups for each year of the study. 
260 Input variables: Composition variables: TSS: total soluble solids (ºBrix); TA: titratable acidity (g/L); MI maturity index. 
261 Production variables: Y: yield (kg·10-3m-1); CW: cluster weight (kg·10-3); BW: weigh of 100 berries (kg·10-3); Vigor 
262 variables: PW: shoot pruning weight (kg·10-3m-1); WS: weight of shoots (kg·10-3); RI: Ravaz index. Year: 13: sampled in 
263 2013; 14: sampled in 2014. 
264 N: optimal number of management zones; FPI: fuzziness performance index; NCE: normalized classification entropy. 
265 
266 

 
267 For different input combinations in function of PCA groups for each study year separately (2b), CC17 

 
268 and CC21 obtained the lowest FPI (0.0199 in 2013 and 0.0308 in 2014) and NCE (0.0071 in 2013 and 

 
269 0.0109 in 2014). These were the only cluster classifications for which the Euclidean measure of 

270 similarity method was used. CC14 had the highest FPI and NCE (0.0963 and 0.0496, respectively). 
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271 In general, the lowest FPI and NCE values were obtained for CC17 and CC21, followed by 
 

272 combinations of CC5, CC2 and CC3. The highest FPI and NCE values were obtained for CC11 (0.176 
 

273 and 0.0948, respectively). As mentioned above, 3 was detected as optimal number of management 
 

274 zones. Although the CC8 cluster obtained the highest FPI and NCE values (combining data for the 2 
 

275 years of the study) for each variable (1), these values were lower than when the classification according 
 

276 to PCA groups (2a and 2b) was used, except for the clusters that used pH (CC3, CC17 and CC21). 
 

277 
 

278 3.3. Management zone maps 
 

279 Maps were created with the optimal number of zones for each cluster classification. 
 

280 (1) Input combinations for each variable for both study years 
 

281 Maps created using the optimal zones based on the combinations for each variable for both study years 
 

282 are shown in Fig. 3. It can be observed that vigor variables showed no clear spatial distribution, as the 
 

283 zones were mixed within the plot. CC10 was the only cluster classification that input vigor variables 
 

284 with defined zones in the plot, denoting zone 2 in the center, zone 3 in the northeast and zone 2 in the 

285 northwest and southeast. 
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286 

287 Fig. 3: Management zone maps based on using different input combinations of each variable combining 

288 the 2 years of the study. 
 

289 Composition variables: CC1: Combination of total soluble solids (ºBrix) measured in 2013 and 2014; CC2: Combination of 
290 titratable acidity (g·L-1) measured in 2013 and 2014; CC3 Combination of pH measured in 2013 and 2014; CC4: 
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291 Combination of maturity index measured in 2013 and 2014. Production variables: CC5: Combination of yield (kg·10 -3m-1) 
292 measured in 2013 and 2014; CC6: Combination of: cluster weight (kg·10-3) measured in 2013 and 2014; CC7: Combination 
293 of the weight of 100 berries (kg·10-3) measured in 2013 and 2014; Vigor variables: CC8: Combination of shoot pruning 
294 weight (kg·10-3m-1) measured in 2013 and 2014; CC9: Combination of weight of shoots (kg·10-3) measured in 2013 and 
295 2014; CC10: Combination of Ravaz index measured in 2013 and 2014. 
296 

 
297 Combinations using the production variables point to the cluster classification created with CC5, with 

 
298 zone 1 located in the central part of the plot, zone 2 in the northeast and zone 3 in the parts of the plot 

 
299 with the lowest elevation (northwest and southeast). 

 
300 Maps created using grape composition variables as input showed that combination of CC2 and CC3 

 
301 were the most spatially defined zones. For CC2, 4 defined zoned were identified (zone 1 in the north- 

302 center, zone 2 in the northwest, zone 3 in the south and zone 4 in the northeast). CC3 showed 3 clear 

303 zoned distributed as zone 1 in the western part of the plot, zone 2 in the center and zone 3 in the east. 
 

304 
 

305 (2a) Input combinations in function of PCA groups for both study years 
 

306 Maps created using the optimal zones based on combinations of variables in function of PCA groups for 
 

307 both study years are shown in Fig. 4. Again, CC3 was the cluster classification which best defined 
 

308 zones. 
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309 

310 Fig. 4: Management zone maps based on using different input combinations in function of PCA groups 
 

311 combining the 2 years of the study (2013-2014) and for each year of the study (2013 or 2014). 
 

312 2013-2014: CC11: Combination of titratable acidity (g·L-1), weight of shoots (kg·10-3) and shoot pruning weight (kg·10-3m-1) 
313 measured in 2013 and 2014; CC12: Combination of total soluble solids (ºBrix), Ravaz index and maturity index measured in 
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314 2013 and 2014; CC13: Combination of yield (kg·10-3m-1), cluster weight (kg·10-3) and weight of 100 berries (kg·10-3) 
315 measured in 2013 and 2014; CC3 Combination of pH measured in 2013 and 2014. 2013: CC14: Combination of titratable 
316 acidity (g·L-1), weight of shoots (kg·10-3) and shoot pruning weight (kg·10-3m-1) measured in 2013; CC15: Combination of 
317 total soluble solids (ºBrix), Ravaz index and maturity index measured in 2013; CC16: Combination of yield (kg·10-3m-1), 
318 cluster weight (kg·10-3) and weigh of 100 berries (kg·10-3) measured in 2013; CC17 Combination of pH measured in 2013. 
319 2014: CC18: Combination of titratable acidity (g/L), weight of shoots (kg·10-3) and shoot pruning weight (kg·10-3m-1) 
320 measured in 2014; CC19: Combination of total soluble solids (ºBrix), Ravaz index and maturity index measured in 2014; 
321 CC20: Combination of yield (kg·10-3m-1), cluster weight (kg·10-3) and weigh of 100 berries (kg·10-3) measured in 2014; 
322 CC21 Combination of pH measured in 2014. 
323 
324 

 
325 The group created with the production variables, CC13, had a very similar distribution as the group 

 
326 created using the combination of CC5, with zone 2 in the central part of the plot, zone 1 in the northeast 

 
327 and zone 3 in the lower elevation zones (northwest and southeast). 

 
328 Using CC11 as input, zone 2 was located in the northeast of the plot and zone 3 in the south; zone 1 was 

 
329 in the north-center and northwest, but mixed with parts of zones 2 and 3. 

 
330 The map created by CC12 had 5 zones mixed in the plot, so was not considered suitable for the creation 

 
331 of management zones. 

 
332 

 
333 (2b) Input combinations in function of PCA groups for each study year separately 

 
334 Maps created using the optimal zones based on combinations of variables in function of PCA groups for 

 
335 each study year are shown in Fig. 4, which indicates that CC17 and CC21, both with 2 zones, were the 

 
336 cluster classifications with the best defined spatial distributions: zone 1 in the center and western part of 

 
337 the plot and zone 2 in the east. The same trend was evident for CC20 but the combination of these 

 
338 variables for 2013, that is CC16, had 4 optimal zones that were mixed within the plot. 

 
339 The rest of the combinations showed no defined spatial distribution, as management zones were 

 
340 intermixed in the plot. 

 
341 

 
342 
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343 4. Discussion 

344 The studied vineyard is currently managed as one block. However, more suitable zone-based 
 

345 management needs to take into account other variables, including grape characteristics. Kontoudakis et 
 

346 al. (2011), for instance, indicated that a low percentage of weak-quality grapes reduces the organoleptic 
 

347 quality of wines. To achieve the winery objectives, it is necessary to study the spatial distributions of 
 

348 variables based on winery specifications (Tagarakis et al., 2014). The methodology described above is a 
 

349 useful approach to improving management zone delineation by wineries. 
 

350 
 

351 4.1. Selection of suitable input variables 
 

352 Obtaining grape composition, production and vigor variables, as well as requiring hard work over a 
 

353 short period of time, is an impractical approach if measurements have to be repeated during the growing 
 

354 season. To simplify fieldwork, it is desirable to define management zones with the lowest possible 
 

355 number of variables. We combined and studied data on each variable referring to 2 years. 
 

356 However, in studies by Urretavizcaya et al. (2014) and Tagarakis et al. (2014), the differentiated 

357 management zones created by combining more than 1 variable (TSS, TA, pH, total phenolic content, 

358 malic acid concentration, tartaric acid concentration, yeast assimilable nitrogen, total anthocyanins and 
 

359 extractable anthocyanins in the case of the former, and TSS, TA, BW and total anthocyanin content in 
 

360 the case of the latter) resulted in greater vine potential than resulted from using a single variable. Keller 
 

361 (2015) concluded that grape characteristics were defined by berry composition and other variables were 
 

362 defined as production variables. The PCA was conducted to study possible relationships between 
 

363 variables and to select suitable combination of variables to input into the cluster classification. The PCA 

364 showed that production variables were related, as they were all located in the same group (Jolliffe, 

365 2002). Grape composition and vigor variables were mixed in 2 groups. pH was located in an isolated 
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366 group, probably due to the inverse relationship between pH and the other grape composition variables 
 

367 (Kodur, 2011; Saxton et al., 2009). 
 

368 
 

369 4.2. Cluster classifications 
 

370 The 22 cluster classifications with 1 or more variables were studied and compared. Following Tagarakis 
 

371 et al. (2013), in order to obtain the cluster classifications we used the Euclidean measure of similarity for 
 

372 cluster classifications with a single variable and otherwise the Mahalanobis method. Lower FPI and 
 

373 NCE values were obtained using combinations of a single variable. The lowest values were obtained 
 

374 using pH for each year (CC17 and CC21), with 2 as the optimal number of zones. The next lowest NCE 
 

375 and FPI values were obtained by CC5, CC2 and CC3. The optimal number of zones was 3 for CC5 and 
 

376 CC3 and 4 for CC2. 
 

377 CC3, which combined pH for the 2 study years, was the only PCA group with a low FPI and NCE. 
 

378 Although the location of management zones in the map combining the production variables, CC13, was 
 

379 similar to that for CC5, CC13 obtained one among the highest FPI and NCE values. Obviously, using a 

380 single value to delineate management zones makes sampling easier. So, in contrast with the conclusions 
 

381 of Tagarakis et al. (2014) and Urretavizcaya et al. (2014), we found that the most suitable cluster 
 

382 classifications were obtained using a single variable. Bearing in mind the conclusions of Arnó et al., 
 

383 (2012) and Urretavizcaya et al. (2014) that the most suitable zones for top quality wines had more 
 

384 favorable grape composition variables compared to production variables, we studied individual 
 

385 management zones in function of each group of variables, that is, grape composition, production and 

386 vigor. Delineating the same vineyard in more than one type of management zone in order to achieve 

387 winery objectives was proposed by Tagarakis et al. (2013), who suggested 2 different delineations in 

388 function of production yield and grape quality. 
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389 The most suitable delineations in function of grape composition were CC2 and CC3. Using pH or TA to 
 

390 delineate management zones may improve the quality of the wine. pH and TA determine the acidity of 
 

391 grapes at harvest time, which also affects wine color, microbiological stability and organoleptic 
 

392 characteristics (Blouin and Guimberteau, 2003). Both those cluster classifications defined management 
 

393 zones with low FPI and NCE values, but for an optimal number of 3 zones in CC3 and 4 zones in CC2. 
 

394 Studies by Taylor et al. (2003) and Arnó et al. (2011) concluded that a system based on a large number 
 

395 of zones may be complex to implement. Tagarakis et al. (2013) also indicated that delineation in more 
 

396 than 3 zones in small vineyards would be impractical. Therefore, classification into 3 zones was 
 

397 considered most appropriate for this study, with CC3 as the most suitable cluster classification to 
 

398 delineate management zones in function of grape composition. Moreover, CC3 was detected by the PCA 
 

399 as homogeneous and, since the zones were located longitudinally in the plot, their management may be 
 

400 easier. 
 

401 Production variables provide an estimate of the productive potential of a vineyard. Looking at maps 
 

402 created with production variables as input, CC5 was found to be the most suitable, given the low FPI 

403 and NCE values and defined management zones. 
 

404 Of the maps created with vigor variables, CC10 reflecting RI for 2 years obtained the lowest FPI and 
 

405 NCE values. However, zones 1 and 2 for CC10 were intermixed in the plot, so this delineation of 
 

406 management zones was not suitable in practical terms. 
 

407 Bramley (2005), Bramley et al. (2011) and Cortell et al. (2005) observed a direct relationship between 
 

408 production and vigor variables. In this research, this relationship was reflected in the fact that the zones 

409 delineated by CC10 and CC5 were similar. Thus, both production and vigor variables for the studied 

410 vineyard could be improved by implementation of CC5 management zones, which would ensure balance 

411 in the vineyard. 
 

412 
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413 5. Conclusion 

414 We delineated vineyard management zones based on grape composition, production and vine vigor 
 

415 variables using the fuzzy k-means algorithm in a case study referring to the Bierzo Denomination of 
 

416 Origin (northwest Spain). The results indicate that cluster classifications using the same variables for 2 
 

417 studied years were more accurate than those created using PCA-created groups. 
 

418 On the basis of fuzziness performance index (FPI) and normalized classification entropy (NCE) values, 
 

419 a fuzzy k-means classification based on must pH for the 2 study years (pH 2013 and pH 2014) was 
 

420 considered the most suitable delineation of vineyard management zones. Combined data for titratable 
 

421 acidity (TA) for the 2 years also resulted in feasible zone delineations. 
 

422 Considering production variables, the delineation based on yield (Y) for 2013 and 2014 resulted in 3 
 

423 zones. Delineated zones based on vigor variables were not suitable for implementation in the studied 
 

424 vineyard. 
 

425 According to our findings, the proposed protocol is a suitable method for vineyard management zoning 
 

426 delineation. The contribution of this research is that it takes advantage of data used by winegrowers to 

427 assess grape composition and production variables and does not require any specific additional variables 

428 for delineation. 
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Table 1 

 
Tables 

Table 1: Parameters of the cluster classifications (Fuzzy K-Means) used to the study 
 

Classification Cluster Input Method of N FPI NCE 
type classification variables similarity    

 CC1 TSS 13; TSS 14 Mahalanobis 3 0.0529 0.0258 
 CC2 TA 13; TA 14 Mahalanobis 4 0.0359 0.0195 
 CC3 pH 13; pH 14 Mahalanobis 3 0.0449 0.0215 
 CC4 MI 13; MI 14 Mahalanobis 3 0.0574 0.028 

1 CC5 Y 13; Y 14 Mahalanobis 3 0.0327 0.0157 
 CC6 CW 13; CW 14 Mahalanobis 3 0.0488 0.024 
 CC7 BW 13; BW 14 Mahalanobis 3 0.0537 0.0261 
 CC8 PW 13; PW 14 Mahalanobis 3 0.0759 0.0372 
 CC9 WS13; WS 14 Mahalanobis 3 0.0516 0.0254 
 CC10 RI 13; RI 14 Mahalanobis 3 0.0469 0.0226 
 CC11 TA 13; TA 14; WS 13; WS 14; PW 13; PW 14 Mahalanobis 3 0.176 0.0948 

2a CC12 TSS 13; TSS 14; RI 13; RI 14; MI 13; MI 14 Mahalanobis 5 0.1107 0.0735 
 CC13 CW 13; CW 14; BW 13; BW 14; Y 13; Y 14 Mahalanobis 3 0.1481 0.0815 
 CC3 pH 13; pH 14 Mahalanobis 3 0.0449 0.0215 
 CC14 TA 13; WS 13; PW 13 Mahalanobis 3 0.0963 0.0496 
 CC15 TSS 13; RI 13; MI 13 Mahalanobis 3 0.0907 0.0467 
 CC16 CW 13; BW 13; Y 13 Mahalanobis 4 0.0711 0.0399 

2b CC17 pH 13 Euclidean 2 0.0199 0.0071 
 CC18 TA 14; WS 14; PW 14 Mahalanobis 4 0.0863 0.049 
 CC19 TSS 14; RI 14; MI 14 Mahalanobis 4 0.0665 0.0378 
 CC20 CW 14; BW 14; Y 14 Mahalanobis 2 0.0729 0.0411 
 CC21 pH 14 Euclidean 2 0.0308 0.0109 
Type of classification: 1: using different input combinations of each variables combining the 2 years of the study. 2a: different 
input combinations in function of PCA groups combining the 2 years of the study. 2b different input combinations in function of 
PCA groups for each year of the study. 
Input variables: Composition variables: TSS: total soluble solids (ºBrix); TA: titratable acidity (g/L); MI maturity index. 
Production variables: Y: yield (kg·10-3m-1); CW: cluster weight (kg·10-3); BW: weigh of 100 berries (kg·10-3); Vigor variables: 
PW: shoot pruning weight (kg·10-3m-1); WS: weight of shoots (kg·10-3); RI: Ravaz index. Year: 13: sampled in 2013; 14: sampled 
in 2014. 
N: optimal number of management zones; FPI: fuzziness performance index; NCE: normalized classification entropy. 
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