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I. INTRODUCTION 

From its inception, machine learning has revolutionized virtually 
every industry where it can be applied.1  The myriad uses of machine 
learning and its derivations have led to its incorporation into many 
facets of daily life for both consumers and corporations, even where not 
explicitly obvious.2  Recently, an ever-increasing number of consumer 
products have begun to incorporate this technology in an effort to 
improve operational efficiency while providing an improved experience 
for end-users.3  Like all products, however, consumer products 
incorporating machine learning elements have the potential to cause 
consumers harm during use.4 

Current standards and tests for assessing design defect liability in 
such cases, as they exist in their current form under the Restatement 
(Third) of Torts (hereinafter “Restatement (Third)”), do not adequately 
contemplate and account for the existence and functionality of such 
products.  The risk-utility test assesses design defect liability by 
balancing the utility of a product design against alternative designs in 

 

 1 See Michael Evans, The Machine Learning Revolution, FORBES (Oct. 20, 2018, 11:15 
AM), https://www.forbes.com/sites/allbusiness/2018/10/20/machine-learning-
artificial-intelligence-could-transform-business/?sh=7a78c428c6c3 (discussing the 
application of machine learning technologies in various industries, emphasizing its 
applicability regardless of company size and form). 
 2 See generally An On-Device Deep Neural Network for Face Detection, APPLE: MACH. 
LEARNING (Nov. 2017), https://machinelearning.apple.com/research/face-detection 
(discussing the use of computer vision, a form of machine learning, in the iPhone’s Face 
ID feature); see also What is Machine Learning? A Definition, EXPERT.AI (Mar. 14, 2022), 
https://www.expert.ai/blog/machine-learning-definition/ (providing examples of 
machine learning systems currently used by businesses, including chatbots used for 
customer support and healthcare systems designed to improve patient outcomes). 
 3 See Marita Zorotovich & Marty Donovan, Current Use Cases for Machine Learning 
in Retail and Consumer Goods, MICROSOFT: BLOG (Sep. 9, 2018), 
https://azure.microsoft.com/en-us/blog/current-use-cases-for-machine-learning-in-
retail-and-consumer-goods/ (discussing various use cases for machine learning in 
consumer products and explaining that a need for operational efficiency and customer 
service drives utilization of the technology); TBRC Bus. Rsch., The Increased Use of 
Machine Learning and Artificial Intelligence is Expected to Fuel the Digital Transformation 
Market, GLOBENEWSWIRE (Sep. 14, 2022, 11:30 AM), 
https://www.globenewswire.com/news-release/2022/09/14/2516223/0/en/The-
Increased-Use-Of-Machine-Learning-And-Artificial-Intelligence-Is-Expected-To-Fuel-
The-Digital-Transformation-Market-As-Per-The-Business-Research-Company-s-
Digital-Transformatio.html (discussing the recent rise in machine learning technology 
utilization.) 
 4 See, e.g., California Teenager Dies in Self-Driving Tesla Crash, ENJURIS, 
https://www.enjuris.com/blog/news/tesla-autopilot-accident/ (discussing the death 
of a teenager caused by a malfunction in the machine learning-based aspect of a Tesla 
vehicle). 
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the context of foreseeable risks of harm stemming from the product’s 
design.5   

This Comment advances two arguments.  First, a design defect 
standard incorporating the concept of foreseeability is flawed when 
applied to machine learning due to complications caused by covariate 
shift and concept drift, which have the potential to create harms 
unforeseeable to the designer from the foreseeable uses of the product.  
Second, this Comment argues that the reality of probability-based 
reasoning in machine learning renders the policy undergirding the 
current standard inapplicable due to difficulties in applying the 
reasonable alternative design standard to machine learning algorithms.   

This Comment proceeds in four parts.  First, given the relative 
complexity of machine learning technology, Part II will provide a brief 
non-technical explanation of the creation and functionality of machine 
learning, while also distinguishing its functionality and use from other 
forms of technologies.  Second, Part III will examine the current legal 
awareness of machine learning and related legal issues through cases 
and academic materials.  Drawing on this background, Part IV will 
identify the chief difficulties in applying current design defect standards 
to machine learning, focusing on the legal standard’s clash with the 
practical reality of machine learning’s functionality.   

Finally, Part V will reflect on the prior discussion to provide a set of 
three conclusions for the identified legal issues, each of which strikes a 
different balance between the value one places on machine learning 
technology and adherence to existing design defect standards.  The first 
conclusion, reflecting a low valuation of machine learning technology, 
posits that including a machine learning element in a product may 
represent a manifestly unreasonable design due to the identified issues 
with the technology, and analyzes the practical litigation effects of such 
an approach.  The second, striking a balance between machine learning 
and existing design defect standards, advances an approach based on 
the insertion of an independent element of foreseeable risk into the 
design defect standard and a materiality requirement in reasonable 
alternative design proofs presented, both of which combined remedy 
the identifiable issues in the application of the law to machine learning 
products.  The third and final conclusion, representing an exceedingly 
high valuation of machine learning, proposes that the lack of a machine 
learning element in some products may constitute a manifestly 

 

 5 See RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2(b) (AM. L. INST. 1999). 
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unreasonable design due to the advantages of machine learning’s use, 
thereby inversing the position of the first conclusion. 

II. TECHNICAL BACKGROUND OF MACHINE LEARNING 

Discussion of a highly technical topic, like machine learning in 
relation to specific areas of the law, requires an initial understanding of 
the technology itself.  The goal of this section is twofold: first, to provide 
a concise definition of machine learning and a non-technical discussion 
of its developmental stages; second, to distinguish machine learning’s 
use and functionality from other forms of computer technology. 

A. Machine Learning Defined and the Process of Creation 

As a threshold matter, it is important to note that the term 
“machine learning” is essentially a term of art used to reference various 
computational methods and technologies.6  The broadest definition of 
the term possible, covering each of these computational methods and 
technologies, defines “machine learning” as a process that teaches 
computers through the “use of data and algorithms to imitate the way 
that humans learn.”7  This training allows a system “to automatically 
[spot] patterns in . . . data that can [then] be used to make predictions.”8  
The key, however, is that machine learning seeks to automate away the 
need for a designer to explicitly program or instruct a system on how to 
make its predictions, instead allowing the system to learn for itself the 
most efficient and effective method by which to perform its function.9 

This definition begs the question of how a designer may accomplish 
the lofty goal of creating a system that learns by itself.  On this point, the 

 

 6 See Jason Brownlee, 14 Different Types of Learning in Machine Learning, MACH. 
LEARNING MASTERY (Nov. 11, 2019), https://machinelearningmastery.com/types-of-
learning-in-machine-learning/ (providing a list of the types of machine learning).  A 
discussion of each individual type of machine learning is beyond the scope of this 
Comment but note that each type of machine learning has its own inherent advantages 
and disadvantages. 
 7 What is Machine Learning, IBM, https://www.ibm.com/cloud/learn/machine-
learning (last visited Jan. 16, 2024). 
 8 Elizabeth Quirk, Artificial Intelligence Umbrella Glossary: Machine Learning, AI, 
RPA & More, SOLUTIONS REV. (Jan. 26, 2018), https://solutionsreview.com/business-
process-management/artificial-intelligence-umbrella-glossary-machine-learning-ai-
rpa/. 
 9 See EXPERT.AI, supra note 2 (explaining the focus of machine learning from an 
implementation perspective). 
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development of machine learning can be broken into seven basic stages, 
each of which bears strongly on the final product.10 

The first step in developing any machine learning system entails 
the collection of data.11  The designer must focus on finding a reliable 
data source that the completed system can utilize efficiently in its 
function.12  Data collection may occur in several ways, such as the 
wholesale importation of data from an existing commercial database or 
the creation of a fresh dataset gathered and combined by a designer.13  
The designer must also ensure that the data is not irreparably flawed in 
some fashion, which may occur when data is outdated or incorrectly 
collected, among other reasons.14 

Next, the designer must prepare the data.15  This step focuses on 
randomizing the previously collected data to ensure that the ordering of 
the data does not affect the system’s learning process.16  The ordering of 
data is important to a machine learning system because it is important 
for a human student: the order in which one presents concepts affects 
the assumptions extrapolated from those concepts.17  After 

 

 10 See Yufeng Gao, The 7 Steps of Machine Learning, MEDIUM: TOWARDS DATA SCI. (Aug. 
31, 2017), https://towardsdatascience.com/the-7-steps-of-machine-learning-
2877d7e5548e (discussing the steps of machine learning development and 
implementation).  Note that these stages, or steps, may be more or less numerous 
depending on the context of the system, but the core elements of the following stages 
are always present. 
 11 See Mayank Banoula, Machine Learning Steps: A Complete Guide, SIMPLILEARN, 
https://www.simplilearn.com/tutorials/machine-learning-tutorial/machine-learning-
steps (last visited Jan. 16, 2024). 
 12 See id. (“Make sure you use data from a reliable source as it will directly affect the 
outcome of your model.”). 
 13 See Raul V. Rodriguez, The 7 Key Steps to Build Your Machine Learning Model, AI 

MYSTERIES (May 29, 2020), https://analyticsindiamag.com/the-7-key-steps-to-build-
your-machine-learning-model/ (“You may have the information in an existing database 
or you must create it from scratch.”). 
 14 See Banoula, supra note 11 (“The quality of data . . . will determine how accurate 
[the] model is. If [a designer] has incorrect or outdated data, [he] will have wrong 
outcomes or predictions which are not relevant.”). 
 15 Gao, supra note 10. 
 16 See Banoula, supra note 11 (discussing the randomization of data and its 
importance to the learning process); Gao, supra note 10 (explaining that ordered data 
affects the machine learning process). 
 17 Gao, supra note 10 (discussing ordering of training data).  This principle is 
embedded in the human mind and machine learning systems.  For an example of this 
occurring in the human mind, see Eva Fourakis & Jeremy Cone, Matters Order: The Role 
of Information Order on Implicit Impression Formation, SOC. SCI. & PERS. SCI., Jan, 2020, at 
56, 56–7 (discussing how the order an individual learns the personality traits of an 
unknown person affect the individual’s perception of that person) 
[https://doi.org/10.1177/1948550619843930]. 
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randomization, the designer must audit and prune the dataset to 
remove any errant redundancies or minor flaws that may be present.18  
Once audited, the collected data must be split into two distinct datasets: 
the training and testing data.19  

Training data is the dataset used to train the system’s predictive 
function.20  It is helpful to think of it as a driver’s education training 
course that teaches a student how to act behind the wheel.  In contrast, 
testing data is the dataset used to evaluate the model’s performance 
under real-world conditions.21  Similarly, testing data is more akin to the 
driving test a student driver needs to pass before being allowed on the 
road.  It is exceedingly important that the designer carefully analyzes 
the training and testing data, for if either dataset is overly broad or 
biased towards a specific variable, the system will not be able to develop 
an accurate predictive model.22  This step, in its entirety, has critical 
implications for the rest of the creation process because a machine 
learning algorithm’s predictive model is only as good as its data.23  
Quality training data is to a budding machine learning system as a 
quality casebook is to a law student: without a reliable basis of 
knowledge, there is only so far one can go.24 

The third stage of development is where the designer chooses a 
machine learning model to implement.25  Essentially, this step asks the 
designer to identify the precise problem they are attempting to solve 

 

 18 See Banoula, supra note 11 (“Cleaning the data to remove unwanted data, missing 
values, rows, and columns, duplicate values, data type conversion, etc.”). 
 19 See Banoula, supra note 11 (“Splitting the cleaned data into two sets – a training 
set and a testing set.”); see also Gao, supra note 10 (“Split the data into two parts,” the 
training and testing data.). 
 20 See Banoula, supra note 11 (“The training set is the set your model learns from); 
see also Gao, supra note 10 (discussing the uses of training data). 
 21 See Banoula, supra note 11 (“A testing set is used to check the accuracy of your 
model after training.”). 
 22 See Rodriguez, supra note 13 (emphasizing the importance and methodology of 
preparing data); Gao, supra note 10 (discussing the importance of the reliability of 
training data).  This principle is similarly identifiable in the human mind as well.  See 
Isabel Bilotta et al., How Subtle Bias Infects the Law, 15 ANN. REV. L. & SOC. SCI. 227, 230 
(2019) (explaining the results of a study of the effects of racial bias in weapon 
identification) [https://doi.org/10.1146/annurev-lawsocsci-101518-042602]. 
 23 See Rachel Wolff, What is Training Data in Machine Learning, MONKEYLEARN BLOG 
(Nov. 2, 2020), https://monkeylearn.com/blog/training-data/ (explaining that training 
data determines “just how smart [a] model can become.”). 
 24 See id. 
 25 See generally Rodriguez, supra note 13 (providing a non-exhaustive list of 
machine learning models for potential selection and explaining the problem each seeks 
to solve). 
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and choose a machine learning model best suited to solve it.26  For 
example, if a designer attempts to predict an outcome based on a class 
or category of related inputs, it is best to use an algorithmic 
classification model.27  In contrast, a regression model is better suited to 
predict an outcome based on a set of independent variables,28 such as 
attempting to determine the relationship between “employee 
satisfaction and product sales.”29  Designers can choose from various 
models, each tailored to solve a specific type of problem.30 

The next stage entails the bulk of the work: training the designer’s 
selected model.31  The previously prepared training dataset is passed to 
the system to allow it to attempt its predictive function.32  The system 
then runs the selected predictive model on the training data repeatedly, 
iteratively improving its predictions based on its interpretation of the 
dataset and possible micro-adjustments the designer makes to the 
system.33  In the first iterations of training, the system will essentially 
make random predictions with no real methodology or practice, 
producing highly inaccurate and random results.34  However, over many 
training cycles, the system will iteratively improve its predictive model 
to the point where it can produce accurate predictions from the data 
provided.35 
 

 26 See generally Rodriguez, supra note 13. 
 27 See Natassha Selvaraj, 8 Machine Learning Models Explained in 20 Minutes, 
DATACAMP BLOG (Sep. 2020), https://www.datacamp.com/blog/machine-learning-
models-explained (explaining that a classification algorithm is best suited to solve the 
problem of predicting heart disease on a number of risk factors). 
 28 See id. (providing that a regression model is best to predict the rent of a house 
based on a number of independent factors). 
 29 Catherine Cote, What is Regression Analysis in Business Analytics?, HARVARD BUS. 
SCH. ONLINE (Dec. 14, 2021), https://online.hbs.edu/blog/post/what-is-regression-
analysis. 
 30 Two examples of machine learning models are provided to illustrate the selection 
process.  A discussion of each individual model and its related benefits is beyond the 
scope of this Comment.  
 31 See Gao, supra note 10. 
 32 See Banoula, supra note 11 (“In training, you pass data to [the] machine learning 
model to find patterns and make predictions.”). 
 33 See Rodriguez, supra note 13 (discussing incremental improvement of the 
predictive model based on repeated testing cycles); see also Gao, supra note 10 
(explaining in detail the training process of a hypothetical machine learning system). 
 34 See Gao, supra note 10 (“When [the designer] first starts the training, it’s like [the 
system] drew a random line through the data.”). 
 35 See Gao, supra note 10 (“[A]s each step of the training progresses, the line moves, 
step by step, closer to [an accurate prediction].”); Banoula, supra note 11 (“Over time, 
with training, the model gets better at predicting.”).  A discussion on the precise method 
by which machine learning learns is a highly technical topic beyond the scope of this 
Comment.  For a technical discussion of the process, see M. I. Jordan & T. M. Mitchell, 
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After training is complete, the designer must evaluate the system.36  
The previously reserved testing dataset serves as the benchmark for 
this evaluation.37  The idea is to evaluate how the system reacts to data 
it has not previously observed, representing its expected functioning in 
real-world conditions after its completion and implementation.38  This 
step is necessary to ensure the system’s functionality before its 
implementation in real-world conditions because a high degree of 
predictive accuracy on training data does not generally indicate an 
accurate predictive model.39  As an illustration, a student who rigorously 
and exclusively studies for his Constitutional Law exam throughout the 
semester may achieve a high grade on that exam, but the same cannot 
be said for his Evidence exam. 

Once evaluation shows that the system performs well on unseen 
data, the designer may find it appropriate to tune the parameters of the 
model to achieve a higher degree of accuracy.40  To accomplish this, a 
designer can adjust specific controlled variables within the system and 
reiterate the training and testing cycles to determine if a more accurate 
prediction is possible.41  At some undetermined value of each controlled 
variable, the accuracy of the predictive model will be at its peak.  
Parameter tuning helps the designer determine the values that will 
allow the system to reach peak accuracy.42 

At the final step, the model is ready for implementation.43  At this 
point, the machine learning system may be provided unseen, real-world 
data and is expected to make accurate predictions using the predictive 

 

Machine Learning: Trends, Perspectives, and Prospects, 349 SCI. 255, 257–60 (2015) 
[https://doi.org/10.1126/science.aaa8415]. 
 36 See Rodriguez, supra note 13. 
 37 See Gao, supra note 10 (“This is where the [the testing data] that we set aside 
earlier comes into play.”). 
 38 See Banoula, supra note 11 (“This is done by testing the performance of the model 
on previously unseen data. The unseen data used is the testing set that you split our data 
into earlier.”); Gao, supra note 10 (“This is meant to be representative of how the model 
might perform in the real world.”). 
 39 See Banoula, supra note 11 (“If testing was done on the same data which is used 
for training, [the designer] will not get and accurate measure, as the model is already 
used to the data, and finds the same patterns in it, as it previously did. This will [show] 
disproportionately high accuracy.”). 
 40 See Gao, supra note 10. 
 41 See Gao, supra note 10 (explaining that assumed control variables may be tuned 
to achieve higher accuracy); Banoula, supra note 11 (“Parameters are the variables in 
the model that the programmer generally decides.”). 
 42 See Banoula, supra note 11 (discussing the broader goals of parameter tuning). 
 43 Rodriguez, supra note 13.  



MOLINARI 2024 

424 SETON HALL JLPP [Vol. 48:2 

 

model developed through the prior steps.44  Training, testing, and 
parameter tuning lead to this point: where “the value of machine 
learning is realized.”45  At this stage, the designer can implement the 
system for its purpose, and the system can be trusted to make accurate 
predictions with its developed model.46 

B. Machine Learning Distinguished 

While understanding a concise definition of machine learning and 
the process by which it is created is helpful, it is far more important to 
distinguish machine learning from other, more traditional forms of 
technology to understand its use best. 

The key difference to appreciate between machine learning and 
other forms of traditional computational technology is the difference in 
the problem that each attempts to solve.  Most computational systems 
aim to solve a predefined problem, such as the translation of a 
document,47 providing a defined output based on a set of rules 
programmed into the system.48  In this way, the system is rules-based 
and expert-driven, meaning that it mimics the knowledge of an expert 
on the topic and is thus capable of producing an output similar to that of 
an expert with the same amount of information.49  An exceedingly 
simple example of a rules-based system, as described, is the common 
four-function calculator;50 the calculator takes the numbers typed in, the 
data, and transforms them into an output based on the predefined 
functions encoded into the system.51  Therefore, rules-based systems 

 

 44 See Banoula, supra note 11 (“. . . [Y]ou can use [the] model on unseen data to make 
predictions accurately.”). 
 45 Gao, supra note 10. 
 46 Gao, supra note 10. 
 47 See ROUTLEDGE ENCYCLOPEDIA OF TRANSLATION TECHNOLOGY 454 (Sin-Wai Chan ed., 2d 
ed. 2015) (“Traditionally, [translation] systems use either a rules-based or corpus-based 
approach to translate a document.”). 
 48 See Vasudevan Swaminathan, The Conundrum of Using Rule-Based vs. Machine 
Learning Systems, ZUCI SYSTEMS BLOG, https://www.zucisystems.com/blog/the-
conundrum-of-using-rule-based-vs-machine-learning-systems/ (“Rule-based systems 
are computer programs that use if-then rules to make decisions and perform tasks.”). 
 49 See id. (“Human experts build rule-based systems with in-depth domain 
knowledge to guarantee the best possible outputs. Hence, they are expert-driven 
systems.”). 
 50 See, e.g., DESMOS, https://www.desmos.com/fourfunction (last visited Feb. 4, 
2023). 
 51 See, e.g., Natalie Wolchover, How Do Calculators Calculate?, LIVESCIENCE (May 10, 
2011), https://www.livescience.com/14087-calculators-calculate.html (explaining the 
computer logic of how a calculator produces an output). 
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only mimic the knowledge of an expert to aid in the decision-making 
process, rather than replace the expert entirely.52 

In contrast, a machine learning system is used to analyze data 
patterns that facilitate the rules’ development.53  Therefore, the 
distinguishing feature of machine learning systems is that they do not 
require manual programming to an end, as the entire purpose of the 
system is to avoid the need for a human programmer to define the rules 
by which the system operates.54  It is clear, then, that the use cases of 
machine learning and rules-based systems are entirely dissimilar 
because a rules-based system cannot analyze a problem in the same way 
expected of a machine learning system.55  In this way, the difference 
between the two forms of technology can be understood as a distinction 
between a system designed to play a television show, and a system 
designed to find the best television show.56  The former simply performs 
its function based on the inputs of the user, while the latter takes input 
data from the operator and transforms it into a set of rules to identify 
the quantifiably best result.57 

 

 52 For example, it cannot be realistically suggested that all mathematicians will 
simply be replaced with calculators. See Erez Yereslove, Calculators Didn’t Replace 
Mathematicians, and AI Won’t Replace Humans, WORLD ECON. F. (Jan. 29, 2019), 
https://www.weforum.org/agenda/2019/01/calculators-didnt-replace-
mathematicians-ai-automation-work/ (suggesting that calculators only improved the 
mathematician’s function, rather than replacing them altogether). 
 53 See Swaminathan, supra note 48 (“The important point to note here is that no one 
needs to tell the information . . . to the Machine Learning-based system. The software 
can make this logical deduction on its own by simply analyzing the data and looking for 
correlations.”). 
 54 See Swaminathan, supra note 48 (“The biggest difference between rule-based 
systems and [machine learning] systems is that humans manually program rule-based 
systems, whereas machines automatically train self-learning systems. In other words, 
self-learning systems learn from experience rather than being explicitly told what to do 
by humans.”). 
 55 See Bernard Marr, The Top 10 AI and Machine Learning Use Cases Everyone Should 
Know About, FORBES (Sep. 30, 2016), 
https://www.forbes.com/sites/bernardmarr/2016/09/30/what-are-the-top-10-use-
cases-for-machine-learning-and-ai/?sh=46a145a094c9 (discussing the distinguishing 
aspect of machine learning and providing examples of its use in everyday life). 
 56 See, e.g., Libby Plummer, This is How Netflix’s Top-Secret Recommendation System 
Works, WIRED U.K. (Aug. 22, 2017, 7:00 AM), https://www.wired.co.uk/article/how-do-
netflixs-algorithms-work-machine-learning-helps-to-predict-what-viewers-will-like 
(explaining the functionality of machine-learning recommendation engines used by 
Netflix). 
 57 The problem the rules-based system in this example seeks to solve is “How can I 
watch a television show?” which is answered by the functionality of the system allowing 
a user to press a button to play the program.  The sole rule the system operates by is the 
television show playing once the play button is pressed. In contrast, the machine 
learning system is expected to develop a set of recommendations to the user based on 
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III. JUDICIAL AWARENESS AND SCHOLARLY COMMENTARY ON MACHINE 

LEARNING’S INTERSECTION WITH PRODUCTS LIABILITY  

This section briefly describes the range of academic literature on 
the topic and a few cases that highlight the practical legal knowledge on 
the topic, or possible lack thereof, to understand the legal landscape 
related to machine learning. 

A. Scholarly Commentary on Machine Learning 

Much has been written on design defects and the relative merits of 
using one test or another to ascertain the liability of a designer or 
seller.58  Unfortunately, the same cannot be said for the intersection of 
design defect law and machine learning, a topic that has thus far 
produced little scholarship. 

When considering the published material in this space, the article 
Am I an Algorithm or a Product? When Products Liability Should Apply to 
Algorithmic Decision Makers stands above the rest in its influence on the 
development of the field.59  Focusing primarily on whether machine 
learning can be considered a product for product liability law, the article 
briefly discusses the difficulty of applying the concept of defective 
design to harm caused by the probability-based decision-making 
process of machine learning.60  Although identifying some of the 
pertinent issues, this section of the article does not come to a definitive 
conclusion on the issues presented, leaving an open question as to 
whether changes in existing doctrine are necessary.61  Thus, the article 
does not address the core question posed by this Comment, namely, how 

 

collected data to answer the question “What should I watch?”  For a discussion on the 
functionality of machine learning in recommendation systems, see Rohit Dwivedi, What 
Are Recommendation Systems in Machine Learning?, ANALYTIC STEPS (Apr. 16, 2020), 
https://www.analyticssteps.com/blogs/what-are-recommendation-systems-machine-
learning (explaining how recommendation systems work and providing examples of 
their use). 
 58 See discussion infra Section IV.A and note 96. 
 59 Karni A. Chagal-Feferkorn, Am I an Algorithm or a Product? When Products 
Liability Should Apply to Algorithmic Decision Makers, 30 STAN. L. POL’Y REV. 61 (2019); 
see also Lauren Rhue & Anne L. Washington, AI’s Wide Open: Premature Artificial 
Intelligence and Public Policy, 26 B.U. J. SCI. & TECH. L. 353, 369 (stating that substandard 
AI may “fall under . . . defective products legal theories.”); Richard E. Kaye, Distinguishing 
Between Products and Services, in AMERICAN LAW OF PRODS. LIAB. 3D § 16:67, (2024) 
(distinguishing between products and services in the context of strict liability). 
 60 See Chagal-Feferkorn, supra note 59, at 84–87 (discussing probability-based 
harms in the context of medical algorithms). 
 61 See id. at 85–86 (“Does this mean that [machine learning] should never be 
governed by products liability and that our analysis should have nothing to do with said 
legal framework? Not necessarily.”). 
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to reconcile current design defect standards with the core functionality 
of machine learning. 

Other commentators have come similarly close to identifying the 
core issues of the intersection between design defects and machine 
learning but stop short of addressing the root causes and cures of these 
problems, opting to leave the complex topic as an open question.62  
Moreover, many of these pieces discuss the concepts of machine 
learning and product liability in only specific contexts, such as in the 
medical or healthcare fields.63 

In contrast, some commentators focus on the metaphysical 
question of reasonableness in machine learning’s decision-making 
ability.64  Others analyze implicit bias in machine learning and its 
potential to cause harm when used by the government, attempting to 
determine the precise means by which liability should be imposed in 
such a situation.65  Some anchor discussion of machine learning and its 
implications of the field as a whole, with divergences and references to 
substrata of negligence doctrine, to illustrate the inherent tension 
between machine learning and liability premised on human 
negligence.66  

Thus, the existing jurisprudence on machine learning reads like a 
Jackson Pollock painting.67  From afar, it seems like a jumbled mess: a 
grayscale spattering of un-connectedness.  However, the common 
thread that can be appreciated from afar is that current scholarship does 
not answer the questions posed by this Comment, and that, by 
 

 62 See, e.g., Vivian D. Wesson, Who (Or What) is Liable for AI Risks?, 92 N.Y. BAR J. 18, 
20 (2020) (identifying foreseeable uses of a 3D printer as a problem for application of 
design defect theory). 
 63 See Sarah Kamensky, Artificial Intelligence and Technology in Health Care: 
Overview and Possible Legal Implications, 21 DEPAUL J. HEALTH CARE L. 1, 1–2 (discussing 
machine learning’s use in the health care setting); see also Samuel D. Hodge, The Medical 
and Legal Implications of Artificial Intelligence in Health Care—An Area of Unsettled Law, 
RICH. J.L. & TECH. 405, 442 (discussing the drawbacks and complexities of “applying 
products liability law to AI in medical setting.”). 
 64 See, e.g., Karni Chagal-Feferkorn, The Reasonable Algorithm, 2018 U. ILL. J.L. & POL’Y 
111, 121 (2018) (explaining a proposed reasonable algorithm standard and comparing 
its relative merits to other modes of liability). 
 65 See, e.g., Christine Kumar, The Automated Tipster: How Implicit Bias Turns 
Suspicion Algorithms into BBQ Beckys, 72 FED. COMMC’N L. J. 97, 115–21 (2020) (providing 
two alternative modes of liability for harms caused by machine learning in the law 
enforcement context). 
 66 See Andrew D. Selbst, Negligence and AI’s Human Users, 100 B.U. L. Rev. 1315, 
1321–22 (2020) (asking whether “negligence law can successfully adapt to AI” and 
specifically discussing decision-assistance machine learning). 
 67 See, e.g., Number 5, 1948 by Jackson Pollock, JACKSON POLLOCK, 
https://www.jackson-pollock.org/number-5.jsp. 
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extension, design defect liability standards are not equipped to address 
the unique issues posed by machine learning. 

B. Judicial Awareness of Machine Learning  

First and foremost, it must be noted that machine learning is a 
relatively new concept in case law.68  Thus, awareness of the issues 
posed by machine learning is questionable at best, mostly due to the lack 
of established doctrine surrounding the technology.69  However, there 
are indications of a shift in awareness of the technology, especially in 
recent years. 

For example, in Zaletel v. Prisma Labs, Inc.,70 a trademark 
infringement case, a court saw the use of machine learning as a highly 
differentiating factor between otherwise similar products.71  The court 
noted the “very real differences in functionality” to conclude that “the 
two products are directed to different consumers.”72  Disregarding the 
admittedly narrow holding, this case can be viewed as judicial 

 

 68 The first opinion mentioning the term dates to 2002, a mere twenty-one years 
ago, but its impact on the case was negligible at best. American Library Ass’n, Inc. v. U.S., 
201 F. Supp.2d 401, 433 (E.D. Pa. 2002) (“These algorithms sometimes make reference 
to the position of a word within text . . . [and] the weights are usually determined by 
machine learning methods.”). Similarly, the term artificial intelligence was first 
mentioned in a 1988 opinion but was not discussed in any capacity until 2000. In re 
Estate of McCool, 553 A.2d 761, 763 (N.H. 1988) (“a corporation specializing in 
developing and marketing computer equipment and artificial intelligence software.”); 
Qualitative Reasoning Systems, Inc. v. Computer Sciences Corp., No. 98CV554, 2000 WL 
852127, at *1 (D. Conn. 2000) (“Traditional artificial intelligence programs employ ‘fault 
trees’ or ‘rules-based logic’ to diagnose failures.”) (citation omitted). An attentive eye 
will notice the seemingly incorrect definition of artificial intelligence provided, attesting 
to the rapid and continuing development in this field of technology. 
 69 For example, copyright law is unclear on the question of whether the use of 
copyrighted materials in the training of a machine learning algorithm represents a 
copyright violation. See Cassandra Coyer, Lawyers Expect More Litigation, and Clarity, 
Around Machine Learning’s Copyright Issues, LAW.COM (Aug. 19, 2022, 10:00 AM), 
https://www.law.com/legaltechnews/2022/08/19/lawyers-expect-more-litigation-
and-clarity-around-machine-learnings-copyright-issues/ (speculating on the question 
of whether copyright is infringed when using copyrighted materials in machine learning 
datasets).  Additionally, the Supreme Court recently heard a case on whether social 
media corporations should enjoy publisher immunity when using machine learning 
algorithms to direct users to content on their platforms.  However, the Court did not 
reach the issue because it found that the plaintiffs did not state a claim. Gonzalez v. 
Google LLC, 143 S. Ct. 1191, 1191 (2023).   
 70 Zaletel v. Prisma Labs, Inc., No. 16-1307, 2017 U.S. Dist. WL 877302 (D. Del. Mar. 
6, 2017). 
 71 See id. at *6 (explaining that “while plaintiff broadly describes both apps as ‘photo 
filtering apps, the record demonstrates that defendant’s app analyzes photos using 
artificial intelligence technology.”).  
 72 Id.  
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recognition of machine learning’s divergence from other types of 
computer technologies.  If the court had disregarded the difference in 
functionality, there would have been a stronger case for an overlap 
between the products serving as a subject of the litigation.73 

In a similar vein, the court in Aerotek, Inc. v. Boyd denied a motion 
for rehearing en banc,74 which concerned the enforceability of an 
electronically signed arbitration agreement.75  The dissent in that 
opinion expressly acknowledged that courts may one day have to 
determine whether machine learning algorithms have altered 
previously signed agreements to adjudicate a case properly.76  While 
there was little discussion on this point,77 the judicial acknowledgment 
of the capabilities and functionality of machine learning is a step closer 
to mainstream legal awareness on the topic. 

In the tort law context, however, there has been an increase in 
discussion on machine learning resulting from the inclusion of 
autonomous driving features in automobiles.78  The first known case 
alleging harm from the use of a machine learning autonomous 
technology was filed in 2018, in which a motorcyclist claimed that he 
sustained injuries after a General Motors autonomous vehicle merged 
into his lane and knocked him to the ground.79  Interestingly, the plaintiff 
did not claim that the autonomous vehicle’s operator contributed to the 
accident, naming only General Motors as a defendant.80  The complaint’s 
sole claim was negligence, alleging that General Motors “owed Plaintiff 
a duty of care in having its [autonomous vehicle] operate in a manner in 

 

 73 See id. (contrasting the differences between the apps and finding the use of 
machine learning as the main difference between them). 
 74 Aerotek, Inc. v. Boyd, 598 S.W.3d 373 (Tex. App. 2020). 
 75 Id. at 375.  
 76 Id. at 379 n.9 (Schenck, J., dissenting) (acknowledging that there was no evidence 
that the software at issue “became self-aware and rewrote the agreements,” but noting 
that “machine learning and artificial intelligence may one day force us to confront these 
issues.”). 
 77 Id. (Schenck, J., dissenting) (“I conclude the evidence was of no legal relevance, 
[and] I find further debate unnecessary.”). 
 78 See, e.g., Kayla Matthews, Legal Implications of Driverless Cars, L. TECH. TODAY (Oct. 
3, 2018), https://www.lawtechnologytoday.org/2018/10/the-legal-implications-of-
driverless-cars/ (questioning the legal implications of autonomous vehicles in tort 
litigation and suggesting that lawyers must adapt to the challenges). This is not to 
suggest that autonomous vehicles are the only means by which a machine learning 
algorithm can cause harm, but simply that it is likely the most frequent in today’s 
technological landscape. 
 79 Complaint & Demand for Jury Trial at 2–3, Nilsson v. General Motors LLC, No. 
18cv471 (N.D. Cal. Jan. 22, 2018). 
 80 Id. at 2. 
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which it obeys [] traffic laws and regulations.”81  Thus, rather than 
couching his claim in any product liability-related cause of action, the 
plaintiff attempted to litigate the claim similarly to a typical auto 
accident negligence claim.82  General Motors admitted “that the 
[autonomous vehicle] was required to use reasonable care in driving,”83 
but the issue was never litigated due to the case settling four months 
after it was filed.84 

Next, in March 2018, the use of autonomous driving technology in 
an Uber automobile led to the death of a pedestrian.85  The inattentive 
backup operator of the automobile, tasked with monitoring the 
autonomous system, failed to stop the vehicle before it hit a pedestrian 
walking with a bicycle across the street.86  The backup operator was 
criminally charged with negligent homicide for her role in the 
accident,87 with the county attorney handling the case finding that there 
 

 81 Id. at 4. 
 82 While negligence may not be the only claim alleged in a typical automobile 
accident case, negligence usually forms the basis of the complaint. See, e.g., Luciano v. 
Islam, 171 N.Y.S.3d 749, 754–55 (Sup. Ct. 2022) (discussing the elements of negligence 
in an automobile accident case in reference to the state’s summary judgment standard). 
 83 Answer at 4, Nilsson v. General Motors LLC, No. 18cv471 (N.D. Cal. Jan. 22, 2018). 
 84 See RJ Vogt, GM Settles First-Known Suit Over Self-Driving Car Crash, LAW360 (June 
1, 2018, 10:56 PM), https://www.law360.com/articles/1049776/gm-settles-first-
known-suit-over-self-driving-car-crash (“According to court filings, counsel for both 
sides met and agreed in April to enter private mediation . . . [o]n May 30, they filed joint 
notice of settlement.”). 
 85 See Andrew J. Hawkins, Serious Safety Lapses Led to Uber’s Fatal Self-Driving Crash, 
New Documents Suggest, VERGE (Nov. 6, 2019, 11:45 AM), 
https://www.theverge.com/2019/11/6/20951385/uber-self-driving-crash-death-
reason-ntsb-dcouments (discussing the details of the fatal accident and a related report 
from the National Traffic Safety Board). 
 86 See Phil McCausland, Self-Driving Uber Car That Hit and Killed Woman Did Not 
Recognize That Pedestrians Jaywalk, NBC NEWS (Nov. 9, 2019, 3:28 PM), 
https://www.nbcnews.com/tech/tech-news/self-driving-uber-car-hit-killed-woman-
did-not-recognize-n1079281 (“ . . . the car couldn’t recognize [the victim] as a 
pedestrian or a person . . . [and the safety driver] was streaming the television show ‘The 
Voice.’”). For the safety driver’s differing account of the situation, see Lauren Smiley, ‘I’m 
the Operator’: The Aftermath of a Self-Driving Tragedy, WIRED (Mar. 8, 2022, 6:00 AM), 
https://www.wired.com/story/uber-self-driving-car-fatal-crash/. 
 87 See Katyanna Quach, Driver in Uber’s Self-Driving Car Death Goes on Trial, Says She 
Feels Betrayed, THE REGISTER (Mar. 14, 2022, 1:19 PM), 
https://www.theregister.com/2022/03/14/in_brief_ai/ (discussing the backup 
driver’s perspective on the negligent homicide charge).  At the time of this Comment’s 
publication, the backup driver has pleaded guilty to endangerment and sentenced to 
three years of supervised probation. Corina Vanek, Arizona Driver in Fatal Autonomous 
Uber Crash in 2018 Pleads Guilty, Sentenced to Probation, AZCENTRAL, 
https://www.azcentral.com/story/news/local/tempe/2023/07/28/rafaela-vasquez-
pleads-guilty-in-in-fatal-uber-self-driving-crash-killed-pedestrian-elaine-
herzberg/70488361007/ (July 28, 2023, 8:29 A.M.) 
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was no basis for the criminal liability of Uber itself.88  Uber, however, 
quickly settled a related civil suit brought by the deceased pedestrian’s 
family out of court, thereby declining to litigate the issue.89 

Since these two initial cases, multiple complaints have been filed 
against autonomous vehicle manufacturers, each of which usually 
alleges a design defect cause of action.90  Of the cases still being litigated, 
the factual background of Hinze v. Tesla91 may represent the best 
opportunity for doctrinal developments in the field of machine learning 
torts.92  The complaint, which alleges a product liability cause of action 
among others,93 includes a detail not mentioned in many other 
complaints: the plaintiff was actively monitoring the vehicle while it 
exercised its autonomous function.94  This detail is significant because it 
may force litigation to focus more on the products liability theory 
presented by the plaintiff, as driver fault may be difficult to prove on the 
manufacturer’s part.  Therefore, the case has the potential to focus more 
on the allegedly defective design of the machine learning aspects of the 
automobile than in prior cases,95 which in turn may coalesce into a 
 

 88 Letter from Sheila Polk, Yavapai County Attorney, to The Honorable Bill 
Montgomery (Mar. 4, 2019), 
https://s3.documentcloud.org/documents/5759641/UberCrashYavapaiRuling030520
19.pdf. 
 89 See Scott Neuman, Uber Reaches Settlement with Family of Arizona Woman Killed 
By Driverless Car, NAT’L PUB. RADIO (Mar. 29, 2018, 3:23 AM), 
https://www.npr.org/sections/thetwo-way/2018/03/29/597850303/uber-reaches-
settlement-with-family-of-arizona-woman-killed-by-driverless-car (“Uber 
Technologies has reached a settlement with the family of the woman killed earlier this 
month.”). 
 90 While an in depth analysis of each individual case is beyond the scope of this 
Comment. See, e.g., Complaint & Jury Demand, Banner v. Tesla Inc., No. 2019CA009962 
(Fla. Cir. Ct. Aug. 1, 2019) (alleging a products liability cause of action against an 
autonomous vehicle manufacturer); see also Isobel A. Hamilton, ‘We Cannot Have 
Technology and Sales Take Over Safety’: Tesla Is Being Sued Again for a Deadly Autopilot 
Crash, BUS. INSIDER (Aug. 2, 2019, 7:56 AM), https://www.businessinsider.com/tesla-
sued-family-jeremy-beren-banner-autopilot-crash-2019-8 (discussing the factual 
background of Banner’s death and summarizing prior lawsuits on the same issue). 
 91 Hinze v. Tesla, Inc., No. 22cv2944, (N.D. Cal. Apr. 4, 2022). 
 92 Complaint & Demand for Jury Trial at 1–7, Hinze v. Tesla, Inc., No. 22cv2944, (N.D. 
Cal. Apr. 4, 2022). 
 93 Id. at 13. 
 94 See id. at 2 (“Plaintiff was actively and consciously maintaining active supervision 
of the vehicle.”); see also Joseph Geha, Lawsuit: Tesla Autopilot Accelerated on Its Own, 
Causing Crash, GOV’T TECHNOLOGY (May 20, 2022), https://www.govtech.com/fs/lawsuit-
tesla-autopilot-accelerated-on-its-own-causing-crash (“The suit alleges that, unlike 
some other Tesla crashes involving the autopilot feature, [plaintiff] was actively and 
consciously maintaining active supervision of the vehicle.”). 
 95 See, e.g., Jonathan Stempel, Jury Finds Tesla One Percent Negligent in Fatal Model S 
Crash, REUTERS (July 19, 2022, 7:18 PM), https://www.reuters.com/business/autos-
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usable framework for later cases where machine learning allegedly 
causes harm. 

In conclusion, there is little to no case law speaking to the issues 
addressed in this Comment.  Future litigation may lead to the 
development of doctrine addressing the intersection of machine 
learning and products liability, but the law has yet to develop to that 
end. 

IV. APPLICATION OF DESIGN DEFECT STANDARDS TO MACHINE LEARNING 

PRODUCTS 

Given the unresolved issues arising from the intersection of 
machine learning and product liability law, this section will proceed in 
three parts.  Part A will give a brief justification of this Comment’s choice 
to exclusively analyze the identified issues within the framework 
provided by the Restatement (Third).  Part B will provide a primer on 
the applicable law and its policy-based goals.  Finally, Part C will discuss 
specific issues in applying the doctrine to products incorporating a 
machine learning element.  

A. Justification for the Restatement (Third) Approach 

This Comment analyzes the subsequent identifiable doctrinal 
issues in the context of the Restatement (Third) rather than through the 
approaches of any single state or prior formulations of design defect 
doctrine.  Although controversial in both the academic and practical 
legal contexts at its inception,96 the risk-utility test and the reasonable 

 

transportation/jury-finds-tesla-just-1-liable-owes-105-mln-over-fatal-crash-2022-07-
19/ (discussing an action brought against Tesla which turned on issues of comparative 
fault among the parties). 
 96 A variety of changes from the prior Restatement led to controversies, none more 
so than the changes to RESTATEMENT (SECOND) OF TORTS § 402A (AM. L. INST. 1965). The 
abandonment of prior doctrine in favor of the risk-utility test was a highly contested 
issue during the Restatement project itself, and the debates continued into the 
courtroom. See Victor E. Schwartz, The Restatement (Third) of Torts: Products Liability: 
A Guide to Its Highlights, 34 TORT & INS. L. J. 85, 88 (1998) (stating that “there was no issue 
that brought about more debate in the entire Restatement project than” the adoption of 
the risk-utility test and related alternative design proof requirements); John F. Vargo, 
The Emperor’s New Clothes: The American Law Institute Adorns a “New Cloth” for Section 
402A Products Liability Design Defects—A Survey of the States Reveals a Different Weave, 
26 U. MEM. L. REV. 493, 502–03 (1996) (broadly criticizing the methodology of the 
creation of the risk-utility test and suggesting that the prevailing consensus behind the 
rule may be incorrect); Potter v. Chicago Pneumatic Tool Co., 694 A.2d 1319, 1322 
(Conn. 1997) (declining to adopt the Restatement (Third) approach to design defects 
because “the feasible alternative design requirement imposes an undue burden on 
plaintiffs.”). 
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alternative design requirement proposed by the Restatement (Third) 
has become the dominant approach among state courts wrestling with 
design defect litigation.97 

In the few states that have outright rejected the risk-utility test, the 
main objection seems to be the insertion of a negligence-like standard 
into a doctrine governed by strict liability,98 referring to the insertion of 
language focusing on the “foreseeable risks of harm posed by the 
product.”99  South Dakota, for example, did not outright reject the test; 
it simply declined to clarify whether the state followed the risk-utility 
test.100  However, in states that have not adopted the Restatement 
(Third) approach, qualifications to the prior approach have brought the 
doctrine closer to the risk-utility test in some specific factual 
situations.101  Additionally, South Dakota’s unclear approach is likely to 
be clarified in favor of the Restatement (Third) approach once a case 
presents a favorable opportunity to do so.102  Thus, given the 
Restatement (Third)’s dominance and broader influence, this Comment 
focuses on the risk-utility approach to design defects adopted by the 
Restatement (Third) .   
 

 97 The Restatement (Third) itself notes only six states that continue to utilize the 
Restatement (Second) of Torts consumer-expectations test as an independent standard, 
and one state that utilizes a mixed approach depending on the product at issue. 
RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2(b) reporter’s note cmt. d (AM. L. INST. 1999). 
 98 See Ford Motor Co. v. Trejo, 402 P.3d 649, 656 (Nev. 2017) (the risk-utility test 
“inserts a negligence standard into an area of law where this court has intentionally 
departed from traditional negligence analysis.”); Aubin v. Union Carbide Corp., 177 
So.3d 489, 510 (Fla. 2015) (the risk-utility test “is inconsistent with the rationale behind 
the adoption of strict products liability.”). 
 99 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2(b) (AM. L. INST. 1999); see also Ford 
Motor Co. v. Trejo, 402 P.3d at 656 (“Rather than focus on the product itself, the risk-
utility test subverts this analysis, focusing on the ‘foreseeable risks of harm’ apparent to 
the manufacturer when adopting the design.”). 
 100 Karst v. Shur-Co., 878 N.W.2d 604, 610 n.4 (S.D. 2016) (“The dissent argues that 
we should adopt the risk-utility balancing test . . . [but] without the benefit of briefing 
and argument, we must wait for an appropriate case to consider such significant changes 
in our products-liability jurisprudence.”). 
 101 See Cavanaugh v. Stryker Corp., 308 So.3d 149, 155–156 (Fla. Dist. Ct. App. 2020) 
(distinguishing Aubin on the basis that “some products may be too complex for a logical 
application of the consumer expectations test” and explaining that “the relevant 
expectations [for a complex medical device] are those of the medical professional, not 
the ordinary consumer.”); see also Traci T, McKee, Florida Appellate Court Authorizes the 
Use of the Risk-Utility Test in Complex Medical Device Cases, FAEGRE DRINKER ON PRODS. 
(October 16, 2020), https://www.faegredrinkeronproducts.com/2020/10/florida-
appellate-court-authorizes-the-use-of-the-risk-utility-test-in-complex-medical-device-
cases/ (discussing the rejection of the consumer expectation test in Cavanaugh). 
 102 See Karst, 878 N.W.2d at 622 (Kern, J., dissenting) (“It is clear from the arguments 
of counsel that our sole reliance on the outdated principles contained in the Restatement 
(Second) of Torts § 402A is no longer workable.”). 
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B. The Third Restatement’s Design Defect Standard 

As alluded to in prior sections, the Restatement (Third) uses what 
has been coined as “the risk-utility test” to determine when a product is 
defective in design.103  Specifically, a product “is defective in design 
when the foreseeable risks of harm posed by the product could have 
been reduced or avoided by the adoption of a reasonable alternative 
design . . . and the omission of the alternative design renders the product 
not reasonably safe.”104  The risk-utility test functions as a balancing 
test, considering “a broad range of factors” such as the “magnitude and 
probability of foreseeable risks of harm, the instructions and warnings 
accompanying the product, and the nature and strength of consumer 
expectations regarding the product.”105  To prove a design defect, a 
plaintiff must present evidence of an available reasonable alternative 
design and then demonstrate a positive balancing of the risk-utility 
factors based on that alternative design.106 

The underpinning of the test rests on the concept of foreseeability.  
There are two aspects of foreseeability at play: foreseeability of use and 
foreseeability of harm.107  Foreseeability of use may be thought of as the 
likely results of the regular use of a product or a reasonably anticipated 

 

 103 In contrast to manufacturing defects, design defects require “an independent 
assessment of advantages and disadvantages, to which some attach the label ‘risk utility 
balancing.’” RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 cmt. a (AM. L. INST. 1999). 
 104 Id. at § 2(b). 
 105 Id. at § 2 cmt. f. The list of factors provided in the comment to the Restatement 
(Third) is not meant to be exhaustive. See, e.g., Banks v. ICI Americas, Inc., 450 S.E.2d 
671, 675 n.6 (Ga. 1994) (remarking that “[n]o finite set of factors can be considered 
comprehensive or applicable under every factual circumstance,” and providing a “non-
exhaustive list of general factors.”). The Wade factors have become an authoritative list 
of factors, even though they are not strictly applied by many courts. John W. Wade, On 
the Nature of Strict Tort Liability for Products, 44 MISS. L.J. 825, 837–38 (1973) (providing 
a list of seven factors to be used in risk-utility analysis). For a criticism of the Wade 
factors, see W. Kip Viscusi, Wading Through the Muddle of Risk-Utility Analysis, 39 AM. U. 
L. REV. 573, 580–81 (1990). 
 106 See, e.g., Genie Industries, Inc. v. Matak, 462 S.W.3d 1, 9–10 (Tex. 2015) 
(suggesting that evidence of a reasonable alternative design is a prerequisite to the 
submission of risk-utility factors to the jury); accord RESTATEMENT (THIRD) OF TORTS: 

PRODS. LIAB. § 2 cmt. D (AM. L. INST. 1999) (“Assessment of a product design in most 
instances requires a comparison between an alternative design and the product design 
that caused the injury, undertaken from the viewpoint of a reasonable person.”). 
 107 Compare RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 cmt. M (AM. L. INST. 1999) 

(“[The risk-utility test will] impose liability only when the product is put to uses that it 
is reasonable to expect a seller or distributor to foresee.”), with § 2 cmt. d (“[T]he test is 
whether a reasonable alternative design would, at reasonable cost, have reduced the 
foreseeable risks of harm posed by the product.”). 
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use of the product.108  For example, one foreseeable use of a hammer 
could be driving a nail through a piece of wood.109  Foreseeability of 
harm, in contrast, refers to the potential harms derived from the 
foreseeable uses of a product.110  Thus, one foreseeable harm derived 
from using a hammer may be a broken finger from a missed swing.111  
This split-concept approach to foreseeability is important because while 
a manufacturer can take steps to limit the foreseeable uses of his 
product through various means,112 foreseeable harms generally cannot 
be limited once foreseeable use is established: they are simply 
coextensive with the use of the product.113  This contention is the basis 
of one of the issues posed by the doctrine’s application to machine 
learning, discussed in the following section. 

C. Core Difficulties of Applying the Restatement (Third)’s Design 
Defect Standards to Machine Learning 

The main issues in applying the Restatement (Third)’s design defect 
standard arise from its application to machine learning and issues 
relating to foreseeability of risk and probabilistic harm.  Part One 
addresses issues stemming from foreseeability of risk.114  Part Two 

 

 108 See Eshbach v. W. T. Grant’s & Co., 481 F.2d 940, 942–43 (3d Cir. 1973) (“[T]he 
proper limits of responsibility for the defendant-seller here is whether the ‘use’ to which 
the product was put was intended or foreseeable (objectively reasonable) by the 
defendant.”); Hockler v. William Powell Co., 129 A.D.3d 463, 463 (N.Y. App. Div. 2015) 
(holding that plaintiff could not recover on a design defect claim because dismantling a 
product did not constitute “a reasonably foreseeable use of a product.”). 
 109 Using the same hammer as a boomerang would not be a foreseeable use of the 
product because the normal and anticipatable uses of a hammer will generally only 
include those uses associated with construction. 
 110 See Eshbach, 481 F.2d at 943 (“[I]t is foreseeability as to the use of the product 
which establishes the limits of the seller’s responsibility.”). 
 111 For example, an injury sustained to the head stemming from the hammer being 
thrown into the air would not present a foreseeable harm, considering no foreseeable 
use is presented. Whether or not the manufacturer of the hammer would be held liable 
for a broken finger is not considered, as that question hinges upon the evidence of a 
reasonable alternative design ameliorating that foreseeable risk of harm.  
 112 For example, advertising can play a role in the determination of whether the 
plaintiff’s use of a product is foreseeable.  See Garrison v. Wm. H. Clark Mun. Equipment 
Inc., 241 A.D.2d 872, 873 (N.Y.S. 1997) (discussing how a brochure marketing the 
product expanded the foreseeable use of that product beyond that the manufacturer 
claimed). 
 113 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 cmt. m (AM. L. INST. 1999) (“Once the 
plaintiff establishes that the product was put to a reasonably foreseeable use, physical 
risks of injury are generally known or knowable by experts in the field.”). 
 114 While not discussed in this Comment, note that the foreseeability issue identified 
in Part IV.C.1. poses similar problems to the Restatement (Third)’s warning defect 
standard for a similar set of reasons. 
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addresses the issue of probabilistic harm and its practical and policy-
based implications on the reasonable alternative design requirement 
imposed by the risk-utility test. 

1. Foreseeable Risk as a Dependent Element 

As previously explained, for the purposes of determining whether 
a product has a design defect, a foreseeable risk of harm consideration 
occurs when “the product is put to uses that is reasonable to expect a 
seller or distributor to foresee.”115  The split between foreseeable use 
and foreseeable risk focuses the overall foreseeability inquiry on the 
foreseeability of use, going so far as to support a presumption that a risk 
of harm is foreseeable so long as the product is foreseeably used.116  This 
means that analysis in products liability cases focuses on foreseeable 
use and not foreseeable risk, due to the presumption that foreseeable 
risk is derived from foreseeable use.117  Normally, this is an inherently 
logical proposition, as the risk of harm is generally coextensive with use 
and a designer can usually anticipate and be expected to guard against 
risks associated with foreseeable use.118 

Yet, when considering machine learning, this proposition is less 
sound due to computing concepts known as covariate shift and concept 
drift.  Covariate shift occurs “when data fed into an algorithm during its 
use differs from the data that trained it” in some appreciable way.119  A 
basic, harm-free example of this occurring in practice would be if “an 
imaging processing system” trained exclusively on laboratory 
conditions was “deployed to foreign geographic regions where light 
conditions differ.”120  In this case, the data used to train the machine 
learning system to perform its function will be starkly different from the 

 

 115 Id. § 2 cmt. m. 
 116 See id. § 2 cmt. m (“Product sellers and distributors are not required to foresee and 
take precautions against every conceivable mode of use and abuse to which their 
products might be put . . . In cases involving a claim of design defect in a mechanical 
product, foreseeability of risk is rarely an issue . . . Once the plaintiff establishes that the 
product was put to a reasonably foreseeable use, physical risks of injury are generally 
known.”). Machine-learning based products are all mechanical in nature, as they 
themselves are machines operating for an intended function. 
 117 Id. 
 118 See generally Butts v. OMG, Inc., 612 F. App’x 260, 262–63 (6th Cir. 2015) 
(discussing the foreseeable risks of a product in the context of foreseeable use of that 
product). 
 119 Boris Babic et al., When Machine Learning Goes Off the Rails, HARV. BUS. REV., Feb. 
2021. 
 120 Steffen Bickel et al., Discriminative Learning Under Covariate Shift, J. MACH. 
LEARNING RSCH. (2009). 
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real-world data, meaning that the system as a whole will likely not be 
able to function as intended as a result of the change in data.121  To 
illustrate covariate shift in a non-technological manner, imagine a law 
student studying for an exam with an outline from a different professor: 
the concept may be similar in form, but the component pieces are so 
different that the answer may not be fully accurate.   

In contrast, concept drift “describes unforeseeable changes in the 
underlying distribution of [real-world] data over time.”122  To make this 
simpler, a “machine learning [system developed] for stock trading” 
trained on market data derived from “a period of low market volatility 
and high economic growth” would experience concept drift if it were 
implemented during “a recession.”123  In that situation, the predictive 
function of the machine learning system would not be reliable because 
the algorithm’s premise would not apply to the present market 
conditions.124  Returning to the aforementioned ill-prepared law 
student, concept drift can be illustrated by imagining the student 
studying for a property exam by exclusively reading Blackstone on 
Property: the central idea may be the same, but most of the material has 
been superseded over time. 

The issue in practice stemming from covariate shift and concept 
drift is that the risks of a machine learning product are not always 
coextensive with the use of the product.  To illustrate, imagine a 
futuristic car with a self-driving feature that heavily incorporates 
machine learning to perform its self-driving function.125  As a product 
subject to design defect standards, the self-driving car has a foreseeable 
use derived from its intended function—to be driven with the self-
driving feature active.126  If the car were to crash, harming an occupant 
or other individual, the crash would be a presumptively foreseeable risk 
of the use of the self-driving function.127  But this is not always the case 
due to covariate shift and concept drift.  Say, for example, the self-

 

 121 Id. 
 122 Jie Lu et al., Learning Under Concept Drift: A Review, INST. ELEC. & ELEC. ENG’R (2018). 
 123 Babic et al., supra note 119. 
 124 Babic et al., supra note 119. 
 125 Gina Mantica, Self-Taught, Self-Driving Cars? Like Babies Learning to Walk, 
Autonomous Vehicles Learn to Drive by Mimicking Others, B.U.: THE BRINK BLOG (July 30, 
2021), https://www.bu.edu/articles/2021/self-taught-self-driving-cars/ (“Self-driving 
cars are powered by machine learning algorithms that require vast amounts of driving 
data in order to function safely.”). 
 126 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 cmt. m (AM. L. INST. 1999). 
 127 See id. (“Once the plaintiff establishes that the product was put to a reasonably 
foreseeable use, physical risks of injury are generally known.”). 
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driving function failed because another driver near the car rapidly 
crossed three lanes of traffic.128  If the implicit assumption made in the 
training data used to train the car’s self-driving function was that other 
drivers would only ever unsafely cross two lanes of traffic, the machine 
learning system powering the self-driving function may experience 
covariate shift, resulting in an error that crashes the car.129  The core 
problem is that while the ultimate risk in such an example, the car 
crashing, is absolutely foreseeable to the designer, the instrumentalities 
by which that risk arises are not. 

The instances leading to potential covariate shift and concept drift 
are functionally endless.  This concept, the immeasurability of the points 
of failure, is generally known as the black box of machine learning.130  
More specifically, the black box of machine learning refers to the idea 
that “no human can understand how . . . variables are jointly related to 
each other to reach a final prediction,” essentially that even the designer 
of a machine learning system does not know the exact steps the system 
takes to reach its conclusion.131  One implication of covariate shift and 
concept drift is that it may not be readily apparent to a designer exactly 
where a point of failure lies in the machine learning system due to the 
black box.132  Thus, even minor changes between the training dataset 
and real-world data leading to covariate shift can be a monstrous 
endeavor to diagnose and fix due to the black box generally obscuring 
the inner workings of the system.133 

The broader issue, for the designer at least, is that while covariate 
shift and concept drift are foreseeable in occurrence, their effects and 
associated risks are frequently not.  A designer can make a relatively 
safe bet that the machine learning system designed will at some point 

 

 128 See generally Distribution-Shift—The Hidden Reason Self-Driving Cars Aren’t Safe 
Yet, MEDIUM (Apr. 14, 2020), https://medium.com/@nuronlabs/distribution-shift-the-
hidden-reason-self-driving-cars-arent-safe-yet-b07bfe3ae800 (discussing possible 
examples of covariate shift self-driving cars may experience). 
 129 See Babic, supra note 119 (providing the definition and examples of covariate shift 
in machine learning).  
 130 Cynthia Rudin & Joanna Radin, Why Are We Using Black Box Models in AI When We 
Don’t Need To? A Lesson From an Explainable AI Competition, HARV. DATA SCI. REV. (Nov. 
22, 2019). 
 131 Id. 
 132 See id. (stating that “even if one has a list of input variables, black box predictive 
models can be such complicated functions of the variables” that a human designer 
cannot identify how the system reached its conclusion). 
 133 Id. The same would be true of a change in real-world conditions that leads to the 
machine learning system experiencing concept drift.   
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experience either, or both, covariate shift and concept drift,134 but the 
same cannot be said of what harms and risks of harm will result from 
this occurring.  However, liability for the designer does not hinge on 
whether they make the astute observation that covariate shift will one 
day occur; liability is imposed when the ultimate harm stemming from 
covariate or concept drift is foreseeable.135  Going back to the prior 
example, the question of liability for the designer of the self-driving car 
does not turn on whether he has correctly foreseen that covariate shift 
or concept drift will one day occur; liability is imposed when it occurs 
and causes harm, without regard for the circumstances that brought it 
about.136 

The core issue then emerges: a plaintiff may experience a 
foreseeable harm from their own or another’s use of the machine 
learning system in a foreseeable manner by means that are 
unforeseeable to the designer “at the time of sale.”137  To make this more 
concrete, recall the prior example of the futuristic self-driving car 
powered by a machine learning system.138  The foreseeable use of this 
product is the use of the self-driving feature to drive the car,139 and a 
foreseeable risk of harm stemming from the foreseeable use of the self-
driving feature is the risk that the car may crash.140  If the self-driving 
feature of the car malfunctions, leading to a crash, the plaintiff 
presumptively satisfies the foreseeability inquiry: the product has been 
used in a foreseeable manner and caused a foreseeable harm.141  This 
result is massively overinclusive towards the satisfaction of the 
foreseeability requirement because it does not account for the near-

 

 134 See Data Distribution Shifts and Monitoring, CHIP HUYEN (Feb 7, 2022), 
https://huyenchip.com/2022/02/07/data-distribution-shifts-and-monitoring.html 
(“Data shifts happen all the time, suddenly, gradually, or seasonally.”). 
 135 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2(b) (AM. L. INST. 1999). 
 136 Therefore, the question of whether or not a car swerving across three lanes of 
traffic is foreseeable to the designer is irrelevant under the current design defect 
standard.  Liability turns on whether the ultimate harm experienced by the driver is a 
foreseeable risk of the foreseeable use of using the autonomous driving mode. Id.  
 137 Id. at § 2(b) (AM. L. INST. 1999). 
 138 See Mantica, supra note 125. 
 139 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 cmt. m (AM. L. INST. 1999). 
 140 Id. (“Once the plaintiff establishes that the product was put to a reasonably 
foreseeable use, physical risks of injury are generally known or knowable by experts in 
the field.”). This is an example of a generally known risk, in that it is fairly common 
knowledge that driving a car carries a risk that the car will crash, machine learning 
system driving or not. 
 141 See id. (stating that design defect liability is “impose[d] only when the product is 
put to foreseeable uses.”); Id. at § 2(b) (stating that a product “is defective in design when 
the foreseeable risks of harm posed by the product” could have been lessened). 
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infinite number of variables leading to the foreseeable harm stemming 
from the foreseeable use.  While some of these variables may be within 
the designer’s control,142 many are not and are, in fact, caused by 
extrinsic phenomena that produce covariate shift and concept drift. 

 Thus, this discounting of the interim step between foreseeable use 
and foreseeable harm does not account for the technological realities of 
machine learning.  It is simply not possible for a designer to program 
around every conceivable edge case that may lead to a foreseeable 
harm.143  But if the designer cannot do this, then their liability for harm 
is essentially endless as well, so long as the foreseeability inquiry 
mirrors that of the example provided.  The use and risk of harm are not 
what is unforeseeable to the designer, but the instrumentalities of that 
risk of harm are, thereby posing a unique problem for the designer of 
the machine learning system.144 

The question then becomes, what is a designer supposed to do to 
counteract this problem?  Generally, broadening training data to the 
extent that every conceivable edge case or cause of harm is incorporated 
is not technologically possible.145  The implicit and necessary 
assumption that a designer must make at the outset of developing a 
machine learning system is that a certain subset of edge cases will not 
be designed around or accounted for in any meaningful way.146  Realities 
concerning machine learning function conflict with the law in this 
regard because there are effectively no means by which a designer can 
limit liability other than to simply not develop or incorporate the 
machine learning system. 

This result does not mesh with the stated policy goals of the 
Restatement (Third).  Clearly stated is that a designer need not “take 

 

 142 For example, the self-driving car may simply fail as a result of poor programming, 
which is in the control of the designer.  
 143 See Jason Withrow, Edge Cases: A Persistent Dilemma, STOUT SYS., 
https://www.stoutsystems.com/edges-cases-a-persistent-dilemma/ (discussing the 
impossibility of eliminating edge cases in machine learning design and practice) 
[perma.cc/V2P3-Y4BK]. 
 144 A loosely comparable situation may be found in the designers of prescription 
medication. For such products, unforeseeable risks of harm such as specific individual’s 
reactions to medication may be unforeseeable at the time of design. RESTATEMENT (THIRD) 

OF TORTS: PRODS. LIAB. § 2 cmt. m (AM. L. INST. 1999). However, for machine learning 
systems, the difference lies in the fact that the ultimate risk of harm is generally 
observable, but the instrumentalities of that harm are unforeseeable at the time of sale.  
 145 See Amal Joby, What is Training Data? How it’s Used in Machine Learning, G2 (Jul. 
30, 2021), https://learn.g2.com/training-data (emphasizing that training data must be 
“relevant”); Withrow, supra note 143. (discussing the impossibility of eliminating edge 
cases in machine learning design and practice). 
 146 Withrow, supra note 143.  
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precautions against every conceivable mode of use and abuse” when 
designing a product.147  However, by disregarding the instrumentality of 
the harm that a machine learning system causes, the Restatement 
(Third) essentially asks a designer to do exactly that.  To avoid liability, 
the designer must essentially include every possible edge case that may 
be reasonably expected to lead to a foreseeable risk during foreseeable 
use.  The post hoc conclusion that the designer should have included a 
system reaction to a specific edge case is simply a new way of saying that 
every mode of use must be addressed in the design.  While the designer 
of every product picks and chooses risks of harm to mitigate to a degree, 
machine learning systems are not afforded the same balance of risk and 
benefit that other products have due to the lack of focus on the 
instrumentalities of risk. 

2. Probabilistic Harm and Reasonable Alternative Designs 

Generally, before applying the risk-utility test, the plaintiff in a 
design defect case must present evidence that establishes a reasonable 
alternative design.148  A reasonable alternative design is one that 
“would, at reasonable cost, have reduced the foreseeable risks of harm 
posed by the product” and that “could have been practically adopted at 
time of sale” without being overly costly.149 

The difficulty in applying this requirement to products 
incorporating machine learning derives from the systems’ functionality.  
At its core, a machine learning system is a system designed to produce 
outputs based on probabilistic evidence.150  Probability theory is a 
foundational concept in machine learning because probability informs 
the system on the outcomes likely to occur when a specific course of 
action is taken or when a certain combination of variables are 
present.151  However, probability is not an exact science; what is likely 
to occur is not certain to occur. For example, consider calculating the 
probability of a coin flip landing on heads.  The laws of probability state 
that either option, heads or tails, has a 50 percent probability of 
occurring, but flipping a coin one hundred times rarely leads to an even 

 

 147 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 cmt. m (AM. L. INST. 1999). 
 148 Id. at § 2(b). There are situations in which this bar need not be met, but the general 
rule is that such evidence must be presented. See id. at § 3 cmt. b (discussing situations 
in which a reasonable alternative design need not be shown by a plaintiff). 
 149 Id. § 2 cmt. d (AM. L. INST. 1999). 
 150 See generally Christopher M. Bishop, PATTERN RECOGNITION AND MACHINE LEARNING 
(M. Jordan et al. eds., 2006) (discussing machine learning algorithms as pattern 
recognition models based on probability theory). 
 151 Id. 
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distribution of heads and tails.152  This is because the most probable 
outcome, an even distribution, is not the only outcome that can occur—
it is simply the most probable or likely outcome.153 

When applying the realities of probability theory to machine 
learning products, the mismatch between probable and actual results 
has the potential to cause harm.  Take, for example, a fraud detection 
system that uses a machine learning algorithm to flag fraudulent 
transactions used by a financial institution.154  If the system designates 
a specific transaction as fraudulent with a 99 percent probability, and 
the account is flagged, the corollary assumption is that there is a 1 
percent probability that the transaction is not fraudulent.  If the 
transaction falls into that 1 percent category, the system has effectively 
harmed the individual by potentially affecting their credit, among other 
repercussions.155  However, the system has done exactly what it was 
designed to: identify the most probable output and act accordingly, even 
though that output had a small chance of causing harm. 

What, then, is the alternative design that ought to be proposed 
when an individual is harmed based on a statistical improbability?  In 
the above example, any proposed alternative design would effectively 
need to eliminate the chance for a statistical improbability to occur for 
the plaintiff to be able to show that the design “would have reduced or 
prevented injury to” them, as the designer would need to disallow the 
system from making decisions based on anything less than 100 percent 
probability, so long as that alternative was of reasonable cost and 
availability.156  But such a design is antithetical to the purposes behind 
using a machine learning system in the first place: why design a system 

 

 152 John Walker, Introduction to Probability and Statistics, THE RETROPSYCHOKINESIS 

PROJECT, https://www.fourmilab.ch/rpkp/experiments/statistics.html.   
 153 Id. 
 154 See generally Kaushik Choudhury, Real-Time Fraud Detection with Machine 
Learning, MEDIUM: TOWARDS DATA SCI. (Sept. 2, 2020), 
https://towardsdatascience.com/real-time-fraud-detection-with-machine-learning-
485fa502087e (discussing the use of machine learning algorithms in real-time fraud 
detection for financial institutions); Florian Tanant, Fraud Detection with Machine 
Learning & AI, SEON, https://seon.io/resources/fraud-detection-with-machine-
learning/ (discussing the use of machine learning in financial fraud detection and the 
benefits of its use). 
 155 Discussion of the merits of such a claim are beyond the scope of this Comment, 
but depending on the facts of the case, the consumer may have a claim under The Fair 
Credit Reporting Act, 15 U.S.C. § 1681(a)(1)–(2). 
 156 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 cmt. d (AM. L. INST. 1999). 
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to analyze patterns in data to reach a conclusion when one can simply 
design a system to reach a conclusion based on preformulated inputs?157  

In this way, the proposed alternative design to the fraud detection 
system that eliminates statistical improbabilities looks more akin to the 
assertion that the product design is manifestly unreasonable.158  A 
manifestly unreasonable design is one that has low social utility coupled 
with a high risk of harm, for which a plaintiff need not present evidence 
of a reasonable alternative design.159  By asserting that the only way to 
make a machine learning system reasonable is to eliminate statistically 
improbable outcomes, as would be required of the fraud detection 
system, the plaintiff is effectively stating that the design is manifestly 
unreasonable because any evidence of an alternative design would not 
be the same product, conceptually or otherwise.160  Instead, the 
alternative design in such a scenario would effectively be an entirely 
different system that operates without the central feature of the 
design—the probability-based decision-making function.  However, 
unlike the average manifestly unreasonable design, machine learning 
systems like the fraud detection system have social and societal utility 
when considered in the broader context of their use.  A plaintiff 
succeeding on a claim that such a system is, in effect, manifestly 
unreasonable detracts from the widespread utility of such systems and 
does not further the ends sought to be furthered by design defect 
doctrine.161  Machine learning, while not perfect, generally provides 
societal benefits in the form of risk-reduction through elimination of 
human error and enhanced safety through automation;162 holding 
machine learning products to be manifestly unreasonable detracts from 

 

 157 Once predictive nature of the system is eliminated, the system operates as a rules-
based system. This is because instead of analyzing data to reach a conclusion, the system 
is simply looking for data—defined by rules—that confirms a conclusion. For a 
discussion of rules-based systems, see ROUTLEDGE, supra note 47, at 454.  
 158 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 cmt. e (AM. L. INST. 1999). The 
Restatement (Third) does not expressly endorse the idea of manifestly unreasonable 
design but it does discuss the doctrine in relation to potential analysis of a products 
liability claim. 
 159 Id. 
 160 Id.  
 161 Id. § 2 cmt. e (“The court would declare the product design to be defective and not 
reasonably safe because the extremely high degree of danger posed by its use or 
consumption so substantially outweighs its negligible social utility that no rational, 
reasonable person, fully aware of the relevant facts would choose to use . . . the 
product.”). 
 162 The Top 5 Benefits of Artificial Intelligence, DEFINED AI (Nov. 23, 2020), 
https://www.defined.ai/blog/the-top-5-reasons-to-be-grateful-for-
ai/?WPACFallback=1&WPACRandom=1679675641431.  
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benefits, as designers seeking to use the technology are faced with 
significant litigation risk.  

Additionally, the policy behind design defects is not entirely 
applicable to machine learning systems causing probability-based 
harm.  A finding that a product is defectively designed essentially states 
that “every unit in the same product line is potentially defective,” 
meaning that the product’s design should be changed to avoid future 
liability.163  Therefore, designers are encouraged to use a reasonable 
alternative design or an equivalent instead of the current design for 
reasons of limiting liability.164  But, the mere occurrence of a statistical 
improbability actually occurring does not allow for the inference that 
every identical system in use is defective.  Again, the products function 
as intended, even when they make a probability-based decision that 
causes harm.  Returning to the prior fraud detection system example, an 
exact replica of the system deployed elsewhere looking at a 
substantially similar transaction could make the exact same decision as 
the system held defective.  If this new transaction is fraudulent, 
however, then the supposed defect found in the original system does not 
apply to the identical system elsewhere.  In any case, the important 
point is that the harm experienced in such a case is, in all actuality, 
simply a manifestation of the inherent problem with making 
probability-based decisions and not a failing of the system itself. 

The broad takeaway from this discussion is that, at least for some 
types of machine learning systems, the current conception of what 
constitutes a defect can be troublesome for designers.  Not only does the 
reasonable alternative design requirement not operate as intended for 
these systems, but the policy implications underlying holding them 
defective may also not comport with technical realities. 

V. POSSIBLE APPROACHES TO RECTIFYING THE ISSUES POSED BY MACHINE 

LEARNING 

Presenting an answer to the previously identified issues is as 
complex as the question itself because any conclusion drawn will 
necessarily reflect the value one places on machine learning as a 
technology and the relative proportion of harm one tolerates to advance 
it.  Recognizing this value-based reasoning, this Comment provides 

 

 163 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 1 cmt. a (AM. L. INST. 1999). 
 164 Id. at § 2 cmt. a (“The emphasis is on creating incentives for manufacturers to 
achieve optimal levels of safety in designing and marketing products.”). 
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three alternative solutions to the issues discussed, each reflecting a 
different attitude toward machine learning and its advancement.165 

This section proceeds in three parts.  First, Part A provides a 
solution reflecting the sentiment that machine learning’s inclusion in a 
product represents an inherent defect, thereby placing the lowest 
possible value on machine learning as a technology.  Next, Part B 
suggests a middle-ground reformational approach to current product 
liability doctrine to solve the previously identified issues, thus placing 
an even value on machine learning and its relative propensity to cause 
harm.  Finally, Part C offers an optimistic cascade theory based on the 
idea that machine learning’s value is higher than that of its ability to 
cause harm.166 

A. Machine Learning as a Defect 

One may reasonably conclude from the prior discussion that the 
inclusion of a machine learning element in a product represents an 
inherent defect in that product for the purposes of product liability.167  
Justification for this theory may be premised on the idea that the 
foreseeability issues presented by machine learning and the capacity for 
probability-based harms are simply too great in light of the language of 
the Restatement (Third) and its related policy justifications.168 

The basic premise of such an argument rests on the idea that there 
is always a reasonable alternative design available for a product 
incorporating machine learning: a version of the product not 
incorporating machine learning.  Essentially, because the designer 
cannot foresee all instrumentalities leading to foreseeable risks of harm 
and the machine learning system always carries a risk of probabilistic 

 

 165 In short, the solutions proposed by this Comment harken back to the most 
frustrating answer one can give to a legal question: it depends. Susan Landrum, The Most 
Frustrating Phrase in Law School: “It Depends”, L. SCH. SUCCESS (Aug. 14, 2014, 8:00 AM), 
https://lawschoolacademicsuccess.com/2014/08/14/the-most-frustrating-phrase-in-
law-school-it-depends/.  
 166 While somewhat of a misnomer, what this Comment coins as cascade theory may 
also be accurately described as the adoption of machine learning strategies by industry 
laggards under the Rogers adoption curve model.  See Milo Miszewski, Technology 
Adoption Curve–Everything That You Need to Know, MDEVELOPERS (May 27, 2021), 
https://mdevelopers.com/blog/technology-adoption-curve-everything-that-you-
need-to-know (explaining the Rogers technology adoption curve in relation to consumer 
reactions to new technologies). 
 167 Courts have taken similar positions in other contexts, stating that some 
conditions, “even if resulting from the design of the products, are defective.” See, e.g., 
Phipps v. General Motors Corp., 363 A.2d 955, 959 (Md. 1976). 
 168 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 cmt. a (AM. L. INST. 1999) 

(emphasizing safety as the driving force behind the creation of strict products liability). 
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harm, then machine learning itself functions in a defective manner.  
Until these issues with machine learning are solved, then machine 
learning is defective because a system designed without machine 
learning will always “reduce[] or avoid[]” risks of harm.169 

Thus, the solution proposed under this view functions as a simple 
yes or no question to determine if a machine learning system was 
involved in the harm a plaintiff experiences.  If that question is answered 
in the affirmative, then the product will always contain a defect due to 
the easy evidence of a reasonable alternative design.170  Liability for the 
designer, therefore, is somewhat presumed in such a situation, as the 
presumed nature of the defect and reasonable alternative design simply 
leaves no room for litigation on the issue.171  Thus, strict product liability 
becomes even stricter for the designers of machine learning products. 

Obviously, this perspective does not place a high value on machine 
learning technology, especially in instances where it has a possibility of 
causing harm.  Thus, consumer safety and adherence to existing 
doctrine and its related policy goals outweigh any prudential 
considerations of the usefulness of machine learning in consumer 
products: if the technology cannot overcome the reasonable alternative 
design requirement imposed due to its nature, it simply must be 
classified as defective until the technology develops further. 

B. Reformational Approach 

If one values machine learning technology while recognizing that 
current design defect standards may be retooled to compensate for the 
unique issues posed by the technology, then a reformational approach 
emerges.  There is, however, a fundamental problem with proposing 
exacting changes to the law when dealing with rapidly developing 
technology: the technology has the chance to outpace any changes made 
in the law to accommodate it.172  Thus, the recommendations in this 
section should be viewed as benchmarks in that they operate as a 

 

 169 Id. at § 2(b). 
 170 See generally Phipps, 363 A.2d at 959 (stating that products containing an 
inherent defect do not require “weighing and balancing the various factors involved.”). 
 171 See Cavanaugh v. Stryker Corp., 308 So. 3d 149, 154 (Fla. Dist. Ct. App. 2020) 
(implying that proof of a reasonable alternative design plays a “central role” in design 
defect cases). 
 172 See Julia Griffith, A Losing Game: The Law is Struggling to Keep Up with Technology, 
SUFFOLK J. OF HIGH TECH. L. BLOG (Apr. 12, 2019), 
https://sites.suffolk.edu/jhtl/2019/04/12/a-losing-game-the-law-is-struggling-to-
keep-up-with-technology/ (providing examples of legal standards and rules that have 
not kept pace with technology). 
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standard for measuring whether any future changes in law will 
adequately compensate for the challenges machine learning 
technologies pose. 

1. Foreseeability of the Instrumentality of Risk as an 
Independent Standard 

To adequately consider the unique nature of machine learning, any 
future design defect test must incorporate the foreseeability of the 
instrumentalities of foreseeable risks.  As explained, the current 
standard’s exclusive focus on foreseeable use and foreseeable risk leads 
to unlimited liability for designers of machine learning systems due to 
the unlimited range of instrumentalities leading to foreseeable risks.173  
Including this extra component will primarily serve to limit the 
designer’s liability.  However, it will not go so far as to immunize them 
for those instrumentalities of harm that are truly foreseeable. 

To illustrate, return to the example of the self-driving car crashing 
because of the machine learning system experiencing covariate shift or 
concept drift.  If the cause of the covariate shift or concept drift was 
foreseeable, for example, the machine learning system could not 
recognize the side of a truck as another vehicle,174 then the vehicle 
designer would not be absolved of liability.  But if the cause were not 
foreseeable, maybe due to a sudden swarm of cicadas covering the 
vehicle,175 the vehicle designers would have an avenue to immunize 
themselves of liability for the harm.   

The key point is that the insertion of this independent factor leads 
to more equitable results in applying design defect standards.  Plaintiffs 
will still be able to hold the designers of truly defective machine learning 
systems responsible for defects, as satisfaction of this additional 
element will not be a high bar to cross.176  At the same time, however, 

 

 173 See supra Part IV.C.1. 
 174 Timothy B. Lee, “I Was Just Shaking”—New Documents Reveal Details of Fatal Tesla 
Crash, ARS TECHNICA (Feb. 15, 2020, 9:00 AM), https://arstechnica.com/cars/2020/02/i-
was-just-shaking-new-documents-reveal-details-of-fatal-tesla-crash/ (speculating that 
“[t]he machine learning algorithms that underpin [the self-driving system] have only 
been trained to recognize the rear of other vehicles, not profiles or other aspects.”). 
 175 While somewhat of a ridiculous example, it proves the ultimate point of the 
necessity of this independent component of liability: currently, if the car crashed as a 
result of this example occurring, both the use and risk of harm would be foreseeable to 
the designer at the time of sale. See supra notes 136–137 and accompanying text. 
 176 The Restatement (Third) acknowledges this point broadly, stating that “in cases 
involving a claim of design defect in a mechanical product, foreseeability of risk is rarely 
an issue as a practical matter.” RESTATEMENT (THIRD) OF TORTS: PRODS LIAB. § 2 cmt. a (AM. 
L. INST. 1999).  
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designers can rest easier knowing that their liability for such products 
is less than the whole of human experience. 

This approach also meshes well with the existing policy goals of the 
Restatement (Third).  As explained previously, the current standard 
effectively forces a designer to design for every possible reality due to 
the lack of focus on the cause of the risks of harm, which does not keep 
with the policy goals of design defect liability in that it creates an 
overbroad category of liability for designers of machine learning 
products.177  By not discounting the interim step between foreseeable 
use and foreseeable risks of harm, design defect liability will be more in 
line with this policy goal because designers of machine learning 
products will only have to design for truly foreseeable scenarios and not 
every conceivable instrumentality of harm. 

2. Probabilistic Harm Proofs 

Any future design defect test must adequately account for the 
chance of probabilistic harm.  As explained, machine learning, being at 
its core a technology used to make probability-based predictions, has 
the potential to cause harm based on individuals being on the wrong 
side of probability.178  Solving this issue is more complicated than it 
seems at first glance, considering the functionality of machine learning 
technology. 

The obvious solution is to prescribe, legislatively or otherwise, a 
probability floor at which a machine learning system capable of causing 
harm is allowed to decide.  For example, it may be prescribed that the 
credit fraud detection system from earlier is only allowed to flag an 
account when it is 99% sure of the transaction’s fraudulent nature.179  
However, prescribing such a bar may hinder machine learning 
technology to the point of irrelevancy, as the whole point of machine 
learning is to make predictions on unclear data: if minimum confidence 
is required, a rules-based system may actually perform better.180 

Thus, the better solution is to impose a requirement that the 
difference in probability between the machine learning system and the 
reasonable alternative design must represent a material change in 

 

 177 See id. at § 2 cmt. m (discussing the policy behind the inclusion of the foreseeable 
use and foreseeable risk elements of design defect liability). 
 178 See supra Part IV.C.2. 
 179 See supra note 154 and accompanying text. 
 180 See supra note 154 and accompanying text. 
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statistical likelihood.181  Thus, alternative design proofs that merely 
show a slight statistical deviation will not be considered adequate in the 
context of machine learning.  While this somewhat overwrites the text 
of the rule in this context,182 the alternative provides too easy a route to 
liability for a plaintiff attempting to prove a reasonable alternative 
design through minor statistical deviations. 

Thus, to illustrate, suppose the previously mentioned fraud 
detection system was allowed to flag an account with only a 75% chance 
of fraud.  If a plaintiff were to present proof that a reasonable alternative 
design existed in the form of a system only allowed to flag transactions 
with a 67% probability of fraud, this 1% difference would likely not be 
significant enough to satisfy the materiality requirement.  However, 
proof of a system only allowed to flag transactions with a 99% 
probability of fraud likely would.  In either case, the reasonable 
alternative design would still need to satisfy the other requirements for 
proving a reasonable alternative design, namely that the design existed 
at the time the plaintiff was harmed.183 

C. Cascade Theory of Machine Learning 

The corollary position to the total classification of machine learning 
as a defect is the idea that, for some products, lacking a machine learning 
element represents an inherent product defect due to the benefits that 
machine learning provides.  The premise of this argument rests on the 
idea that automation traditionally enhances safety,184 and therefore, 
automating away human input from some classes of products will 
reduce the possibility of human error. 

This position may hold water in the world of self-driving vehicles.  
High levels of automation promise to “remove the driver from the chain 
of events that can lead to a crash,” thereby eliminating human error 

 

 181 In this context, material meaning “significant; essential.” Material, BLACK’S LAW 

DICTIONARY (11th ed. 2019). 
 182 Essentially, such a change would disregard the part of the rule only requiring a 
reasonable alternative design to “reduce[] or avoid[]” risks of harm to the consumer. 
RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2(b) (AM. L. INST. 1999). 
 183 Id. § 2(b) cmt. d. 
 184 For example, automation in manufacturing reduces the risk of accidents and 
workplace injuries. Erika Strand & Peter Stipan, Using Automation Technology to 
Improve Facility Safety, EHS TODAY (Dec. 18, 2020), https://www.ehstoday.com/safety-
technology/article/21150776/using-automation-technology-to-improve-facility-
safety; Jim Vinoski, What’s Automation Ever Done for Us? Okay, There is the Improvement 
in Worker Safety, FORBES (Dec. 7, 2018, 1:30 PM), 
https://www.forbes.com/sites/jimvinoski/2018/12/07/whats-automation-ever-
done-for-us-okay-there-is-the-improvement-in-worker-safety/?sh=3aa02c91771e. 
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behind the wheel.185  Currently, human error causes about 94 percent of 
all auto accidents.186  Therefore, if self-driving technology were to be 
greatly improved, the brunt of traffic accidents may be eliminated.  
While the precise number of accidents that will be prevented is in 
contention,187 with some conservative estimates claiming that only 
about a third of accidents will be prevented, the broad point is that 
driver safety will be significantly enhanced.  While achieving this 
reduction may be a way away,188 there is little debate on whether it is 
capable of being achieved through the use of machine learning 
technology.189 

This same line of reasoning may extend elsewhere.  For example, 
machine learning software used to detect and prevent warehouse 
injuries can reduce workplace accidents and injuries by eighty 
percent.190  Medical algorithms used to evaluate chest X-rays produce 
better results than expert radiologists in diagnosing specific diseases.191  
Predictive policing, accomplished through machine learning, has shown 
potential in reducing crime.192  In summation, there are many places 
 

 185 Automated Vehicles for Safety, NHTSA, https://www.nhtsa.gov/technology-
innovation/automated-vehicles-safety (last visited Jan. 14, 2024). 
 186 NAT’L HIGHWAY TRAFFIC SAFETY ADMIN., U.S. DEP’T OF TRANSP., DOT-HS-812-115, 
CRITICAL REASONS FOR CRASHES INVESTIGATED IN THE NATIONAL MOTOR VEHICLE CRASH CAUSATION 

SURVEY (2015), https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115. 
The remaining six percent may be attributed to vehicle component degradation, 
environmental hazards, and other unknown critical reasons. 
 187 Jaime Ramos, Autonomous Vehicles and Accidents: Are They Safer Than Vehicles 
Operated by Drivers, TOMORROW.CITY (June 22, 2022), https://tomorrow.city/a/self-
driving-car-accident-rate (stating that estimates on how many accidents would be 
eliminated vary from “the complete eradication of that 94%, to more pessimistic reports 
(by insurance companies) that calculate a reduction of around 35%.”).  
 188 Automated Vehicles for Safety, NHTSA https://www.nhtsa.gov/technology-
innovation/automated-vehicles-safety (predicting 2025 and beyond as the earliest that 
fully autonomous driving may be achieved) (last visited Jan. 17, 2024). 
 189 Id. (predicting that “advantages of [machine learning self-driving] technology 
could be far-reaching.”). 
 190 Applying Machine Learning to Keep Employees Safe and Save Lives, VENTURE BEAT 
(Sep. 29, 2020, 6:50 AM), https://venturebeat.com/ai/applying-machine-learning-to-
keep-employees-safe-and-save-lives/ (discussing the machine learning platform 
Warny, which leads to, “on average, . . . an 80% drop in incidents,”). 
 191 Taylor Kubota, Stanford Algorithm Can Diagnose Pneumonia Better Than 
Radiologists, STANFORD NEWS (Nov. 15, 2017), 
https://news.stanford.edu/2017/11/15/algorithm-outperforms-radiologists-
diagnosing-pneumonia/ (discussing CheXNet, a machine learning algorithm designed to 
diagnose fourteen types of medical conditions based on analysis of chest X-rays). 
 192 Matt Stroud, Official Police Business: Does Predictive Policing Actually Work?, VERGE 
(May 4, 2016, 12:04 PM), https://www.theverge.com/2016/5/4/11583204/official-
police-business-predictive-policing-paper (explaining that PredPol, a predictive 
policing software, “can lead to a 7.4 percent reduction in ‘crime volume.’”). Contra 
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where the use of machine learning technology enhances the safety of 
consumers and individuals, even considering the legal difficulties 
created by the technology. 

 Similar to machine learning as a defect theory, this position would 
simply ask at the outset if an alternative with a machine learning 
element that enhances safety was available to the product designer.193  
If there was, then the lack of machine learning represents an inherent 
defect in the product in every instance.194  In such cases, liability is again 
nearly presumed due to the simple proof of an alternative design for the 
product in question.195  

This approach places an extremely high value on machine learning 
as a technology, to the end that its use will become nearly ubiquitous 
over time.  While the same set of issues posed previously might still 
exist, the current holes in the standards might be smoothed out due to 
increased litigation on the topics and enhanced awareness of the unique 
issues.  In essence, this position disregards existing law in favor of 
allowing rapid progress in machine learning and realizing the expected 
safety benefits of the near-total use of machine learning technology. 

VI. CONCLUSION 

In summary, it is possible to remedy the current inadequacies of 
design defect liability when applied to machine learning in several ways, 
depending on the value one places on the technology.  In any case, the 
issues identified by this Comment will not go away on their own and are 
likely to expand as more and more products incorporating machine 
learning enter the market for consumer use.  Ultimately, it will be 
necessary to reformat and retool the standards used to ensure that the 
law does not become entirely outdated in the face of ever-changing and 
continually advancing technology. 

 

 

Andrew G. Ferguson, Policing Predictive Policing, 94 WASH. U. L. REV. 1109, 1117 (2017) 
(broadly criticizing predictive policing’s effectiveness). 
 193 RESTATEMENT (THIRD) OF TORTS: PRODS. LIAB. § 2 (AM. L. INST. 1999). 
 194 See supra notes 163, 166. 
 195 See supra note 167. 


