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Abstract

Epilepsy is one of the most common neurological disorders that affects over 50 million
people worldwide. It is characterized by recurrent seizures, which are the result of ex-
cessive electrical discharges that generate disruptions in brain activity. In most epileptic
patients the seizures are infrequent and so they are of unpredictable occurrence. There-
fore, antiseizure medicines can reduce the number of seizure incidences in the patient.
Unfortunately, for 30% of the people with epilepsy, seizures persist despite the use of
this treatment, increasing the risk of injuries, premature death and reducing the patient’s
quality of life. The aim of the present work is to develop a patient-specific AI-based
pipeline integrating functional connectivity analysis applied to epileptic brain networks,
to accurately identify the non-seizure period (interictal) and the time interval immediately
preceding the seizure onset (preictal state), and therefore detect a potential seizure onset.

In the present study, 17 patients, from the EPILEPSIAE database, with recordings avail-
able for at least 8-9 hours before the seizure onset were selected. The patient’s recordings
were sEEG. Feature Extraction, Feature Preprocessing, Feature Selection, Machine Learn-
ing and Deep Learning Application, and Model training and Evaluation, constitute the
main pipeline blocks. Five Machine Learning and Deep Learning algorithms were se-
lected for evaluation: Random Forest (RF), Support Vector Machines Classifier (SVC),
XGBoost (XGB), Convolutional Neural Networks (CNN), and Long Short-Term Memory
(LSTM). To enhance the performance of the classification algorithms to different tempo-
ral contexts, three preictal windows of 40, 60, and 80 minutes were evaluated. An F1
score greater than 60% was achieved by 11/17 patients, and with the preferred preictal
window among subjects being the 80-minute interval.

Keywords: Epilepsy, Preictal states characterization, EEG, Graph Theory, Functional
Connectivity, Machine Learning, Deep Learning.





Abstract in lingua italiana

L’epilessia è uno dei disturbi neurologici più comuni che colpisce oltre 50 milioni di per-
sone in tutto il mondo. È caratterizzata da convulsioni ricorrenti, che sono il risultato
di scariche elettriche eccessive che generano interruzioni dell’attività cerebrale. Nella
maggior parte dei pazienti epilettici le convulsioni sono poco frequenti e quindi sono di
insorgenza imprevedibile. Pertanto, i farmaci antiepilettici possono ridurre il numero di
episodi di convulsioni nel paziente. Purtroppo, per il 30% delle persone con epilessia, le
convulsioni persistono nonostante l’uso di questo trattamento, aumentando il rischio di
lesioni, morte prematura e riducendo la qualità della vita del paziente. Lo scopo della
present tesi è quello di sviluppare un AI-based pipeline specifica per ogni paziente che
integri l’analisi della connettività funzionale applicata alle reti cerebrali epilettiche, per
identificare con precisione il periodo non convulsivo (interictale) e l’intervallo di tempo
immediatamente precedente l’insorgenza della crisi (stato preictale), e quindi rilevare una
potenziale insorgenza convulsiva.

Nel presente studio, sono stati selezionati 17 pazienti, dal database EPILEPSIAE, con reg-
istrazioni disponibili per almeno 8-9 ore prima dell’insorgenza delle crisi. Le registrazioni
del paziente erano sEEG. L’estrazione delle funzionalità, la pre-elaborazione delle funzion-
alità, la selezione delle funzionalità, l’applicazione di Machine Learning e Deep Learning,
l’addestramento e la valutazione dei modelli costituiscono i principali blocchi del pipeline
proposto. Per la valutazione sono stati selezionati cinque algoritmi di Machine Learn-
ing e Deep Learning: Random Forest (RF), Support Vector Machines Classifier (SVC),
XGBoost (XGB), Convolutional Neural Networks (CNN) e Long Short-Term Memory
(LSTM). Per migliorare il rapporto degli algoritmi di classificazione in diversi contesti
temporali, sono state valutate tre finestre preictali di 40, 60 e 80 minuti. Un punteggio
F1 score superiore al 60% è stato raggiunto da 11/17 pazienti e con la finestra preictale
preferita tra i soggetti è l’intervallo di 80 minuti.

Parole chiave: Epilessia, Caratterizzazione degli stati preictali, EEG, Teoria dei grafi,
Connettività funzionale, Machine Learning, Deep Learning.
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1

Introduction

Epilepsy is a neurological disease caused by abnormal electrical disruptions in the brain
activity [1]. It is considered a chronic condition as it can incur recurrent epileptic seizures,
convulsive or non-convulsive that can cause loss of consciousness, unusual behavior and
sensations, and uncontrollable movement [2]. According to WHO, epilepsy affects about
1% of people worldwide, where 70% are adults and the remaining 30% are children. The
most common type of epilepsy is called idiopathic epilepsy and can affect 6 out of 10
people, its cause is unidentifiable [3].

The occurrence of an epileptic seizure is due to chemical changes in the neurons of the
brain, which communicate through positive and negative charges, generating electrical
signals. These spontaneous changes produce excessive high-amplitude electrical activity
that is not easily controllable and could end up in a seizure. In clinical terms, if two or more
unprovoked seizures occur, the proper cause might be epilepsy. If so, the determination
of the epileptic seizure onset is very useful to start the treatment of this disease [2][4].

Based on the epileptic seizure onset, two types have been defined: focal onset seizure,
where only a specific portion of the brain is damaged causing mild or severe symptoms
according to the spread of the electrical discharge, and generalized onset seizures which
affect the whole brain simultaneously [4]. To lessen the negative effects of seizures, it can
be helpful to track electrical activity in the brain, recognize developing epileptic states,
and anticipate potential seizures.

A well-known method used for monitoring brain activity and the detection of epilepsy is
based on the analysis of electroencephalogram (EEG) signals. EEG is one of the most
effective and low-cost techniques used to measure electrical activity in the brain. It can be
invasive or non-invasive. The information of the brain is recorded by means of electrodes
placed on the scalp or cerebral cortex that detect changes of potential in the neurons.
The EEG signal can be decomposed into five frequency bands: delta (δ, < 4 Hz), theta
(θ, 4-8 Hz), alpha (α, 8-12 Hz), beta (β, 12–30 Hz) and gamma (γ, > 30 Hz). Each
of the frequency bands is associated with a specific waveform and neural activity [5].
For example, delta waves are associated with deep sleep states, theta waves with deep
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meditation state, alpha waves with awareness and relaxation, beta waves are predominant
in large attention waking states, whilst gamma waves are highly associated with decision-
making processes [6, 7]. In order to understand abnormal brain behavior, identify, and
detect possible epileptic seizures the study of brain rhythms has become fundamental.

Generally, for epilepsy patients, different seizure states can be distinguished among EEG
signals of their brain activity, including interictal (normal brain activity between seizures),
preictal (immediately before the seizure), ictal (seizure period), and postictal (immedi-
ately after the seizure) [4, 8]. Distinct patterns can be shown between the different
epileptic states, allowing the analysis of the progression of a seizure, as well as its poten-
tial occurrence and the mitigation of any negative effects that might affect the patient.
Special attention has been given to the preictal state since it could give important infor-
mation about any early alteration in the behavior of the brain activity that may end up
in an epileptic event [9, 10]. The study of the EEG dynamics has also demonstrated that
the change in epileptic states, especially between interictal and preictal periods, typically
happens minutes to hours before the seizure onset, which can herald the occurrence of a
seizure to the patient [9, 11–13].

Since the 1970s, automated analysis of continuous EEG recordings started to be used as
a tool of support for the diagnosis of epilepsy. One of the first techniques was proposed
by J. Gotman et.al, 1976. It consisted of the automatic recognition of interictal activity
by quantifying spikes and sharp waves in the human scalp EEG [14]. Thereafter, Gotman
improved his approach by building a method to identify epileptic seizures independently of
the presence of clinical signs. Instead, it was based on seizure patterns identified during
the interictal and ictal period by means of the decomposition of the EEG signal into
elementary waves and the measure of their relative amplitude [15].

Furthermore, to analyze the seizures, different methods have been proposed to compute
features from EEG signals in different domains: morphological, time, frequency, in time-
frequency and spatial [16–19]. Automatic seizure detection for epileptic patients has
the potential to reduce the amount of data that needs to be examined, which lowers
the expense of continuous monitoring. Moreover, automatic seizure anticipation could
improve the quality of life of patients, by preventing the occurrence of seizures.

In the recent years, epilepsy has been studied as a network disease. Multiple investi-
gations have looked at the brains’ functional connectivity behavior in different epileptic
seizure stages by means of large-scale brain networks, also called graphs [20–23]. A brain
network is composed by a set of nodes and a set of edges that connect a node. Each node
represents a wide brain region (channels of EEG signals), while each edge represents the
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existing interaction between nodes (inter-dependencies of EEG signals). A node with a
high degree of connectivity is called a hub node, and a specialized group of nodes highly
interconnected is known as a module [21]. Rings et al. showed that some nodes con-
nected by an edge that carried predictive information could be involved in the generation
of seizure precursors. Time-varying and centrality changes were analyzed to assess the
predictive role of each node [24]. Further investigation must be done to understand the
behavior of multiple features among brain networks.

Machine Learning and Deep Learning techniques have revolutionized the seizure pre-
diction field as it address the high complexity of EEG signals allowing a multivariate
analysis and high-order feature spaces [25–27]. In general, these solutions are composed
of four main steps: (i) Pre-processing of the EEG signal, (ii) Feature Extraction from the
EEG signal, (iii) Feature Selection, and (iv Implementation of machine or deep learning
classifiers. Due to their robustness for modeling high-dimensional data, Support Vec-
tor Machine classifiers have become one of the most preferred solutions for classifying
binary-class epileptic seizures [28]. In the aforementioned studies, good performance was
obtained, a sensitivity between 90-100% and accuracy greater than 90%.

The present study focused on developing an efficient and patient-specific AI-based pipeline
to accurately identify interictal and preictal states, in 17 epileptic patients from the
EPILEPSIAE database, by integrating functional connectivity analysis through epileptic
brain networks. The analysis was carried out for three different preictal windows: 40,
60, and 80 minutes. Five Machine Learning algorithms were evaluated: Random Forest
(RF), Support Vector Machines Classifier (SVC), XGBoost (XGB), Convolutional Neural
Networks (CNN), and Long Short-Term Memory (LSTM).
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Epilepsy is a neurological disorder affecting around 70 million people worldwide and is
characterized by the occurrence of spontaneous recurrent seizures [3]. The unpredictability
of seizures has a significant impact on the quality of life for epileptic patients, particularly
for those who do not respond to pharmacological treatment. It is still unclear how the
brain may go from a normal state to a seizure, a process known as ictogenesis. The study
of the transition from the interictal state to an ictal state (seizure) is been fundamental
to understanding the dynamics of epilepsy [29]. In order to improve disease detection and
therapy, scientists and doctors are very interested also in the study of the preictal state.
Thanks to its distinct electrophysiological behavior, it gives useful information that could
help anticipate or even prevent a seizure. Brain networks and connectivity measurements
have become one of the most studied techniques, along with new machine-learning models
to anticipate possible seizures in a patient.

1.1. Brain Networks and Connectivity Measurements

in Epilepsy

1.1.1. The brain as a network

The brain can be analyzed as a complex network of interconnected components that
produce diverse cognitive behaviors [30]. The analysis of brain networks in the last few
years has gained relevance in the research field. Boccaletti et al. reviewed in [21] the
importance of the study of complex networks to understand brain dynamics and its impact
in the last decades. Their irregular, complex, and dynamic structure evolves over time
and has shifted the focus from small network analysis to those of systems with thousands
or even millions of nodes [21].

In their most general form, graphs can be defined as a collection of elements (nodes)
and their pairwise interconnection (edges). The latest represents the strength of the
connection between two nodes (i, j) therefore it can take binary or weighted values Wij.
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Figure 1.1: Measures of network topology. The left figure represents an undirected net-
work. In the right figure, a directed network is shown. In green, are the shortest path
lengths. Hub nodes, in black, lie on a high number of shortest paths. Taken from [31]

A node with a high degree of connectivity is called a hub node. A specialized group of
nodes highly interconnected is known as a module. These elements can be represented
as a connection matrix, allowing the study of pairwise relations between interacting brain
regions [32]. Figure 1.1 shows different measures associated with network connectivity.
Since graphs can be explored at various scales, graph measures can be calculated at a local
(nodal) or a global (network-wide) level [32]. Some of the most used network features are
1) Node strength (eq. 2.3), 2) Clustering coefficient(eq. 2.4), 3) Average shortest path
(eq. 2.5), 4) Betweenness centrality (eq. 2.6), and 5) Eigenvector centrality (eq. 2.7).

The structural network of the brain can be represented through graph theory by means
of nodes and edges. A node is a brain area defined by: (i) cellular architecture, (ii) local
connectivity, (iii) output target projection and (iv) input projection source [33]. An edge
is defined as an interconnected brain area.

With one of the earliest theories about brain networks, Sporns et al. [34] examined
general concepts in the structural and functional organization of complex networks on a
wide scale. This work analyzes a brain network as a set of nodes linked by connections
that are mathematically presented as graphs. The complexity of the network is not only
represented by its size but by existing interactions of the architecture and dynamics
that give rise to complex emergent behaviors. Functional segregation (modularity) and
functional integration are also discussed. Finally, they suggest that large-scale connection
patterns emerge as a link between network distribution and human cognition.

Recent studies about large-scale brain networks have provided a better understanding of
the neural basis of human cognition by showing how the interactions within distributed
brain systems give rise to cognitive activities. Nodal measures based on node and edge
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definition are used to characterize a network and obtain information about the brain’s
activity and function [32, 33, 35, 36].

Moreover, experimental modalities have been implemented using the analysis of brain con-
nectivity models between regions. Neuroimaging techniques such as functional Magnetic
Resonance (fMRI), Diffusion Tensor Imaging (DTI), Magnetoencephalography (MEG),
and Electroencephalography (EEG) are reviewed as mapping methods of the human brain
networks [37]. In particular, EEG is a very useful tool for mapping functional networks,
because of its accessibility, low cost, and wide use in the context of diagnosis of epilepsy.
Figure 1.2 shows the pipeline suggested to explore structural and functional brain net-
works using graph theory and neuroimaging techniques [37].

Figure 1.2: Structural brain network pipeline. Taken from [37]

Furthermore, van den Heuvel in [38] demonstrated that brain hubs are able to form so-
called "rich club". A "rich club" is characterized by a bias towards high-degree nodes,
also known as hubs, connected among themselves in a more dense way than low-degree
nodes, i.e., nodes with low number of connections [38]. Centrality of the rich club was
computed to a specific set of nodes/edges to examine its role in the global network struc-
ture. Highly connected and central brain hubs exhibited a robust tendency to be mutually
interconnected.
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1.1.2. Functional Connectivity Methods

Functional connectivity (FC) analyzes the correlation between distinct brain nodes or
regions. It follows the premise that regions of the brain that are functionally related
or involved in similar tasks are highly correlated, If so, they exhibit synchronized activ-
ity patterns. Whereas Structural Connectivity refers to anatomical connections between
different nodes or regions in the brain.

Different brain functions require the physical connection of associated anatomical regions,
as well as interactions by means of the synchronization of brain oscillations [39]. The first
one, is known as structural connectivity, and the latter is known as functional connectivity.
Multiple methods allow to measure the functional connectivity as relationships between
the channels of EEG. In general, it describes statistical patterns associated to dynamic
interactions among brain signals, also known as "functional networks" [35].

As presented in multiple studies [35, 40–42], linear and nonlinear measures such as cross-
correlation, mutual information, phase synchrony or spectral coherence, of the amplitude
among channels have been implemented to identify patterns of synchronous activity across
different brain areas. In particular, Pearson’s correlation is a robust method to quantify
the degree of statistical interdependence’s between EEG channels [43]. Functional con-
nectivity analysis allows the assessment of functional interactions among brain network
nodes.

Bressler et al. refers to functional connectivity as a tool for functional interdependence
analysis, which aims to identify network edges as they evolve in time or frequency [33]. For
time analysis, cross-correlation function is suggested, while spectral coherence or phase
synchrony should be used in the frequency domain.

Finally, the brain is a connected system where multiple nodes can represent a region or
a connection, graph analysis of functional brain networks is highly implemented to vi-
sualize the network’s behavior [44]. This tool has become widely used in translational
neuroscience to quantify brain dysfunction in terms of abnormal brain network reconfig-
uration.

Figure 1.3 shows the pipeline proposed to perform graph analysis for functional brain
network modeling. Each node corresponds to a specific site in the brain, recorded by
an electrode, while the weight of each link is estimated by measuring the functional
connectivity of the activity between each of the nodes. Then, filtering is performed to
choose the most important links that will constitute the brain graph. Finally, different
metrics are computed to quantify the behavior of the brain graph and a statistical analysis
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Figure 1.3: Functional Brain Networks modeling and analysis pipeline. Taken from [44]
.

leads to a possible classification of healthy and diseased patients.

1.1.3. Epilepsy as a network disease

Epilepsy is increasingly recognized as a network disease in which abnormal patterns of
neural activity and connectivity play a relevant role. Contemporary research has exposed
the complex nature of epileptic networks since seizure activity can propagate variably to
any or all brain areas where anatomic connections exist and that are not necessarily part of
the active network [45–48]. These investigations have demonstrated that epilepsy involves
frequent modifications in large-scale brain networks that lead to abnormal synchronization
and propagation of electrical activity.

In order to understand the evolution in time of the epilepsy network the study of the
"seizure onset" has increased. Spencer in [45] suggested Intracranial EEG as the first
important approach for the observation of "seizure onset" within the network. Advanced
functional neuroimaging techniques such as PET and SPECT have been also studied.
While PET scans are not sensitive to the epileptogenic zone early propagation areas,
SPECT scans are more sensitive and have the unique ability to capture the status of blood
flow when seizure activity starts providing a more precise epileptic network information
[45]. Likewise, Centeo et al. point out Resting-State fMRI (RS-fMRI) as a tool to examine
synchronized activity between regions without a specific task based on signal correlation.
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An essential component of the neural network role is FC, which depicts the statistical
correlation between activities in various brain areas. Today’s cutting-edge research in
epilepsy follows epileptic network analysis by means of FC. For example, van Diessen et
al. suggested that disruptions in connectivity of large-scale brain networks for epileptic
patients could be related to cognitive and behavioral impairments [48]. The reviewed
framework in this study was the resting-state condition since it allowed the detection of
the intrinsic activity of the brain. Nevertheless, multiple studies stand that there is no
general consensus yet of whether functional connectivity increases, decreases, or remains
constant for epileptic patients [48–50].

Emerging studies have found an increased average clustering coefficient for epileptic pa-
tients, which measures the tendency of nodes inside a network to cluster together [51–53].
This represents a more segregated network. Furthermore, a study in epileptic drug-
resistant patients, showed a decrease in functional connectivity over the zones damaged
by seizure propagation, as well as in the unaffected seizure side [54]. Morgan et al.
demonstrated that disruption of resting-state cross-hippocampal functional connectivity
increases over the years [55].

In general, FC analysis has shown an important definition of the network dynamic be-
havior during epileptic seizures. In order to gain insight into the temporal evolution of
the disease, seizure dynamics have been studied along four main epileptic states[48].

1. Interictal: represents the non-seizure period.

2. Preictal: is the period immediately preceding the seizure onset.

3. ictal: corresponds to the actual occurrence of an epileptic seizure.

4. Postictal:it occurs after the seizure ends and the patient returns to baseline (normal
brain activity).

To understand "seizure dynamic" variations driven by patient-specific cyclic patterns, it
is necessary to monitor FC in epileptic networks for long periods of time. Nonetheless,
given the necessity to explore differences in FC between regions for each patient, further
investigation must be carried out. Examining the large-scale network in epileptic patients
can help shed light on the causes of epilepsy and possibly on biomarker identification that
could be used to predict epileptic seizures and guide a possible treatment.
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1.2. Seizure Prediction Methods

Almost 30% of worldwide epilepsy patients cannot effectively treat the disease with anti-
epileptic medicine due to drug-resistance [31]. Drug-resistant epilepsy (DRE) reduces
the patient’s quality of life increasing the risk of injuries, psychosocial dysfunction, and
premature death [56]. The unpredictable nature of epileptic seizures is one of the most
dangerous features of this disease. For clinicians, this has represented a major challenge
for epilepsy treatment. As a result, seizure prediction has been particularly studied over
the last decades. The ability to forecast a possible seizure for a patient with epilepsy
could mean better precaution against injury as well as possible control over the incoming
seizure.

Intracranial EEG (iEEG) has been one of the most preferred methods to monitor elec-
trical activity in epileptic patients, here the electrodes are directly placed into the brain
tissue which guarantees a high-quality signal recording. The work of Mormann et al. in
2007 reviewed multiple methods for seizure prediction that could lead to new epilepsy
treatments towards seizure control EEG-triggered on-demand therapy. For example, by
giving fast-acting anticonvulsant substances or by electrical stimulation in order to reset
the dynamics of the patient’s brain. First, it mentions iEEG as the most used technique
at the time to collect neural behavior during epileptic seizures. This method allows the
definition of a transitional preictal phase, corresponding a specific changes in brain ac-
tivity. Seizure prediction aims to identify a preictal state defining a window of variable
size before the seizure onset arises. The moving window analysis, while the iEEG signal
acquisition is carried out, is one of the most used methods as it allows time profiling
for one or multiple channels. The windows presented a typical range between 10 and 40
seconds. Finally, it recalls the importance of statistical validation on predictability over
the designed algorithm to evaluate its performance [57].

After a decade, Kuhlmann et al., presented an updated study about new seizure prediction
strategies. The need for robust predictors led to the development of new databases that
enabled researchers to have access to long-term continuous data to validate potential
predictive algorithms [31]. EPILEPSIAE database provided access to multichannel long-
time recording EEG data. Later studies have shown a high focus on the analysis of
non-continuous seizure-free intervals (interictal) and pre-seizure periods (preictal) data.
Finally, prospective seizure prediction systems are proposed, as shown in figure 1.4. The
system is generally composed of intracranial implanted electrodes that transmit the EEG
data wirelessly. The signal is then recorded and preprocessed. Finally, an algorithm
extracts preictal biomarkers that allow seizure prediction.
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Figure 1.4: Seizure prediction system. a) Typical seizure prediction system scheme. b)
Open-loop seizure prediction warning system c) Seizure prediction in practice. Taken
from [31]

1.2.1. Spiking Rate Behavior in EEG signal for seizure predic-

tion

As seizures are characterized by generalized spike-wave discharges [58], one of the first
methods proposed for seizure prediction using EEG was based on electrographic changes
represented as a burst of spikes along the transitional preictal period. In [59], Le Van
Quyen et al. examined scalp-EEG recordings in 23 patients with temporal lobe epilepsy.
preictal changes were evaluated 60 minutes before seizure onset. By means of non-linear
similarity measures, long-term changes before a seizure were identified, which led to its
recognition around seven minutes before seizure onset. A following study showed that a
particular synchronization is observed between 5 and 24 hours prior to the actual seizure
and that changes are frequently concentrated near the main epileptogenic zone [60].

Another study analyzed iEEG recordings from 21 patients with focal epilepsy [58]. Signal
information was divided into interictal, preictal, ictal, and post-ictal. By means of a
morphological filter, EEG spikes were identified. The study suggested that the spiking
rate increases upon an incoming seizure and reaches its maximum value when the seizure
arises. A sensitivity of 75.8% was achieved for seizure prediction with an average false
prediction rate (FPR) of 0.09 FPR/h. A mean prediction time of 49.7 minutes was
achieved. The computational cost of spike rate analysis for seizure prediction was very
low.
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1.2.2. Machine Learning and Deep Learning strategies for seizure

prediction

In [31], Kuhlmann et al. states that the temporal relationship of spikes within seizures
tends to add some uncertainty when predicting a seizure. Hence, new prediction strategies
based on machine learning (ML) and deep learning (DL) algorithms with a high degree of
accuracy have been proposed over the last few years to overcome this problem [26, 27, 61,
62]. Generally speaking, an automated seizure prediction system follows: i) EEG signal
pre-processing, ii) Feature extraction iii) Dimensionality Reduction [63], iv) Classification
process, i.e., the step where prediction is performed, and, finally, v) Decision-making
process for predicting the epileptic seizure [62].

K-nearest-neighbor(KNN), Random Forest (RF), Support Vector Machine (SVM), and
Artificial Neural Network (ANN) classifiers have been the most preferred algorithms to
predict seizures in epileptic patients. In [64], an online seizure prediction system based
on continuous monitoring of 10-minute sliding windows of EEG recordings was presented.
There was an overlap of 50% between each consecutive window. The seizure prediction
sought to analyze interictal and preictal baselines. Therefore, a gradient-based reinforce-
ment learning algorithm was applied. The prediction range oscillated between 30, 90, and
150 minutes before seizure onset. With the last one, a sensitivity of 73% and a specificity
of 67% was obtained.

Another study applied the RF algorithm for automated seizure detection using improved
correlation-based feature selection (ICFS) [65]. In this work, an EEG signal was analyzed
along the five physiological bands: delta, theta, alpha, beta, and gamma. Time, frequency,
and entropy-based features were extracted from the raw EEG and the wavelet decomposed
signal. Finally, feature selection was implemented by ICFS method. For the 8 cases
presented in the study, specificity and sensitivity greater than 97% were achieved.

In 2019 [66], Wang et al. proposed an automatic seizure detection pipeline based on
multiple time-frequency analysis using short-time Fourier transform to extract relevant
signal features. An RF algorithm based on grid search optimization (GSO) was used
obtain a three-class seizure classification: seizure, light-seizure, and non-seizure. Principal
Component Analysis (PCA) was used for dimensionality reduction purposes. Multiple
cross-validations are suggested to boost the model’s accuracy. The accuracy obtained
with the GSO strategy went from 88% to 96.7%

Another ensemble method evaluated for seizure prediction field in the literature is extreme
Gradient Boosting (XGBoost). In [67], the XGBoost algorithm was implemented to per-
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form a binary classification (seizure or background) for an EEG signal recording segment.
To smooth the data, a sliding window of 19 segments applied a simple majority vote to
avoid isolated and improbable seizure/non-seizure states. When the train, validation, and
test set were evaluated, a sensitivity of 78.72% and a specificity of 33.54% were achieved.

SVM classifier (SVC) has been one of the most widely used ML algorithms to predict
potential epileptic seizures. Due to the existing patient-specific seizure nature and the
underlying dynamics in long-term EEG signals the development of patient-specific mod-
eling with ML and DL algorithms is recommended. This is shown in [28], where iEEG
recordings of dogs with epilepsy (which share biological similarity with human seizures)
were used to develop SVM-based seizure forecasting subject-specific models. Interictal,
preictal, and ictal states were discriminated by the algorithm. A 60-minute preictal win-
dow recording segment was used for the prediction. The average sensitivity was about
95%. The study suggested that a good prediction performance could be possible if a
minimum amount of seizures (at least 5-7 seizures) are contained in the training data.

In [68], Gupta et al. implemented a three-stage method to process the EEG signal: 1) A
filterbank to decompose the EEG signal into the main five brain rhythms, 2) Statistical
modeling of the brain rhythms by means of a self-similar Gaussian random process using
the Hurst exponent, 3) an SVC was implemented to classify preictal, interictal and ictal
EEG signal segments. No preictal analysis window was specified. The implemented model
showed a sensitivity and specificity of 97%.

New DL methods have been implemented in recent studies due to their capability of
automatically extracting detailed features from complex signals such as EEG, identifying
useful patterns that a traditional ML technique might not be able to extract, and that
could lead to better seizure prediction [27, 69, 70]. Convolutional Neural Networks (CNN)
were applied in [69] as an automatic feature extraction technique to distinguish between
interictal, preictal, and ictal periods along a the EEG signal. The study identified that
the preictal phase transition towards a seizure occurred approximately 10 minutes before
seizure onset and that it can be observed in the scalp EEG using automatically extracted
features from the CNN. A sensitivity of 87.8% and a specificity of 0.142 FP/h were
obtained which showed promising results.

Finally, Bongiorni et al. [27] presented Recurrent Artificial Neural Networks (RNN), of
Long Short Term Memory (LSTM) type, as an approach for seizure prediction on segments
of pediatric epilepsy patients. Short-Time Fourier Transform (STFT) was implemented
to obtain spectral features that showed significant differences among the analyzed EEG
periods. The results obtained suggested that there was a strong dependence between the
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LSTM proposed technique and the specific patient EEG signal patterns. Therefore, no
generalization about EEG patterns for several patients was possible. The RNN achieved a
sensitivity of 61% and a specificity of 99% for ictal state classification, a window between
5 and 60 seconds before an epileptic seizure was defined.
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2.1. Pipeline

Figure 2.1: Preictal state characterization pipeline.

The designed preictal state characterization pipeline was composed by 6 main blocks:
Epilepsiae dataset selection, Feature Extraction, Feature Preprocessing, Feature Selection,
Machine Learning and Deep Learning Application, and Model training and Evaluation,
as shown in figure 2.1.

1. Epilepsiae dataset Selection: 17 patients with sEEG recordings available for at
least 8-9 hours before the seizure onset were selected randomly from the EPILEP-
SIAE database, for a total of 86 seizures. The patient selection was carried out
thanks to exploratory analysis, as explained in section 2.2.1.

2. Feature Extraction: This block is divided in three parts, as follows.

(a) Dataset preprocessing: The EEG signal was analyzed along seven frequency
bands: δ, θ, α, βL, βH, γL, γH. To reduce the amount of the data the Prms of
the 1-hour EEG signal recording was performed following equation 2.1. Ad-
ditionally, signal concatenation of each sEEG recording block per patient was
carried out to obtain an 8-9 hour recording per seizure instance. Finally, the
identification of the activation time for the Seizure Onset Zone (SOZ) was
carried out.
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(b) Functional Connectivity Analysis: The connectivity matrix was computed
calculating the Person’s Correlation (see 2.2) between each pair of nodes for
1-minute windows. A total of 480-minute windows were obtained per seizure
per patient.

(c) Netwrok Feature Extraction: Based on the connectivity matrix, 5 brain
connectivity characteristics (node strength, clustering coefficient, average short-
est path, betweenness centrality, and eigenvector centrality). The last charac-
teristic was obtained using the signal’s Prms information. For most of the
characteristics, the mean and standard deviation were computed, obtaining a
total of 11 features computed for each of the 7 bands. Table 2.3 shows the de-
scription for each feature. In this step, the final feature dataset was obtained
for each of the patients.

3. Feature Preprocessing: The splitting of the dataset was performed according
to the number of seizure instances available per patient. Then, Feature Median
Filtering was applied over the whole 480-minute feature window. After, 4 prepro-
cessing steps were fitted to the train set and then applied to the validation and test
sets: Feature Median Filtering, Outlier Removal, Missing Values Imputation, Data
Standardization, and Data Augmentation (only for the Train set).

4. Feature Selection: This step was carried out in order to reduce the model’s com-
plexity and therefore increase its generalization capabilities. Low variance filtering,
Mann-Whitney U test, and High correlation filtering were carried out. The feature
selection was carried out over the train set, and the same features were then selected
on the validation and test set to guarantee coherence.

5. Machine Learning and Deep Learning Application: 5 models (Random For-
est, Support Vector Machine Classifier, XGBoost, Convolution Neural Network, and
Long Short-Term Memory RNN) were trained to perform interictal and preictal pe-
riod classification. The model tuning was performed using the Grid Search (GS)
method.

6. Model training and Evaluation: This block is in charge of the label assignment
process, group analysis division, and metric evaluation performed for each model in
order to assess its performance. Metrics such as F1-score, Precision, and Recall were
computed. In addition, Confusion Matrices were assessed for each model, along with
the ROC and PR curves. The best-performing model and optimal window selected
were chosen according to the F1 score value in the validation set. Section 2.7 presents
the evaluated metrics.
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The pipeline for the present Machine Learning application for the characterization of
preictal states is presented in more detail in Appendix A.1.

2.2. EPILEPSIAE database

EPILEPSIAE was the selected database for this project. The database was part of
an EU-funded project that focused on the creation of algorithms for seizure prediction
based on high-quality (scalp and intracranial) long-term (>96h) EEG recordings of almost
300 epileptic patients [71]. Metadata information about start and end timestamps of the
recordings, number of channels, number of samples, and others, for each patient was
contained within the database. For the current investigation, 17 patients with stereo-
EEG (sEEG) recordings, which is a type of iEEG where electrodes are placed in more
depth inside the brain, were selected, for a total of 86 seizures. The selected period for
analysis was between 8-9 hours before the activation of the seizure onset zone (SOZ).

2.2.1. Dataset exploratory analysis

Originally, 18 epilepsy patients with sEEG recordings lasting between 8-9h were randomly
selected from the EPILEPSIAE database. An exploratory analysis was carried out in
order to understand the number of seizures available per patient, as well as the number of
electrodes and the number of sessions available for the selected subjects. A session refers
to a full block of 8-9 hours of sEEG recording. Figure 2.2 presents the histogram of the
number of seizures available per patient within the database.

Figure 2.2: Number of seizures available per patient
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P18 was pruned, as it only had one available seizure, which would not allow it to perform
an accurate model training nor validation. Therefore, a total of 17 patients were selected
to train patient-specific ML and DL classifiers to discriminate between interictal and
preictal states. Table 2.1 shows the number of electrodes, number of seizures, and number
of recording sessions (recording blocks) available for each of the selected patients.

Patient ID
Number of
seizures

Number of
electrodes

Number of
sessions per patient

P1 4 84-105 2
P2 7 71-92 4
P3 14 84-105 2
P4 3 98-119 2
P5 3 96 1
P6 3 94-118 2
P7 3 84-106 2
P8 5 121 1
P9 5 80 1
P10 8 117 2
P11 5 96-117 2
P12 3 115 1
P13 4 61 1
P14 7 92-115 2
P15 3 92 1
P16 6 46-69 3
P17 3 124 1

Table 2.1: Seizure patient information and Patient ID assigned for the present work

2.3. Feature Extraction
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2.3.1. Dataset preprocessing

EEG
Frequency Band

Low Cutoff
Frequency (Hz)

High Cutoff
Frequency (Hz)

Delta (δ) 0.3 4
Theta (θ) 4 8
Alpha (α) 8 12
BetaL (βL) 12 18
BetaH (βH) 18 30
GammaL (γL) 30 49
GammaH (γH) 51 99

Table 2.2: Frequency bands and cutoff frequency range selected to characterize the EEG
signal

In order to remove artifacts that could affect the current analysis, a 50Hz filter was
applied to eliminate line noise. Then, following the cutoff frequencies shown in table 2.2,
physiological brain rhythms were filtered. Finally, to reduce the number of samples of the
sEEG recordings and get an overall behavior of the signal, the RMS power was computed
over 3s consecutive windows.

This was performed following equation 2.1, where b− a represents the 3s sliding window,
starting on a up to b, Y [n] in the measure of the signal in time n ∈ [a, b] [72].

PRMS =
1

b− a

b∑
n=a

|Y [n]|2 (2.1)

Each patient recording session consisted of multiple 1-hour EEG recording blocks one of
which contained the seizure event. A concatenation of the files was performed in order
to obtain the 8-9 hours EEG signal before seizure onset. Figure 2.3 shows an example of
the EEG signal block concatenation per brain rhythm for patient P3. For each session,
the identification of the Seizure Onset Zone (SOZ) activation time, i.e., the time when
the seizure originates, was performed.
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Figure 2.3: PB1 Electrode behavior for P3 after band filtering and recording concatena-
tion. In red, the SOZ marker.

2.3.2. Functional Connectivity Analysis

As mentioned in section 1.1.2, one of the main tools to analyze the behavior of brain
networks in epileptic patients is based on FC. Specifically, Pearson’s correlation is a ro-
bust and reliable approach for measuring the level of statistical dependence among EEG
channels. Pearson’s correlation coefficient (rij) measures the linear association within two
variables Xi and Xj being i ̸= j [73].

Generally, correlation analysis begins with scatter diagrams, which depict the relationship
between data pairs. Pearson’s correlation coefficient values range from -1 to +1. When
two variables have a positive correlation value it means a tendency for one to increase or
decrease in tandem with another. A negative correlation coefficient suggests, on the other
hand, a tendency for one variable’s values to increase when those of the other variable
decrease linearly, and vice versa. A low correlation between Xi and Xj is shown by a rij

close to zero, whereas a strong linear correlation between the two variables is indicated
by values close to -1 or +1 [43, 73]. The computation of the Pearson’s correlation was
carried out using the equation 2.2

∥rij∥ =

∥∥∥∥∥ Cov(Xi, Xj))√
var(Xi)

√
var(Xj)

∥∥∥∥∥ (2.2)

Taking the previous information into account, algorithm 2.1 explains the executed steps
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to build the analyzed networks using Functional Connectivity Analysis.

Algorithm 2.1 Functional Connectivity Analysis
1: Assign each EEG channel as a network node
2: Divide the EEG signal in 1-minute windows with no overlap. Note: as each point of

the signal represents a PRMS value of 3s, each window must contain 20 samples.
3: Pearson’s correlation coefficient is computed using equation 2.2 to calculate the func-

tional connectivity between each pair of nodes. This is performed for each of the brain
rhythms presented in Table 2.2.

As a result, for every 8 hours of EEG recording previous to seizure onset at least 480
windows, of 1 minute each, were obtained (8h ∗ 60min). Therefore, 480 brain networks
(one network per window) were built for the current analysis.

For each network, a matrix Mt of size N ∗N was obtained. N represents the number of
channels used on each sEEG recording. The Mt matrix is symmetric since the correlation
between channels i and j is equal to the correlation between j and i. The main diagonal
of Mt was nulled.

Figure 2.4: Connectivity Matrix for δ band for an interictal (minute 50 ) and preictal
(minute 450 ) window for patient P16

Figure 2.4 shows the connectivity matrix obtained for the last-minute window of a seizure
of patient 16. P16 has a total of 6 seizures among the EEG recordings. It can be noted that
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about 46 channels (electrodes) were set for the present recording. In addition, particular
brain networks and areas that are involved in the propagation of epileptic activity could
be analyzed from the connectivity matrix.

2.3.3. Network Feature Extraction

Based on the connectivity matrix computed for every 1-minute window, multiple network
features were computed to build a unique patient feature matrix. Six network measures
were computed per connectivity matrix for every single frequency band (see Table 2.2).
Node strength, clustering coefficient, average shortest path, betweenness centrality, and
eigenvector centrality were computed by means of the MATLAB’s "Brain Connectivity
Toolbox" (BCT). The following notation is explained to allow equations’ interpretation:

• N : is the set of all nodes in the network.

• n : is the number of nodes.

• L: is the set of all links in the network.

• l : is the number of links. l =
∑

i,j∈N aij

• (i,j): is a link between nodes i and j, (i, i ∈ N).

• aij: if the connection status between i and j:

– aij = 1 when link (i,j) exists (when i and j are neighbors)

– aij = 0 otherwise (aii = 0 for all i).

• ki: Degree of the node, i.e., number of links connected to a node: k =
∑

j∈N aij

The following list shows the description and equation for each calculated feature using
the BCT toolbox.

1. Node Strength: Nodal measure defined as the sum of the weights wij of all the
edges that are connected to a specific node, i and j [36]. It is computed as follows:

Si =
∑
j∈n

wij (2.3)

2. Clustering Coefficient: Nodal measure that quantifies the fraction of connections
between a node and its neighbors, with relation to all possible existing links. It is
also referred to as the tendency of nodes to form a triplet [36, 74]. It is computed
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as follows:

C =
1

n

∑
i∈N

Ci =
1

n

∑
i∈N

2ti
ki(ki − 1)

(2.4)

where Ci is the clustering coefficient of node i (Ci = 0forki < 2).

3. Average Shortest Path: Global measure, it represents the average number of
steps along the shortest paths for all possible pairs of nodes among the network
[36]. The shortest path disij is calculated using the Dijkstra’s algorithm [75]. The
average shortest path also characterizes the efficiency of information transport on a
network, and is computed as follows:

L =
1

n

∑
i∈N

∑
j∈N,j ̸=i disij

n− 1
(2.5)

4. Betweenness Centrality: Nodal measure described as the fraction of all shortest
paths along the network that pass through a specific node. If a node has a high
betweenness centrality value it means that the current node participates in a large
number of shortest paths [36, 76]. The metric is calculated as follows:

b(i) =
∑
j ̸=k

nkj(i)

nkj

(2.6)

where nkj is the number of shortest paths between h and j, and nkj(i) is the number
of shortest paths between h and j that pass through i.

5. Eigenvector Centrality Nodal, a self-referential measure of centrality, nodes are
weighted based on their degree of connections within the network. This feature
is calculated by counting the number and the quality of connections. A node will
have a high value of eigenvector centrality if it’s connected to other nodes with high
eigenvector centrality [36, 77].

xi =
1

λ

n∑
j=1

Aijxj , where λx = Ax (2.7)

The remaining computed features pertained to the signal’s power content (PRMS). For
each estimate, the mean (µ) and standard deviation (σ) were calculated. In total, 77
features (11 features ∗ 7 bands) were obtained for every 1-minute window. Table 2.3
shows the final features extracted by each band.
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Measurement Measure Type Function Feature Name

Node Strength Nodal sum(Mt, 2)
µ <S>
σ σS

Clustering Coefficient Nodal clustering_coef_wu(Mt)
µ <C>
σ σC

Average Shortest Path Global charpath(distance_wei(Mt)) Average Shortest Path sp

Betweenness Centrality Nodal betweenness_wei(Mt)
µ <B>
σ σB

Eigenvector Centrality Nodal eigenvector_centrality_und(Mt)
µ <ec>
σ σec

Prms Signal amplitude mean(),std() µ µrms

σ σrms

Table 2.3: Features extracted for each band

Finally, a vector Xi with 11 features per band (7 bands) was obtained, for a total of 77
features per 1-minute window, as follows.

Xi = [Sα, σSα , ..., ecα, σecα , ..., SγH , σSγH
, ..., ecγH , σecγH ]1×77 (2.8)

A patient-specific final dataset containing all the information previously mentioned was
obtained per seizure instance, as shown in figure 2.5.

Figure 2.5: Local Patient Dataset Columns

2.4. Feature preprocessing

The feature dataset preprocessing pipeline consisted of applying outlier removal, missing
values imputation, and data standardization methods to the selected train set, in that
same order. Finally, after handling the feature preprocessing for the training set, the same
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outlier removal threshold, missing data imputer (KNN imputer), and standardization
scaler were applied to the validation and test sets, just as previously mentioned.

To carry out the feature preprocessing in a robust manner, dataset-splitting was performed
according to the patients’ number of seizure instances available, as follows: For patients
with at least 3 seizure recordings: a train set containing 70% of the seizures and a
validation set containing the remaining 30%. For patients with more than 3 seizure
recordings: a train set containing 70% of the seizures, a validation set with 20%, and,
the test set with the remaining 10%. After performing the data splitting, the following
preprocessing steps were fitted to the train set and then applied to the validation and test
sets.

2.4.1. Feature Median Filtering

To reduce possible noise and smooth the data point inconsistencies, among each patient
dataset, a median filter was applied with k = 15. The kernel k represents the size of the
median filter window, in this case, the window took 15 samples.

2.4.2. Outlier Removal

Figure 2.6: Boxplot of the feature behavior before and after outlier removal for δ Band



28 2| Materials and Methods

Identification of outliers serves the purpose of eliminating noisy data points that signifi-
cantly deviate from their neighborhood. When detected, outliers may lead to instability
in the data. Furthermore, outlier detection could drive pattern identification. For this
purpose, the Z-score test was implemented. Figure 2.6 shows the behavior of the features
in δ Band before and after outlier removal for P3.

The z-score test measures the discrepancy between an experimental observation X from
the most probable value, the mean (µ). The obtained result z is represented in terms of
the standard deviation (σ). A positive Z indicates that the observation is located above
the µ, while a negative Z value suggests that is below µ [78]. Equation 2.9 shows the
computation of z-score measure. The proposed approach selects possible outliers based
on a threshold (Z = ±3). Each identified outlier was replaced by a NaN value.

Z =
X − µ

σ
(2.9)

2.4.3. Missing Values Imputation

K-nearest neighbors (KNN) imputation algorithm was implemented to fill in missing
data points. The algorithm replaces each missing observation with a value that relies
on distance metrics between the k closest neighbors to the missing data point [79]. In
the present work, k=5 was set. Therefore, the assigned value to the missing observation
relied on the 5 closest neighbors. Euclidean distance (see equation 2.10) was selected as
a metric to evaluate the distance.

d(x, z) =

√√√√ m∑
i=1

(xi − yi)2 (2.10)

2.4.4. Data Standardization

After applying KNN imputer to manage missing values, every observation in the feature
dataset was standardized using z-scoring as described in equation 2.9. A StandardScaler()
implemented in scikit-learn version 1.3.2. in Python was applied.

2.4.5. Data Augmentation

Data augmentation is a technique used in ML problems to increase the quality and diver-
sity of the training dataset [80]. It generates altered variants of the existing data points
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Figure 2.7: Example of synthetic data points generation using SMOTE

while keeping the target category. Data augmentation is also known as a regularization
technique used to improve a model’s performance. One of the main ML challenges is that
may lead to overfit the training stage when the dataset is very small or highly imbalanced,
reducing the generalization capability.

Due to the high imbalance between the interictal and preictal class among the patient’s
data, in order to avoid a possible bias in the prediction and a poor generalization, SMOTE
technique was applied to generate new synthetic data points of the minority class in the
training set [81]. The new synthetic samples are created along the observation segments
by connecting any or all of the k nearest neighbors from the minority class. The choice of
neighbors from the k-nearest neighbors depends on the desired level of oversampling. For
the present application, k=5 was used. Figure 2.7 illustrates how the SMOTE technique
was implemented in the present project. For the present work, undersampling was also
performed for the majority class as another way to decrease the imbalance between classes.

2.5. Feature Selection

Feature selection is a very important step when classification or prediction is performed
by means of ML or DL tools, it can improve the model’s performance increasing the gen-
eralization capacity by reducing the model’s complexity. This means that redundant or
irrelevant features are removed from the dataset. Taking over the most important fea-
tures could lead to a more interpretable and more accurate model. Also, computational
resources and time for modeling as well as prediction are reduced. The present work pro-
poses a three-step feature selection process: 1) Low variance filtering, 2) Mann-Whitney
U test, and 3) High correlation filtering.

1. Low Variance Filtering: All features whose variance is below 0.01 were pruned
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from the feature set.

2. Mann-Whitney U Test: It is a non-parametric test used to compare if there is a
difference in a dependent variable X among two independent groups (x and y), in
the present case, interictal and preictal.
A null hypothesis (H0), stipulates that both groups come from the same population,
and an alternative hypothesis (H1), denies the idea that both groups come from the
same distribution, are evaluated [82]. The test starts by calculating the U statistics
for each group, as follows:

Ux = nxny + ((nx(nx + 1))/2)−Rx (2.11)

Uy = nxny + ((ny(ny + 1))/2)−Ry (2.12)

Where nx and ny are the number of observations in the first and second groups,
respectively. Rx and Ry are the sum of the ranks assigned to the first and second
group observations, correspondingly. After calculating the U statistics a threshold
α = 0.05 was defined in order to reject or not the H0. The rejection of the null
hypothesis follows the p-value corresponding to the min(Ux, Uy) such that:

Reject H0 if p of min(Ux, Uy) < α (2.13)

3. High Correlation Filtering: Correlation between features was computed. Pairs
with a correlation coefficient r > 0.8 were identified. The removed feature from each
pair was selected based on the U statistic value, the one with the lowest Ux,y value
was pruned.

Additionally, the same candidate subset of features obtained after performing the feature
selection process in the training set was extracted for the validation and test set.

2.6. Machine Learning and Deep Learning Applica-

tion

2.6.1. Model Tuning

For the present project, the Supervised Learning method was selected to perform the
classification of the periods of interest present along a seizure (interictal and preictal
periods). Supervised ML techniques leverage knowledge acquired from past and current
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data by using labeled data to predict or classify unseen events. The ML model builds a
function to forecast the output values. Each ML algorithm compares the results obtained
with the actual input data and the expected result, identifying errors and adapting to
improve the outcome. In order to evaluate the generalization capability of the model, a
test set, i.e., data never seen by it, should be assessed.

Five models were selected: three ML models (RF, SVC, and XGB) and two DL mod-
els (CNN and LSTM). A Parameter Grid was proposed for each of the models. The
performance of the algorithms was evaluated using accuracy, F1 score, recall, precision,
specificity, and G-mean metrics.

To perform the model hyperparameter tuning and select the model configuration that
yields the best performance for the binary classification (interictal = 0, preictal = 1) a
Grid Search (GS) was implemented. The GS approach evaluates every hyperparameter
combination based on the Parameter Grid defined in advance for each model. The com-
bination of hyperparameters selected is the one that maximizes the macro-averaged F1
score. Due to the high computational cost of GS, the number of hyperparameters was
reduced.

Random Forest

RF is a type of ensemble bagging learning method, i.e., a method that combines the
predictions of multiple models trained, in this case, classification trees, on different sub-
sets of the training data to improve overall performance and reduce possible overfitting.
The data classification is carried out by building and training multiple Decision Tree
Classifiers. The algorithm recursively splits the input data based on thresholds among
feature values to perform a prediction. This process is guided by a top-down induction
approach that uses a divide-and-conquer partitioning scheme. The classification trees are
built in the training phase of the model. Algorithm 2.2 illustrates in detail the top-down
approximation of Decision Trees [83].
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Algorithm 2.2 Top-down induction of decision trees. Adapted from[83]
1: In the initialization phase, each observation is placed in the root node of the tree.

The root is included in the list of L nodes.
2: If the list L is empty the procedure is stopped, otherwise, a node J belonging to the

list L is selected, is removed from the list, and is used as the node for analysis.
3: The optimal splitting rule is used to determine the best criterion for dividing each

of the observations contained in node J. After the splitting rule is created, the ob-
servations are subdivided, resulting in descendant nodes. A stopping criteria, defined
a-priori, is evaluated to define whether a node should keep branching or not. If the
criteria are met, node J becomes a leaf, and the target class is assigned according to
majority voting between the observations contained in the node.

There are three main components of the top-down induction of decision trees previously
explained.

1. Splitting rule: It refers to the criteria selected to define the optimal splitting rule
and perform an optimal branching along the classification tree. In the present RF
implementation, to classify interictal and preictal states on an epileptic EEG signal,
the Gini Index was chosen for this purpose. The Gini index is an impurity measure
that evaluates the probability of misclassifying an observation within a node where
a label was already assigned to that specific node. It is computed with the following
expression:

Gini(q) = 1−
H∑

h=1

P 2
h (2.14)

The Gini index acquires its maximum value (Gmax = 1) when all the examples
among node J are distributed homogeneously among all classes. Otherwise, (Gmin =

0) is obtained when all the observations belong to the same class. Another impurity
measure used in the present work is the Entropy.

2. Stopping criteria: This criterion helps to establish whether the development of
the tree branching should continue or node J should be considered as a leaf. For
the present application maximum depth, minimum number of samples per leaf and
minimum samples split were applied as criteria for this purpose.

3. Pruning criteria: It helps to avoid excessive growth of the decision tree during the
training phase in order to reduce the chance of overfitting. For example, reducing
the number of nodes after the tree has been generated is a way of post-pruning.
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The hyperparameters chosen to evaluate the Random Forest’s performance are shown in
table 2.4

Hyperparameter Description Values
n_estimators Number of trees in the forest [10,30,100]

criterion Function to measure the quality of the split ["entropy","gini"]
max_depth Maximun depth of the trees [5,7,10]

min_samples_split Minimum number of samples required
to split an internal node [4,6,10]

min_samples_leaf Minimum amount of samples
required at a leaf node [10,20,50]

Table 2.4: Random Forest Hyperparameter definition

Support Vector Machine Classifier

A Support Vector Machine Classifier or SVC is a type of separation method used for
classification problems. It has been shown that is able to achieve good accuracy even
with large problems thanks to its efficiency. An SVC model identifies a set of examples,
known as Support Vectors (SV), which are the most representative observations of each
class [83]. These, play the main role in the definition of the separating surface inside the
feature space, as they are defined as data points located close to the decision boundary.
SV helps to define the classification rule.

SVC uses high-dimensional spaces where data may be easily separated, especially when
linear separation is not possible within the data points. This is carried out by means of a
"kernel". A kernel function allows the mapping of the original observations into a feature
space that is not explicitly computed and that involves an inherent linear segregation of
the instances within growing functional spaces with multiple dimensions. The evaluated
kernels for the present application are "polynomial" and "radial basis function" (rbf).
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Figure 2.8: SVM Classifier Hyperplane and Support Vectors. Kernel="rbf"

Figure 2.8 shows an example of binary classification using SVM, the hyperplane definition
based on the support vectors (in black contour). This case presents the separation between
feature ”std_Clust_coeff_Delta” and ”std_Node_Strength_Theta” for patient P1.
The solid line represents the separation hyperplane. While the dashed line represents the
canonical supporting hyperplanes. The kernel used is RBF which is based on a radial
basis function represented by equation 2.15

K(X1, X2) = exp(−∥X1 −X2∥2

2σ2
) (2.15)

The hyperparameters chosen to evaluate the SVC performance are shown in table 2.5

Hyperparameter Description Values

kernel Type of kernel to be used
in the algorythm ["poly","rbf"]

C Regularization parameter [0.01,0.05,0.1]
gamma Kernel coefficient for "rbf" and "poly" ["scale"]
degree Degree of the polynomial kernel function [2,3,10,20]

Table 2.5: SVM Classifier Hyperparameter definition
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XGBoost

The eXtreme Gradient Boosting or, as it is widely known, XGBoost, is a streamlined and
scalable implementation of the gradient boosting framework. XGBoost provides a parallel
tree boosting that allows a faster performance during the model’s training. One of the
greatest advantages of the model is its scalability thanks to the underneath algorithmic
optimizations that allow the handling of sparse data [84]. In comparison to Gradient
Boosting learning algorithm, XGBoost introduces a regularization term (Ω) that controls
the complexity of the model in order to avoid overfitting, as shown in equation 2.16 which
represents the loss function for this algorithm.

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) (2.16)

Where t is the number of the iteration, yi represents the real label known from the training
set and ŷt−1

i is the predicted label. fk represents an independent tree structure and Ω(ft) is
the regularization term that smooths the class weights learned by the XGBoost algorithm.

The hyperparameters chosen to evaluate the XGBoost model performance are shown in
table 2.6

Hyperparameter Description Values
n_estimators Number of trees in the forest [20,50,100]
max_depth Maximun depth of the trees [5,10,100]
reg_alpha L1 regularization term on weights [40,100]

reg_lambda L2 regularization term on weights [0.1,0.2]

colsample_bytree
Subsample ratio of columns when

constructing each tree
[0.5,1]

eta
Stop size shrinkage used in

update to prevent overfitting
[0.01,0.05]

Table 2.6: XGBoost Hyperparameter definiton

Convolutional Neural Network

In general, a Convolutional Neural Network (CNN) is a form of Artificial Neural Network
(ANN), which is a type of learning processing system inspired by the brain’s biological
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nervous systems. Is composed of an input node, followed by multiple layers, also known as
hidden layers, comprised of interconnected computational nodes (neurons), and ends on
an output node where the prediction result is presented. The hidden layers intertwine in
a distributed manner to collectively learn from the input, aiming to optimize its ultimate
output [85].

A CNN is similar to an ANN in the sense that the neurons that compose the network
self-optimize through the learning process. Each neuron still processes an input signal
or image through operations such as scalar product followed by a non-linear function.
For example, an activation Rectified Linear Unit (ReLU) activation function is used in
the present implementation as it increases the complexity of the CNN between layers
by introducing non-linearity allowing a more complex representation of data. The last
layer always contains a loss function associated with the classes, in this case, the Softmax
function was proposed as the probabilities obtained always sum up 1, which guarantees
the model’s predictions accurately reflect a probability distribution over the interictal and
preictal classes. Figure 2.9 includes the behavior of the activation functions used for the
CNN structure proposed.

Figure 2.9: Activation functions used in the CNN implementation

CNNs are usually used in pattern identification within images, they are also a well-known
forecasting technique in time-series analysis [86]. As the EEG signal presents a high tem-
poral dependency among each sample, this approximation is also proposed. The CNN
structure proposed is composed by a 2 convolutional + ReLU layers, 2 Batch Normaliza-
tion layers that help prevent the overfitting, and, 1 Dropout Layer also for this purpose.
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Finally, a Flatten layer, followed by a Dense layer and the Output layer with a Softmax
loss function. as shown in figure 2.10

Figure 2.10: CNN proposed structured for preictal state characterization

The hyperparameters chosen to evaluate the CNN model performance are shown in table
2.7

Hyperparameter Description Values

batch_size Type of kernel to be used
in the algorithm [64]

epochs Regularization parameter [100,200]
learning_rate Kernel coefficient for "rbf" and "poly" [0.001]

Table 2.7: CNN Hyperparameter definiton

Long Short-Term Memory - Recurrent Neural Network

A Long Short-Term Memory (LSTM) network is a derived form of recurrent neural net-
work (RNN), which has the ability to learn order dependencies and patterns in sequence
prediction problems from temporal information while preserving the dependencies among
long-time sequences. It is highly used in complex problems such as machine translation
and speech recognition [87]. The central feature of the LSTM is the constant error carousel
(CEC), where information is stored in short-term memory for large periods of time. For
the present work, an LSTM is proposed to efficiently classify the periods of interest in the
epileptic EEG signal (interictal and preictal periods).

LSTM models work by means of gates that are used to control the data stream within
recurrent computations. In order to store long-term patterns of the input signal, four main
components build the memory block present on each hidden layer within the network,
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which enables the update of each block [88]. Figure 2.11 presents an example of an LSTM
memory block structure.

1. Input gate: sigmoid threshold units with an activation function ranging between
[0,1],. It controls the signal from the network to the memory cell and scales it.

2. Forget gate: is responsible for resetting the internal state of the memory cell
when the stored information is no longer needed. This allows LSTM performance
optimization.

3. Cell state: refers to the activation of a CEC by the input gate.

4. Output gate: it presents the output of the current hidden state. It learns how
to manage access to contents of the memory cell, safeguarding other memory cells
from disruptions.

Figure 2.11: Standard LSTM memory block. Taken from [88]

The LSTM structure proposed for the present application is composed of 3 LSTM layers,
interspersed with a Dropout layer to prevent possible overfitting in the training of the
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model, a Dense layer and the Output layer with a loss sigmoid function to perform the
binary classification. The proposed architecture is shown in figure 2.12

Figure 2.12: LSTM-RNN proposed structured for preictal state characterization

The hyperparameters chosen to evaluate the LSTM-RNN model performance are shown
in table 2.8

Hyperparameter Description Values

batch_size
Type of kernel to be used

in the algorithm
[64]

epochs Regularization parameter [200]
learning_rate Kernel coefficient for "rbf" and "poly" [0.001]

Table 2.8: Long Short-Term Memory RNN’s Hyperparameter definiton

2.7. Model Training and Evaluation

2.7.1. Preictal window selection and Label assignment

To assess the performance of the models for interictal and preictal state classification when
exposed to different temporal contexts, different preictal window lengths, i.e., distinct time
intervals preceding the SOZ activation time were evaluated. The chosen preictal window
lengths were of 40, 60, and 80 minutes. The training of the models was performed for the
three preictal windows.

The label assignment for preictal state characterization, using the supervised learning
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models proposed, was determined by the chosen preictal window length. Instances occur-
ring outside the chosen preictal window were labeled as interictal state with label = 0,
which represents a non-seizure state. Conversely, instances falling within the preictal
window were labeled as preictal state with label = 1, indicating the potential start of
a seizure. The preictal window labeling was assigned according to the "eeg onset", i.e.,
SOZ activation time, information present in the EPILEPSIAE database Metadata.

2.7.2. Dataset splitting

Figure 2.13: Group splitting of the available patients

As shown by the exploratory analysis performed (see figure 2.2) some of the patients only
had 3 seizures available among the EEG recording blocks. Taking this into account, for
the model training and validation at least 2/3 seizures were going to be used for training
and the 1/3 remaining seizure for validation, leaving the model without a test seizure to
perform a final evaluation of the model. Therefore, a group splitting to perform the model
analysis was carried out, as shown in figure 2.13. Group 1 (G1), contained the patients
with only 3 seizures, it had a total of 7 patients. While Group 2 (G2) contained all
patients with > 3 seizures, for a total of 10 patients. For the latest group, it was possible
to build a test set for a final evaluation of the tested models.
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Figure 2.14: Dataset splitting for each group

Following the previous sections, in order to train the selected machine learning and deep
learning models, a proper splitting of the dataset into train, validation, and test sets was
proposed for each of the groups. To guarantee the correct performance of each model,
it was important to ensure that each 480-minute feature window was complete on every
set and that no window was duplicated on other sets, this would incur data leakage.
To preserve seizure-window consistency, Group-KFold cross-validation was proposed to
perform the partition of each set. Figure 2.14 shows the proposed dataset splitting.

For G1, the train set contained 70% of the seizures, while the remaining validation
set contained 30%. For G2,the train set contained 70% of the seizures, the validation
set 20%, and, the test set the remaining 10%.

Classification metrics

The Confusion Matrix (CM) is a performance report used to outline possible errors in a
binary classification problem on a given dataset. The table presents a contrast between
the labels predicted by the classification model and the actual labels of the data. Figure
2.15 shows the structure of a confusion matrix for a binary classification problem.
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Figure 2.15: Confusion Matrix for Interictal (0) and Preictal (1) classification periods

The "TN" label stands for True Negative, which represents the number of correctly clas-
sified negative cases. Similarly, "TP" denotes True Positive, indicating the count of well-
classified positive examples. A False Positive is represented with "FP", that is the count
of actual negative examples wrongly classified as positive. Finally, "FN" stands for False
Negative, which represents the number of real positive examples mistakenly classified as
negative.

Based on the Confusion Matrix, overall metrics such as accuracy, F1-score, recall, speci-
ficity, and sensitivity can be obtained, which gives more information about the perfor-
mance of the evaluated model. Table 2.9 presents the metrics computed to evaluate each
model’s classification performance.
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Metric Description Formula

Accuracy
Proportion of well-classified

instances out of the total instances
TP+TN

TP+TN+FP+FN

F1-score
Harmonic mean of
precision and recall

2× Precision×Recall
Precision+Recall

Precision
Proportion of TP predictions
out of all positive predictions

TP
TP+FP

Recall (Sensitivity)
Proportion of TP predictions

out of all true positive instances
TP

TP+FN

Specificity
Ability to correctly classify

negative instances
TN

TN+FP

Table 2.9: Classification metrics computed based on the Confusion Matrix

Further classification metrics such as G-mean, and other metric tools like the ROC curve
and Precision-Recall curve were also evaluated to assess the model´s performance.

• Geometric mean of recall (G-mean): The geometric mean is a measure of
central tendency that is calculated by multiplying together a set of numbers and
then taking the nth root of the product. In the context of ML imbalanced problems,
the G-mean of the recall works effectively in evaluating a model’s performance of
the target classes in a proper way. The G-mean of recall seeks to achieve the balance
between majority and minority classes by calculating the square root of the product
between recall and specificity[89].

G−mean =
√

Recall × Specificity (2.17)

• ROC Curve: The ROC curve is a graphical representation illustrating the balance
between the true positive rate (sensitivity) and the false positive rate (one minus true
negative rate, so the specificity) for a classifier across different decision thresholds.
This curve is a valuable tool in assessing the performance of a classifier as the
threshold for decision-making varies in order to: (1) establish an optimal decision
threshold that minimizes error rates or misclassification costs, considering specific
class and cost distributions; (2) identify areas where one classifier demonstrates
superior performance compared to another; (3) identify regions where a classifier
performs worse than chance; and (4) acquire well-calibrated estimates of the class
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posterior [90].

• Precision-Recall curve (PR): The precision-recall curve is a graphical representa-
tion that illustrates the trade-off between precision and recall for different thresholds
of a binary classification model. It’s obtained by smoothly changing the decision
threshold from one to zero and calculating for each value of the cutoff threshold the
Precision and Recall. The precision is the ratio of true positive predictions to the
total number of positive predictions made by the classifier while the ratio of true
positive predictions to the total number of actual positive instances. Is particularly
useful when dealing with imbalanced datasets and it is used to find a balance that
optimizes both precision and recall, depending on the specific requirements of the
application [91].

2.7.3. Model Selection

In order to evaluate each of the ML models, and preserve the seizure-window consistency
within the dataset splitting, a 3 Group-KFold cross-validation was proposed to perform
the splitting of each set. GroupKFold ensures that entire groups of related data points,
meaning that the data points chosen for the split belong to the same 480-feature vector,
and therefore remain intact for training, validation, and test set during each iteration of
the cross-validation process.
To manage the trade-off between precision and recall for the predicted values a custom
prediction threshold for the validation test to assess the classification for the interictal
and preictal states was set. This threshold was computed over each fold. As imbalanced
data was being used, the threshold selected was the one that maximized the F1 score for
the predicted values in the validation set. This threshold was then applied to the test set,
if possible. Finally, The best-performing model and best preictal window selected were
the ones that also maximized the F1 macro score in the Validation set. The evaluation
metrics mentioned in 2.7.2 were computed by contrasting the real and predicted label
values.
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The preceding chapters have outlined the theoretical framework, methodology, and data
collection steps carried out in the present investigation. The study’s findings are presented
in this chapter, detailing the observed outcomes and their implications. The purpose
of the study was to design a pipeline to perform patient-specific pattern recognition in
brain networks in order to characterize and understand the behavior of preictal states
in epileptic patients. The epileptic state classification was performed by implementing
different machine learning classifiers such as RF, SVM Classifier, XGB, CNN and LSTM
(see 2.6.1), to identify Interictal and Preictal labels varying the length of the analyzed
preictal time window (40, 60 and 80 minutes).

In the first step, as presented in Section 2.3.1, each EEG recording block was concatenated
until obtaining a full 8-9h recording, for each of the EEG bands. Then the connectivity
matrix was computed using Pearson’s Correlation and multiple Brain Network features
were computed (see Table 2.3). After, the preprocessing steps explained in Section 2.4 in
order to prepare the data for the ML pipeline were executed. Finally, RF, SVC, XGB,
CNN, and LSTM were evaluated for each of the patients.

The result analysis was performed based on the two study groups proposed in 2.7.2.
Group 1 (G1) contains the patients with only 3 seizures among the dataset, while Group
2 (G2) the patients with more than 3 seizures. The best-performing model and best pre-
ictal window selected were the ones that maximized the F1 macro score in the Validation
set.
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3.1. Feature Extraction

3.1.1. Functional Connectivity Analysis and Network Feature

Extraction

Once the 8-9h EEG recording block was obtained, the 11 Brain Network features were
computed based on the connectivity matrix extracted per frequency band. This allowed
to gain a closer insight into the behavior of the network in time from which it is expected
to be able to extract information that may indicate a potential seizure onset. Figure 3.1a
and Figure 3.1b show an example of the time evolution of the first 9 features for Group 1
P5 patient and Group 2 P3 patient for γH band. Each pixel among the heatmap indicates
the magnitude of each feature per minute instance, allowing the identification of possible
patterns or trends in the data.

In the case of P5, for features such as Node Strength (< S >), Clustering Coefficient
(< C >), Average Shortest Path (sp), and Eigenvector Centrality (< ec >), the magnitude
of the measurement increased its value as it got closer to SOZ activation time. For the
Betweenness Centrality (< B >) feature, the magnitude seemed to decrease as it got
closer to the SOZ activation time. On the other hand, P3 showed that for features such
as < S >, < C >, sp, and < ec >, the magnitude value is reduced as it gets closer
to SOZ activation time. For feature < B >, the magnitude seems to increase as it gets
closer to the seizure onset zone activation time. Compared to figure 3.1a, the behavior of
some of these characteristics is the opposite for P5. This variability in the brain dynamics
during seizure events across patients highlights the complex and patient-specific nature of
epileptic events.

Finally, every patient inside G1 and G2, 480 feature vectors were obtained per every
seizure instance. The total number of feature vectors used to train and validate each of
the models for each group was computed as follows: 480 × #ofseizures = # of feature
vectors
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(a) Group 1 P5 patient’s network feature evolution in time for in γH band compared with all 3 seizures.

(b) Group 2 P3 patient’s network feature evolution in time for in γH band compared with all 3 seizures.

Figure 3.1: Network feature evolution in time in γH band.

3.2. Feature Preprocessing

Median Filtering, Outlier removal, KNN imputation for missing values, Data standard-
ization, and Data augmentation, were applied for both groups, G1 and G2.
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3.2.1. Data Augmentation

In order to increase the quality and diversity of the training dataset, as well as reduce the
high imbalance existing between classes for the present problem, the SMOTE technique
was applied (see Section 2.4.5). A reduction of the majority class was also implemented
by an undersampling method.
Figure 3.2 shows the increase for the preictal class after implementing the SMOTE tech-
nique in both cases. The same approach was applied to patients in G2. To compensate
for the remaining imbalance, custom class weights were computed for each class and then
were configured for each of the models to avoid possible incongruities. The percentage
of oversample and undersample ratio for the instances depended on the length of the
current preictal window evaluated (40, 60, or 80 minutes), as the number of samples for
each of the classes, interictal (0) and preictal (1), changes with the selected window. This
approach allowed the reduction of the imbalance gap between the classes.

Once all Brain Network features were computed, and the splitting into train and validation
set was carried out, as described in Section 2.3.1 other preprocessing steps, such as feature
median filtering, outlier removal, missing values imputation, data standardization, data
augmentation, and feature selection, were implemented for each of the patients’ dataset.

Figure 3.2: SMOTE and Undersampling sample behavior in Train set for patients in G1,
with Majority (0) and Minority (1) Class.
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3.3. Feature Selection

As detailed in Section 2.5, the feature selection involved three procedures: i) Low Variance
Filtering, ii) Mann-Whitney U Test, and iii) High Correlation Filtering. This iterative
process was applied to each of the 3-Folds within the implemented GroupKFold method
for G1 and G2. Figure 3.3 shows the Top 5 of the most frequently selected features
within the 3-Kfoid process, for G1 and G2. It can be noted that features < ec > and σec

of γH band, as well as, < C > and σC of δ band, are the most recurrent selected features
during the training process across patients for both groups, which suggests their potential
high significance in distinguishing the distribution of the two class groups (interictal and
preictal).

Figure 3.3: Top 5 - Feature frequency selection in training set over the 3-GroupKFold for
G1 and G2.

3.4. Model Training and Evaluation

Once the final patient dataset was obtained, each of the models proposed in Section 2.6,
RF, SVM Classifier, XGB, CNN, and LSTM were trained and evaluated with a validation
set. Multiple hyperparameters were proposed for each of the models, the best-performing
model parameters were selected by using the Grid Search method for parameter tuning
(see Section 2.6.1). A different model was then obtained for each of the 3-folds, and each
was evaluated over the validation set proposed. The model with the highest F1 score
value and not overfitting in the validation set was selected for each of the preictal windows
evaluated. Additionally, as mentioned in Section 2.7, a custom prediction threshold for
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the validation test, was computed over each fold to manage the trade-off between precision
and recall for the predicted values. The threshold selected was the one that maximized
the F1 score for the predicted values.

The results are individually presented for one of the patients inside G1 and G2, with the
purpose of highlighting the entire workflow executed for each specific patient based on
their assigned group. This first approach allows a comprehensive understanding of the
tailored ML-trained models, as well as the analysis conducted for patients within each
distinct group.

3.4.1. Group 1

The first patient group, Group 1, that was evaluated with the designed pipeline was
composed of 7 patients with 3 seizure recordings each. As the number of seizures was not
enough to create a test set, only train and validation sets were configured. The train set
contained 2 of the seizures, while the remaining one was on the validation set. For G1
the selected patient was P5 The following tables (3.1,3.2,3.3) show the assessed metrics
Accuracy, F1 score, Precision, Recall, Specificity, and G-mean, obtained for the training
and validation set, obtained for P5 for each of the evaluated models for the preictal window
40, 60, and 80 minutes.

Table 3.1, provides an overview of the five trained models and their performance on the
train and validation sets, over a preictal window of 40 minutes. A prediction threshold of
0.52 was the best value selected that maximized the F1 score. Among all the evaluated
models, RF, SVC, and LSTM an F1 score value higher than 60% was obtained for P5.
XGB obtained a 100% score, for all metrics on the training set, which suggested overfitting
on the training set. For the 40-minute window, the best-performing model was SVC, with
an F1-score of 71.37% on the validation set. The drop for this metric compared to the
train set was not very high.

Preictal window 40 min
Model RF SVC XGB CNN LSTM

Train set Validation set Train set Validation set Train set Validation set Train set Validation set Train set Validation set
Accuracy 92.31% 80.97% 85.43% 83.61% 100% 70.14% 92.31% 73.75% 84.85% 74.58%
F1 Score 90.20% 67.89% 81.97% 71.37% 100% 58.78% 85.95% 59.94% 79.49% 61.18%
Precision 75.22% 36.07% 63.53% 40.26% 100% 30.16% 95.45% 23.87% 68.16% 24.17%
Recall 99.49% 79.17% 91.41% 88.33% 100% 79.17% 71.21% 82.50% 77.78% 94.17%
Specificity 90.15% 81.14% 83.64% 83.18% 100% 69.32% 98.64% 72.95% 86.97% 72.80%

Metric

G-mean 94.71% 80.15% 87.44% 85.72% 100% 74.08% 83.81% 77.58% 82.24% 82.80%

Table 3.1: Train and Validation set performance metrics to classify pre-ictal periods in
different windows for P5 for a 40-minute preictal window. In red, the best values for each
metric in the validation set.
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Table 3.2 summarizes the performance of all models obtained for patient P5 for the sec-
ond preictal window evaluated, 60-minute. A prediction threshold of 0.48 was the best
value selected that maximized the F1 score. Upon the obtained results, once again, SVC
presented a better trade-off between precision and recall, obtaining an F1 score of 73.31%
also, no overfitting was shown for the training set. Models like CNN and XGB showed
an increase in the F1 score with respect to the previous preictal window evaluated. Addi-
tionally, precision increased a 5% with respect to the previous 40-minute preictal window,
indicating that the prediction of positive instances was better for the current 60-minute
window.

Preictal window 60 min
Model RF SVC XGB CNN LSTM

Train set Validation set Train set Validation set Train set Validation set Train set Validation set Train set Validation set
Accuracy 94.74% 77.71% 85.99% 85.35% 99.18% 81.74% 95.83% 75.21% 84.22% 80.42%
F1 Score 93.83% 69.09% 83.69% 73.31% 99.00% 68.17% 95.17% 66.61% 72.14% 64.64%
Precision 85.77% 40.25% 71.87% 45.16% 98.44% 36.69% 89.48% 35.64% 59.10% 38.98%
Recall 98.10% 83.89% 87.78% 77.22% 98.73% 69.44% 98.41% 90.56% 51.11% 68.89%
Specificity 93.40% 76.83% 85.27% 86.51% 99.37% 83.49% 94.79% 73.02% 97.46% 82.06%

Metric

G-mean 95.72% 80.28% 86.51% 81.73% 99.05% 76.14% 96.59% 81.31% 70.58% 75.19%

Table 3.2: Train and Validation set performance metrics to classify pre-ictal periods in
different windows for P5 for 60-minute preictal window. In red, the best values for each
metric in the validation set.

Table 3.3 shows the highest F1 score value obtained with the 80-minute preictal window.
An F1 score of 75.5%, was obtained with an RF model, therefore this configuration was
selected as the best-performing one for P5. A prediction threshold of 0.53 was the best
value selected that maximized the F1 score. The XGB model obtained an F1 score value
greater than 70%, however, all training set metrics were greater than 99%, hence potential
overfitting could be seen in the train set. For SVC, CNN, and LSTM models precision
and recall decreased with respect to the 60-minute window.

Preictal window 80 min
Model RF SVC XGB CNN LSTM

Train set Validation set Train set Validation set Train set Validation set Train set Validation set Train set Validation set
Accuracy 95.74% 81.94% 80.56% 75.76% 99.35% 81.32% 85.00% 74.72% 83.47% 75.35%
F1 Score 95.34% 75.54% 76.47% 68.50% 99.28% 72.11% 78.76% 66.77% 79.28% 68.36%
Precision 89.32% 56.69% 73.93% 41.22% 98.52% 47.77% 94.73% 38.17% 79.35% 39.56%
Recall 99.17% 78.75% 74.03% 81.67% 99.58% 69.17% 60.00% 76.67% 64.17% 83.75%
Specificity 94.03% 82.58% 83.82% 74.58% 99.24% 83.75% 97.50% 74.33% 93.13% 73.67%

Metric

G-mean 96.56% 80.64% 78.77% 78.04% 99.41% 76.11% 76.49% 75.49% 77.30% 78.55%

Table 3.3: Train and Validation set performance metrics to classify pre-ictal periods in
different windows for P5 for 60-minute preictal window. In red, the best values for each
metric in the validation set.

Figure 3.4 shows the Confusion matrices for each of the evaluated windows (40, 60, and
80 minutes) for P5, confirming RF as the best classifier for the 80-minute window. It can
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be seen how the False Negative Rate decreases when the window is increased, as more
samples of the preictal class are assigned to the window. Also, a low False Negative Rate
(FNR) was achieved, indicating an optimal Recall value, among all the preictal windows.

An additional control to select the best window and model was carried out by review-
ing the ROC curve. As the number of negative instances significantly outweighed the
positive instances, the ROC curve may give a falsely optimistic view of the model’s per-
formance. Thus, the Precision-Recall curve was also evaluated as it is less biased skewed
class distribution. Figure 3.5 presents the ROC and PR curves for the RF model of the
best-evaluated fold in the pipeline for the 80-minute preictal window.

(a) 40-minute preictal window. (b) 60-minute preictal window. (c) 80-minute preictal window.

Figure 3.4: Confusion Matrices of RF best-performing model for P5 across different pre-
ictal windows for the Validation set.

The ROC-AUC value obtained was greater than 95%. An AUC value for the PR curve
of 0.93 was obtained for the RF model, which indicates strong performance in terms of
precision and recall trade-offs. The model was effective at identifying positive instances
while maintaining a low false positive rate.
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(a) ROC-AUC curve. (b) Precision-Recall curve.

Figure 3.5: ROC-AUC and PR curve for the best preictal window, 80-minute, for the
Validation set for all the evaluated models of P5.

Similarly, the model training and evaluation process was carried out for every patient in
Group 1. Table 3.4 presents the performance metrics obtained for the best-performing
preictal window and model per patient. It can be observed that 6/7 patients chose the
80-minute preictal window as the optimal one. The XGB was the best-performing model
with the most incidences among patients.

Metric

Patient ID
Number of
Seizures

Model
Preictal window

[min]
Accuracy F1 score Precision Recall Specificity G-mean

P4 3 RF 80 79.79% 70.27% 45.83% 67.92% 82.17% 74.70%
P5 3 SVC 80 81.94% 75.54% 56.69% 78.75% 82.58% 80.64%
P6 3 LSTM 40 78.68% 67.69% 36.35% 88.33% 77.80% 82.90%
P7 3 SVC 80 64.17% 47.70% 17.52% 30.42% 70.92% 46.44%
P12 3 RF 80 60.42% 52.49% 28.07% 54.58% 61.58% 57.98%
P15 3 LSTM 80 74.20% 66.70% 37.96% 78.33% 73.36% 75.81%
P17 3 CNN 80 79.24% 62.16% 36.26% 37.50% 87.58% 50.31%

Table 3.4: Best-performing model and preictal window performance metrics for each
patient in G1. In red, are the patients with F1 score greater than 65%.

3.4.2. Group 2

For the case of group 2, seizure recordings for 10 patients were available. It is very
important to acknowledge the variation in the number of seizures across the different
patients, which led to an inherent disparity in the amount of epileptic data available
for training, validation, and test sets. The selected patient to illustrate the performance
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evaluation of the proposed workflow evaluated for every patient in G2 was P3, this patient
had the highest number of seizure instances among the patients.

Table 3.5 presents a summary of the performance of the five trained models on both the
training and validation sets within a preictal window of 40 minutes for P3. The selected
optimal prediction threshold for maximizing the F1 score was 0.46. Notably, the SVC,
XGB, and LSTM models achieved an F1 score of over 70%. Conversely, the RF and
CNN models exhibited an F1 score greater than 65%. Among the models evaluated for
the 40-minute window, LSTM emerged as the top performer, surpassing a 72% F1 score,
and the decline of this metric compared to the training set was relatively moderate which
discards a possible overfitting of the model.

Preictal window 40 mins
Model RF SVC XGB CNN LSTM

Train set Validation set Train set Validation set Train set Validation set Train set Validation set Train set Validation set
Accuracy 93.07% 82.52% 88.10% 85.92% 98.70% 85.89% 90.40% 82.73% 82.85% 86.56%
F1 Score 91.10% 68.77% 84.71% 71.89% 98.23% 70.78% 78.61% 67.64% 79.70% 72.73%
Precision 77.00% 32.59% 69.65% 37.28% 94.86% 35.39% 59.62% 31.20% 57.92% 38.76%
Recall 99.81% 94.17% 88.70% 88.13% 100% 84.17% 66.48% 85.42% 94.13% 87.92%
Specificity 91.04% 81.46% 87.92% 85.72% 98.31% 86.04% 97.58% 82.48% 79.47% 86.44%

Metric

G-mean 95.33% 87.58% 88.31% 86.91% 99.15% 85.10% 80.54% 83.94% 86.49% 87.17%

Table 3.5: Train and Validation set performance metrics to classify pre-ictal periods in
different windows for P3 for 40-minute preictal window. In red, the best values for each
metric in the validation set.

Similarly, the performance evaluation of the models for a 60-minute preictal window was
carried out. Table 3.6 displays the evaluation metrics obtained for each of the models
for P3. The best prediction threshold implemented was of 0.36. The threshold selection
allows to manage the trade-off between precision and recall for the predicted values. All
models obtained an F1 score greater than 60% which indicates an acceptable trade-off
between precision and recall. The models are achieving a moderate balance in minimizing
both false positives and false negatives. The highest score was obtained by the SVC
model, with an F1 value above 68% while.

Preictal window 60 mins
Model RF SVC XGB CNN LSTM

Train set Validation set Train set Validation set Train set Validation set Train set Validation set Train set Validation set
Accuracy 92.20% 77.57% 84.85% 80.26% 99.84% 76.04% 83.70% 78.94% 99.83% 82.31%
F1 Score 91.07% 67.05% 82.02% 68.76% 99.81% 64.92% 75.26% 66.95% 99.79% 65.28%
Precision 78.95% 34.80% 71.36% 36.86% 99.49% 32.54% 82.07% 34.39% 99.49% 37.16%
Recall 99.10% 82.92% 80.00% 77.92% 99.96% 77.92% 55.87% 75.00% 99.92% 48.47%
Specificity 89.41% 76.81% 86.79% 80.60% 99.79% 75.77% 94.83% 79.50% 99.79% 87.14%

Metric

G-mean 94.16% 79.80% 83.33% 79.24% 99.88% 76.84% 72.79% 77.22% 99.86% 64.99%

Table 3.6: Train and Validation set performance metrics to classify pre-ictal periods in
different windows for P3 for 60-minute preictal window. In red, the best values for each
metric in the validation set.
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Finally, the 80-minute window performance for all the models was evaluated. Table 3.6
reflects the performance metrics obtained for P3, this gives information about the behavior
of the ML and DL models in the preictal period characterization task. The best prediction
threshold selected for the current window was of 0.42. Again, all models obtained an F1
score that exceeded 60% displaying a reasonable performance in the classification task.
The CNN model with an F1 score of 66.5% was the best-performing model trained for
the longest preictal window evaluated in the present work.

Preictal window 80 mins
Model RF SVC XGB CNN LSTM

Train set Validation set Train set Validation set Train set Validation set Train set Validation set Train set Validation set
Accuracy 88.74% 72.26% 81.45% 69.62% 99.63% 74.86% 84.02% 74.22% 99.50% 74.91%
F1 Score 87.71% 64.46% 79.30% 63.21% 99.58% 65.83% 75.59% 66.55% 99.44% 61.48%
Precision 78.65% 35.00% 71.22% 35.70% 99.14% 37.35% 91.64% 37.97% 98.70% 33.53%
Recall 90.56% 76.46% 74.97% 80.73% 99.76% 70.52% 59.62% 77.40% 99.83% 48.65%
Specificity 87.83% 71.42% 84.69% 67.40% 99.57% 75.73% 96.22% 73.58% 99.34% 80.17%

Metric

G-mean 89.18% 73.89% 79.68% 73.76% 99.66% 73.08% 75.74% 75.47% 99.58% 62.45%

Table 3.7: Train and Validation set performance metrics to classify pre-ictal periods in
different windows for P3 for 80-minute preictal window. In red, the best values for each
metric in the validation set.

The LSTM model achieved the highest F1 score in the 40-minute window, leading to the
selection of this configuration as the best-performing model for patient P3. It is important
to remark that in order to keep the coherence and avoid any possible data leakage, the
same preprocessing pipeline (i.e., the coefficients for outlier removal, standardization, and
missing values imputation) applied to the training set was fitted to the test set, before
model evaluation. Finally, the selected model was evaluated on this preprocessed test set.
To further evaluate the accuracy of the selected model in the present classification task,
the model was evaluated over the 40, 60, and 80-minute preictal window for every patient
using the test set. Table 3.8 presents the obtained metrics.
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Model LSTM
Preictal Window 40 min 60 min 80 min
Accuracy 90.63% 87.29% 79.58%
F1 Score 62.87% 64.70% 61.49%
Precision 40.00% 48.61% 37.32%
Recall 25.00% 29.17% 33.13%
Specificity 96.59% 95.60% 88.88%

Metric

G-mean 49.14% 52.80% 54.26%

Table 3.8: Test set performance metrics LSTM model to classify pre-ictal states for 40,
60, and 80-minute preictal window for P3. In red, are the best values for each metric in
the test set.

Figure 3.4 displays the Confusion matrices for the assessed windows (40, 60, and 80
minutes) for P3, validating LSTM as the best-performing classifier specifically for the
80-minute window.

(a) 40-minute preictal window. (b) 60-minute preictal window. (c) 80-minute preictal window.

Figure 3.6: Confusion Matrices of LSTM best-performing model for P3 across different
preictal windows for the Test set.

An additional evaluation of the specificity and recall of the LSTM model to characterize
preictal states in epileptic patients for every time window was carried out by plotting the
vector of predictions against the real values. This approach was able to complement the
quantitative metrics and provides valuable insights for model refinement and decision-
making about the obtained results, allowing an overview of the overall trend or pattern
in the prediction for each of the evaluated windows, as shown in Figure 3.7. Additionally,
systematic errors can be identified, such as the ones seen in the first minutes of the
interictal period, misclassified points.
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(a) 40-minute preictal window.

(b) 60-minute preictal window.

(c) 80-minute preictal window.

Figure 3.7: Prediction vector evaluation of LSTM best-performing model for P3 across
different preictal windows for the Test set.

Finally, G2 implemented the same additional method to determine the optimal window
and model by examining the ROC curve and the PR curve. The ROC-AUC obtained was
0.92. Furthermore, an AUC value of 0.61 was achieved for the PR curve with the LSTM
model.

In the same way, the training and evaluation process of each of the models was performed
for every patient among G2. Table 3.9 presents the performance metrics achieved for
the best-performing model and the best preictal window identified for each patient after
performing the model’s evaluation on each test set. It can be observed that P3 despite
being trained on a dataset containing the highest number of seizure instances, the model
did not achieve optimal metrics. SVC model obtained the highest F1 score, 80.10%, and
it was also the best-performing model preferred by 40% of the patients. LSTM model
was selected by 3/10 patients, also with short preictal windows, 40 and 60-minute. In
general, the optimal window selection was highly variable among patients due to the
seizure instances available for each subject.



58 3| Results

Metric

Patient ID
Number of
Seizures

Model
Preictal window

[min]
Accuracy F1 score Precision Recall Specificity G-mean

P1 4 RF 80 66.67% 54.79% 24.03% 46.25% 70.75% 57.20%
P2 7 SVC 80 78.75% 69.93% 42.14% 73.75% 79.75% 76.69%
P3 14 LSTM 60 87.29% 64.70% 48.61% 29.17% 95.60% 52.80%
P8 5 SVC 40 82.92% 59.80% 22.37% 42.50% 86.59% 60.66%
P9 5 RF 80 85.21% 74.97% 54.84% 63.75% 89.50% 75.54%
P10 8 LSTM 40 93.75% 70.57% 85.71% 30.00% 99.55% 54.65%
P11 5 LSTM 60 78.17% 60.84% 27.72% 46.67% 82.66% 62.11%
P13 4 SVC 80 89.17% 80.10% 68.42% 65.00% 94.00% 78.17%
P14 7 SVC 80 66.67% 53.98% 22.97% 42.50% 71.50% 55.17%
P16 6 CNN 60 71.27% 56.44% 22.83% 48.33% 74.81% 60.13%

Table 3.9: Best-performing model and preictal window performance metrics for each
patient in G2. In red, are the patients with F1 score greater than 60%.
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Pattern recognition in Brain Networks to characterize preictal states plays a crucial role
in the seizure prediction field. In the medical field, missing the detection of the preictal
state, which is crucial for anticipating a potential epileptic seizure, could have signifi-
cant and severe consequences. Predicting the occurrence of epileptic seizures by means
of electroencephalographic activity (EEG) could establish new therapeutic strategies for
those patients with insufficiently controlled seizures improving the patient’s quality of
life. The present study proposed a novel ML pipeline that aims to classify interictal and
preictal states across different preictal time windows. The most relevant Brain Network
Features that contributed to the identification of patterns, and so a better classification
of the epileptic states were identified, such as <ec> for γH band and <C> for δ band
were the most significant features extracted with the feature selection pipeline proposed.
As reviewed in the literature, the γ band oscillations may be associated with the ab-
normal synchronization of neuronal networks, which is a key feature for seizure onset
identification. The following section discusses the key findings derived from the present
investigation for each of the proposed groups, G1 and G2.

Figure 2.1 shows the ML pipeline designed in the present study. It is composed of 5
main blocks, Dataset Selection, Signal Preprocessing, Functional Connectivity Analysis,
Machine Learning Classification, and a final Statistical Validation. The detailed pipeline
proposed is presented in Appendix A.1.

Regarding the Functional Connectivity Analysis performed over G1 and G2, as shown in
Figures 3.1a and 3.1b, the dynamic behavior of the Brain Network features analyzed was
very different between patients, which confirmed the need to perform a patient-specific
model. For example, while < ec > for γH increased its magnitude value on P5 when
approaching the seizure, for P3, the same feature maintained a constant low value when
approaching the SOZ activation time.

Additionally, for both patients, < C > and < S > for γH seem to have the same behavior
as the seizure evolves in time. The linkage between these features in a brain network relates
to the network’s overall organization and functional segregation/integration. In the case



60 4| Discussion

of P5 a high < C > and < S > value, before the seizure, reflected a balance between
specialized local processing (i.e., high clustering) and good global communication (i.e.,
high node strength). While sp and < B > features behaved in an opposite way before
the seizure in both patients.

By examining the feature significance (see Figure 3.3, it was encountered that for G1
and G2, the most relevant Network characteristics were < ec > and σec forγH band.
Furthermore, the δ band showed a high relevance for epileptic states differentiation with
the features < C > and σC . <B> was also part of the Top 5 significant features selected.

Eigenvector Centrality (<ec>) represents the level of existing correlation between nodes
in a Brain Network. Lohmann et al [77], demonstrated the computational efficiency of this
Brain Network feature as it has a great capability to capture intrinsic neural architecture
on a node level. Conversely, Rubinov et al [36], described the Clustering Coefficient as
another relevant feature to characterize the behavior of brain networks. In fact, this
property is able to reflect, on average, the prevalence of clustered connectivity around the
individual nodes in the network. The important information given by these two features
was fundamental to distinguish the variations in the behavior of interictal and preictal
states.

In total, five ML and DL models were evaluated on each patient for 3 different preictal
time windows (40, 60, and 80 minutes), as described in section 2.6. The ML pipeline
designed in the present study proposes an analysis based on two group configurations due
to the limitation in the number of seizure instances available for some patients, G1 and
G2. The first one contains all patients with at least 3 EEG seizure recordings, allowing
only the evaluation of the models with a train validation set. The latest group contains
patients with more than 3 EEG seizure recordings, allowing the configuration of a test set
to further check the generalization capabilities of the models. Tables 3.4 and 3.9 present
the results obtained for G1 and G2, respectively.

In G1, P5, obtained the best F1 score, 75.54%, among all patients with the RF model and a
preictal window of 80 minutes, which outstands the models’ ability to handle imbalanced
data and capture complex relationships and patterns between features. A precision of
greater than 50% was obtained, indicating that instances predicted as TP (preictal) were
correctly identified by the model. In contrast with some studies, a specificity of 82.58%
was accomplished, which is only 15% less than the one obtained in [65].

Moreover, the 80-minute preictal window was the most selected optimal one which allowed
the best-performance of the selected model for most patients. Nevertheless, statistical
tests should be applied to evaluate if the mean performance across patients for the same
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window was significant. This could mean that due to the lack of information available, a
bigger window is needed in order to capture more information that helps to distinguish
interictal and preictal states and characterize them in a correct manner the preictal state.
XGB was the most best-performing model selected for the patients in G1, with a recur-
rence of 43%, this model is well-suited for capturing non-linear relationships in data. In
fact, P4 obtained an F1 score only 5% lower than P5, the model accurately identified
preictal class in 45% of cases. Broadly speaking, 5 patients out of 7 in G1 obtained an F1
score over 60%. It is certain that one limitation for G1 is the lack of at least an additional
seizure to perform a better assessment of the model’s generalization capacity.

For G2, the best-performing model and preictal window were selected according to the
maximum F1 score obtained in the validation step. Then, the selected model was evalu-
ated in each patient-specific Test set. The main purpose of implementing a test set is to
evaluate the extent to which the LSTM-trained model can apply its learned knowledge
for the characterization of preictal states to unfamiliar seizure data. P10 and P11 also had
as best model LSTM, the first one obtaining an F1 score of 70% and the latest a score
5% lower than P3. The highest precision among patients, 85.71%, was achieved by P10.

Likewise, Bongiorni et al [27] observed that an LSTM model was able to classify ictal
regions with up to 61% sensitivity and 99% specificity, with analysis window between 60s
and 240s, which confirmed the capacity of RNNs of LSTM type to assimilate temporal
patterns in EEG data. P10 achieved a recall of 30% and specificity of 99.55%, while P11

achieved a recall only 15% lower than the proposed study and specificity of 82.66%.

SVC was selected in 40% of the cases as the best-performing model among the patients,
all of them with a preictal analysis window of 80 minutes. An F1 score over 80% was
obtained by P13 and a recall of 65%. P2 in contrast, achieved an F1 score of 70% and
a recall greater than 70%. Compared with the literature, Shiao et al. [28], SVM-based
seizure forecasting model achieved an average sensitivity of 95%, with a window analysis
ranging from 20s to 1 hour. The study suggested a minimum amount of seizures, between
5 and 7, in the training data to guarantee a good performance classifying interictal and
preictal states.

Finally, the RF model was selected by 20% of the cases and the CNN model only by 1
out of 10 patients. Another outcome in G2 was the fact that for 50% of the cases, the
80-minute preictal window was selected as it allowed the best model’s performance.

The diverse distribution of seizure frequencies within the patients contributed to an uneven
distribution of seizure instances for each dataset. This inequality means that models
trained with a higher amount of seizure instances might exhibit better predictive patterns
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as more information is available for the training set compared to those trained on subjects
with fewer seizure instances. Thus, the model’s generalization capability to predict preictal
patterns might be biased due to the data imbalance.
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In the present work, a novel ML pipeline has been designed and evaluated to classify inter-
ictal and preictal states in epileptic patients across three different preictal time windows,
40, 60, and 80 minutes. The approach implements a Functional Connectivity Analy-
sis using Brain Networks to characterize preictal states. A workflow comprising 5 main
blocks, i)Dataset Selection, ii)Signal Preprocessing, iii)Functional Connectivity Analysis,
iv)Machine Learning Classification, and a final v)Statistical Validation, was proposed in
order to achieve the intended goal. In total, five ML and DL models were evaluated, RF,
SVC, XGB, CNN, and LSTM.

Due to the brain’s dynamicity and so EEG signal’s variability, the activity that occurs
during seizures can manifest differently for each patient. Identifying patterns in brain
networks to characterize preictal states in epileptic patients is a very challenging task be-
cause of the different behaviors encountered between the networks. Consequently, patient-
specific models are highly suggested to classify interictal and preictal states.

The challenges encountered in the development of the pipeline included limitations such as
individual variability, clinical heterogeneity, data imbalance, and sensitivity and specificity
trade-offs. Firstly, as seizures manifest in a unique manner for each patient according
to their state, knowing the current patient condition when a seizure manifests is helpful
when analyzing brain network behavior. Conversely, assuring homogeneity in a controlled
environment will give the same conditions for the patients and could lead to better results.

Another constraint was Data Imbalance, 7/17 patients only had 3 EEG seizure recordings
available which implied only having a train and validation set, eliminating the possibility
to further evaluate the model’s performance on unseen data. This also affects the training
process as only a few seizure instances are available. It is suggested a minimum of 3-5
seizures as training data. Also, the reduced amount of preictal samples leads to an
imbalanced dataset, larger preictal windows could be analyzed, under the constraint that
more information previous to the seizure must be available.
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Lastly, sensitive and specificity trade-offs affected the analysis especially when the test set
was evaluated, maintaining a balance between these two metrics allows the control between
TP and FN instances. Custom thresholds to perform the post-hoc model evaluation could
lead to a better evaluation according to the goal.

A total of 17 patients were evaluated with the proposed pipeline. Due to the imbalance
in the seizure instances of the dataset used in the present problem, the patients were
analyzed in two main groups, G1 and G2. G1 contained all patients with at least 3
seizures. In 57% of the patients, the F1 score was over 65%, with one of them reaching
75.54%. In 6/7 patients, the optimal preictal window was the 80-minute window. The
use of a larger preictal window allows a more comprehensive understanding of the brain
network dynamics prior to a seizure event.

In contrast, G2 contained the patients with more than 3 seizures. In 6/10 patients, an
F1 score surpasses 60% in the Test set, with one of them reaching up to 80%. Results
comparable with those found in the literature. Due to the imbalance in the number of
seizures present for the train, validation, and test set, the preictal window selected was
highly variable across patients. Nevertheless, 50% of the patients selected the longest
preictal window, an 80-minute window, as the optimal one.

Another relevant outcome regards the feature selection process. The most frequent fea-
tures, in G1 and G2, were < ec > and σec for γH band, which thanks to its association
with multiple cognitive functions any change or disruption in neural activity over this
band could precede a seizure onset. < C > and σC network characteristics for the δ band
presented a high significance level to differentiate interictal and preictal pattern distribu-
tions as a result of the Prms increase in the preictal period, according to literature.

The current analysis put in evidence how the variability in the brain network dynamics,
not only across patients but also between seizure instances of the same patient, biased
the selection of one model over another. Additionally, more than 60% of the patients in
total achieved the highest performance with an 80-minute preictal window.

Future work could be directed towards selecting the best model one among the 5 proposed
and test the same for all patients, further analysis evaluating the mean and standard de-
viation of the metrics achieved by every patient across each of the proposed windows
should be carried out. Furthermore, special attention should be directed towards the
improvement of the imbalance of the classes, using other ensemble methods or imple-
menting techniques such as Adaptative Synthetic Sampling (ADASYN), to reduce the
false positive predictions and improve the precision.
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Predicting the occurrence of epileptic seizures by means of electroencephalographic activ-
ity (EEG) and the application of Functional Analysis based on Brain Networks could es-
tablish new therapeutic strategies for those patients with insufficiently controlled seizures
improving the patient’s quality of life.
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Figure A.1: Interictal and Preictal Brain Network Classification Pipeline
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The following file contains all the metrics obtained for the two groups assessed within the
present project: 2023_12_Melgarejo_Quinones_Laura_Daniela_All_Patients_Data_3.pdf
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