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Abstract
Machine learning algorithms make decisions in various fields, thus influencing people’s lives. However, despite their good 
quality, they can be unfair to certain demographic groups, perpetuating socially induced biases. Therefore, this paper deals 
with a common unfairness problem, unequal quality of service, that appears in classification when age and ethnicity groups 
are used. To tackle this issue, we propose an adaptive boosting algorithm that aims to mitigate the existing unfairness in data. 
The proposed method is based on the AdaBoost algorithm but incorporates fairness in the calculation of the instance’s weight 
with the goal of making the prediction as good as possible for all ages and ethnicities. The results show that the proposed 
method increases the fairness of age and ethnicity groups while maintaining good overall quality compared to traditional 
classification algorithms. The proposed method achieves the best accuracy in almost every sensitive feature group. Based 
on the extensive analysis of the results, we found that when it comes to ethnicity, interestingly, White people are likely to be 
incorrectly classified as not being heroin users, whereas other groups are likely to be incorrectly classified as heroin users.
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Introduction

The efficiency of machine learning (ML) in automating 
human tasks is indisputable. The wide use of machine learn-
ing shows us its capability and potential to be utilized for 
solving different tasks. It is used in different fields, such as 
medicine, finance, logistics, etc. It can perform well in vari-
ous tasks, such as image and speech recognition, classifica-
tion, anomaly detection, etc.

ML’s value comes from processing a significant amount 
of data, extracting knowledge from it, and doing it all faster 
than humans. Discovering patterns in data is the power of 
ML, especially when the number of important patterns is big 

and can be overlooked by humans when decisions are made. 
Although ML is powerful in learning, it does not have power 
over what it is learning since it learns from data, which is an 
entirely human product.

Extracting patterns from data and learning from them can, 
apart from good classification quality, lead to unexpected 
results. Poor quality data can, despite the data processing 
methods, highly impact the model, making it learn societal 
bias. This was seen in some real-world ML-based applica-
tions, where the face recognition model worked much bet-
ter on white men’s images than others. Similarly, Google’s 
photo application labelled black men as "gorillas", question-
ing the quality of ML models used [1].

Fair Machine Learning

The complexity of ML models has grown over the years in 
order to improve their performance. The ambiguous mod-
els that lack transparency in decision-making do not allow 
the evaluation of their decisions from different aspects, thus 
leaving us to rely on standard evaluation methods. Although 
they have shown good classification quality, they can also 
be unfair. Unfair decisions lead to discrimination of certain 
groups of samples with the same characteristics, having 
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an even bigger impact when the samples represent people. 
For some time now, the law has defined that when humans 
are making decisions, certain human traits cannot be deal-
breakers, thus preventing discrimination. Recently, laws 
have defined ML-based decision-making, expecting that 
models are not discriminating.

The term fairness is not strictly defined by psychologists, 
causing the lack of a standard mathematical definition of 
fairness, thus making the evaluation of it complicated [2, 3]. 
There are now more than 20 different measures of fairness. 
Fairness metrics can address individual or group fairness. 
Most group fairness metrics are based on statistical parity, 
measuring each group’s possibility of having positive out-
comes [4]. In this work, we focus on group fairness and view 
fairness as equal quality of service. In terms of fairness, the 
model should offer equal quality of service, allowing the 
same classification quality for all groups included in sensi-
tive features.

Sensitive or protected features are features that should not 
be deal-breakers in decision-making, mostly defined by the 
law. Frequently used sensitive features are gender, race, reli-
gion, skin color, age, marital status, etc. Sensitive features 
could be removed, but some work showed that this approach 
does not always automatically create fair models [5]. Fur-
thermore, removing them could erase important information 
that can be vital to decision-making, for example, in medi-
cine. Different values of sensitive feature define categories, 
which we call sensitive feature group. Previous studies usu-
ally worked with one binary sensitive feature, where it has 
only two sensitive feature groups, being far from real-world 
applications that are more likely to have multiple categories. 
For example, ethnicity can have multiple categories (White, 
Black, Asian, Other). In this work, we deal with sensitive 
features that have multiple categories in order to bring it 
closer to practical use.

Removing sensitive features or not, their values could be 
reflected in some other feature or a combination of differ-
ent features. That could happen due to a number of reasons 
that come from the state of the original dataset. Utilizing 
data pre-processing techniques can only improve it to some 
extent. However, an algorithmic approach is needed to track 
and prevent learning of unfair patterns.

Existing Literature

Fairness in ML has been an emerging topic in the last few 
years. Work has been published on improving fairness in pre-
processing, post-processing, and in-processing phases. We 
focus on in-processing methods that address fairness during 
the learning phase. Furthermore, we build upon the existing 
work, which uses an ensemble of classifiers to address fairness. 
To improve fairness in decision trees, Fair Forests [6] were 
introduced. The authors propose adapting how information 

gain is calculated to consider the sensitive feature. This 
approach shows improvement in decision trees, but we aim at 
an iterative process, allowing the ensemble to correct fairness 
through iterations. To achieve that, instead of using uncorre-
lated classifiers in an ensemble, we use the boosting technique. 
The first similar approach [7] was published in 2015, where 
fairness in the Census Income dataset with the boosted clas-
sifier was introduced. Relabelling instances according to the 
fairness rules focuses on individual fairness. In our work, we 
focus on group fairness. Using cumulative fairness to miti-
gate unfairness, AdaFair [8] was introduced. This approach 
also tackles the problem of class-imbalanced data. The weight 
adaption step is changed to consider a model’s confidence 
score and equalized odds. Our approach uses the fairness of 
each sensitive feature group to update the weights. Fair-Ada-
Boost [9] was proposed with a new error rate and classifier 
weight, that takes into account sensitive feature. It also deals 
with hyper-parameter optimization using genetic algorithms. 
However, this approach uses the binary sensitive feature, 
whereas our approach can handle categorical sensitive fea-
tures. Lastly, our previous work [10] proposes Fair AdaBoost 
to improve fairness in the Drugs dataset. The approach pre-
sented adapts how weights are updated in a way that considers 
fairness. We introduced a new way of measuring the fairness 
of each sensitive feature group as the difference between the 
maximum accuracy of any group and the accuracy of a certain 
group. The model was one of the first to deal with categorical 
sensitive features.

Contributions

This paper is an extension of our previous work. In the pre-
vious paper, we proposed a boosting algorithm to overcome 
unfairness in the Drug consumption dataset [10]. Here, we 
perform a more extensive analysis, where we compare more 
algorithms to our approach and inspect the results of each sen-
sitive feature group in detail.

Therefore, our contribution is the following: We provide 
extensive analysis of binary classification results on the Drug 
consumption dataset with a focus on fairness, while examining 
the impact of incorrectly classified instances.

The rest of this paper is organized as follows. In “Meth-
odology” section the proposed algorithm and the motiva-
tion behind it are described. In “Experiment” section, the 
experimental setup is presented, followed by the results and a 
detailed analysis of it. Finally, “Conclusion” section concludes 
the study and discusses the future work.
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Methodology

Combining more models improves classification perfor-
mance, suggesting the potential of ensemble models. Dif-
ferent techniques combine models’ outputs, such as voting, 
bagging, or boosting. Boosting has shown outstanding per-
formance due to the iterative process, where in each itera-
tion new model is trying to improve the previous models’ 
mistakes.

One of the algorithms that showed excellent performance 
in classification tasks is AdaBoost, introduced in 1995 [11]. 
AdaBoost (Adaptive Boosting) algorithm combines weak 
learners to create a strong one. Base models are created in 
iterations, where each of them tries to learn from his own 
mistakes made in previous iterations, thus boosting his 
knowledge. At the end of each iteration, a weight in the form 
of its accuracy is signed to an estimator, making the final 
output a weighted sum of all estimators.

AdaBoost utilizes instance weight in order to improve 
performance through iterations. Each instance is assigned an 
equal weight at the beginning, which is then adapted through 
iterations. The instance weight of misclassified instances is 
increased to help the next estimator focus more on more 
demanding instances. The estimation error is used to adapt 
weights as long as the perfect estimator with estimation error 
0 or a certain number of iterations is achieved.

However, the good performance of the AdaBoost algo-
rithm, which is considered to be the best off-shelf classifier 
in the world [12], is achieved only when standard classifi-
cation metrics are used, such as accuracy, F-score, etc. On 
the other hand, the evaluation of fairness in the AdaBoost 
algorithm did not show promising results.

Fair AdaBoost

To mitigate unfairness in classification, we propose an exten-
sion of the AdaBoost algorithm [13] called Fair AdaBoost. 
Same as AdaBoost, the main phase of Fair AdaBoost is a 
boosting phase, in which weights are updated until the optimal 
result is achieved. Instance weight adaptation is an iterative 
process where estimation error and fairness are considered. 
Increased weight is assigned to incorrectly classified instances 

to help the model focus on more challenging instances in 
the next iteration. The estimation error according to which 
weights are updated represents the balance between estima-
tion error in accuracy and estimation error of sensitive feature 
group instance belongs to. As well as in AdaBoost, weights 
are updated until a certain number of iterations or a perfect 
estimator is achieved.

The most significant difference between AdaBoost and Fair 
AdaBoost is that Fair AdaBoost takes into consideration fair-
ness in the boosting stage. As well as in AdaBoost, the weights 
of all instances are equal in the beginning, so the weight value 
is 1/S with S being the number of instances. The process of 
boosting in Fair AdaBoost described next is presented as 
pseudo-code in Algorithm 1. Next, boosting is performed in 
n number of iterations that are set as one of the initializing 
parameters of the algorithm. Each iteration estimator learns 
from train data with weights from previous iterations, upon 
which it makes predictions. Based on those predictions and 
ground truth, the accuracy and fairness of each sensitive fea-
ture group are calculated. Fairness of kth sensitive group is 
calculated as shown in Eq. 1, with accmax being the highest 
accuracy any of the sensitive feature groups achieve and acck 
the accuracy of the kth group.

The calculation of estimator error err shown in Eq. 2 rep-
resents a balance between error in accuracy and fairness. 
The estimator’s accuracy in the ith iteration is denoted as 
accglobal . The input parameter wf  is fairness weight, and 
accdiff is the difference between the maximum and minimum 
accuracy of any sensitive feature groups. If the estimator 
error achieves 0 before performing a given number of itera-
tions, boosting is stopped.

Lastly, the boosting stage finishes with the weight adaptation 
step defined in Eq. 3, where the weight of every instance 
calculated by original AdaBoost denoted as wi,j(AB) is multi-
plied by the fairness of sensitive feature group to which the 
jth instance belongs to. That gives a new weight wi,j of jth 

(1)fairness
k
=

acc
max

acc
k

(2)err = (1 − accglobal) × (1 − wf ) + accdiff × wf

Algorithm 1: Fair AdaBoost 
weights boosting stage.

1: w0 = 1/S � S is a number of instances
2: for i = 1, ..., n do � n is a number of iterations
3: learn(data, wi−1)
4: predict(X)
5: calculate accuracy
6: calculate fairness per group as in Equation 1
7: calculate estimator error as in Equation 2
8: update weights according to Equation 3
9: end for
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instance in the ith iteration, which is then used in the next 
iteration.

Experiment

To evaluate the proposed method, we performed an experi-
ment on the UCI Drug consumption dataset [14] using 
5-cross validation. For comparison, we use a support vector 
machine (SVC), Naive Bayes, Logistic Regression, a Deci-
sion Tree (CART), and the base of the proposed algorithm, 
AdaBoost. For implementation, we use Python, scikit-
learn, and fairlearn libraries. All the above-men-
tioned algorithms have default parameter values of the 
scikit-learn library. Boosting algorithms contain 50 deci-
sion trees, thus performing boosting in 50 iterations. The 
experimental setup is shown in Table 1.

We evaluate performance with standard classification 
metrics like accuracy, F-Score, TPR, TNR, and the maxi-
mum and minimum accuracy and F-Score of sensitive fea-
ture groups. For fairness purposes, we observe the differ-
ence between the maximum and the minimum accuracy and 
F-Score achieved by any sensitive feature group. We also use 
fairness metrics Demographic Parity Difference (DMP) and 
Equalized Odds Difference (EQOD). DMP deems fairness 
as equal chances for each sensitive feature group to have a 
positive outcome. On the other hand, EQOD states that the 
chances of instances in a positive class being correctly clas-
sified as positive and an instance in a negative class being 
incorrectly classified as positive should be similar [15].

Dataset

We used the Drug consumption dataset, which is also used 
for unfairness problems by other authors [16, 17]. The data-
set described in Table 2 is a collection of responses to a 
survey [14] conducted in 2017, where participants stated 
their frequency of drug usage. 1885 people participated in 
the survey, and each of them is described with 12 personal 

(3)wi,j = wi,j(AB) × fairnessk, j ∈ K

features and a response to the frequency of using all the 18 
drugs mentioned in the study. Each drug feature is a cat-
egorical feature with the following possible answers: “Never 
Used”, “Used over a Decade Ago”, “Used in Last Decade”, 
“Used in Last Year”, “Used in Last Month”, “Used in Last 
Week” and “Used in Last Day”. From this data, multiple 
problems can be defined, where we opted for binary clas-
sification of heroin usage. To this end, we transformed the 
target to binary form with possible values of "Used" and 
"Not Used". Different personal attributes can be used as 
a sensitive feature, out of which we chose and separately 
tested age and ethnicity.

Results

In this section, we present the results of performed experi-
ments. We divide the results per sensitive features used, age, 
and ethnicity, and also in classification metrics considered 
better when higher and fairness metrics considered better 
when lower.

In Fig. 1, we can see the results when age is used as a 
sensitive feature. The results closer to 1 are better results. We 
can see that AdaBoost and Fair AdaBoost are outperforming 
other algorithms in almost all metrics. Furthermore, Fair 
AdaBoost achieves the best accuracy with a score of 0.9 and 
an F-Score. Fair AdaBoost is also best at classifying positive 
cases, whereas Naive Bayes best classifies negative cases.

The following Fig. 2 shows the results of an experiment 
with ethnicity as a sensitive feature. Once again, Fair Ada-
Boost shows superior performance, being the best in almost 
every metric. Moreover, it is the best in classifying positive 
cases, whereas Naive Bayes is the best in classifying nega-
tive cases.

In Fig. 3, the results of the experiment, when the sensi-
tive feature is age, are shown. The values shown are better 
when closer to 0. We observe that SVC and Fair AdaBoost 
achieve notably better results in DMP and EQOD. Regarding 
maximum group difference, Fair AdaBoost achieves the best 
accuracy group difference, whereas SVC achieves the best 
F-Score group difference.

The experiment’s results regarding fairness, when eth-
nicity was used as a sensitive feature, are shown in Fig. 4. 
In this case, Logistic Regression, SVC, and Fair AdaBoost 

Table 1  Experimental setup

Parameters Values

Number of estimators 50
Algorithm SAMME.R
Base estimator CART 
Learning rate 1
Fairness weight 0.5

Table 2  Dataset description

Dataset

Instances 1885
Attributes 32
Sensitive feature Age Ethnicity
Class ratio (+:-) 1: 5.73
Positive class Used
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achieve the best results in DMP and EQOD. The best accu-
racy group difference is achieved by Logistic regression, 
whereas Naive Bayes achieves the best F-Score group dif-
ference. In both metrics, Fair AdaBoost does not fall much 
behind the best algorithm.

In‑Depth Analysis of Sensitive Feature Groups’ 
Performance

We further analyze each category of both sensitive features 
to better understand the models’ outcomes. We evaluate their 
accuracy and present some instances that are incorrectly 
classified only by AdaBoost and misclassified by both Ada-
Boost and Fair AdaBoost. With this, we open the discussion 
of biased outcomes to sensitive features, the importance of 

the instances incorrectly classified as negative and incor-
rectly classified as positive, and their harmful potential.

The accuracy of each sensitive feature group, when the 
sensitive feature is age, is shown in Fig. 5. Although it may 
seem that Logistic regression and Naive Bayes achieve bet-
ter-balanced results, we notice that all groups achieve nota-
bly lower accuracy, affecting the overall accuracy, especially 
in comparison with AdaBoost and Fair AdaBoost. It is worth 
mentioning that AdaBoost and Fair AdaBoost achieve 100% 
accuracy in the 65+ group, while Fair AdaBoost achieves 
slightly better accuracy in the rest of the groups.

Figure 6 shows the accuracy of sensitive feature groups 
with ethnicity as a sensitive feature. The results show sig-
nificantly lower accuracy of AdaBoost and Naive Bayes in 
the Mixed-Black/Asian group. Fair AdaBoost achieves 100% 

Fig. 1  Evaluation of classifi-
cation of Drug consumption 
dataset using attribute age as a 
sensitive attribute (higher values 
represent better results)

Fig. 2  Evaluation of classifica-
tion of Drug consumption data-
set using attribute ethnicity as a 
sensitive attribute (higher values 
represent better results)
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accuracy in Mixed-Black/Asian group and 95% accuracy in 
the Black group.

Analysis of Error Cases

By analyzing error cases, we unveil a few incorrectly classi-
fied instances by AdaBoost and Fair AdaBoost. We compare 
instances that are misclassified by only AdaBoost, while 
being correctly classified by Fair AdaBoost, and misclas-
sified instances by both AdaBoost and Fair AdaBoost. We 
further discuss the sensitive feature groups of false positive 
and false negative cases and their implications. The index of 
instances does not correspond to the number of instances in 
the dataset but is created and used for internal analysis. This 
is not the analysis of individual fairness but rather an insight 

into the sensitive feature groups’ performance through their 
representatives.

We recall that the target feature is the use of heroin, where 
True corresponds to "Used Heroin" and False to "Not Used 
Heroin". Table 3 shows instances incorrectly classified by 
AdaBoost and correctly by Fair AdaBoost when the sensi-
tive feature is ethnicity. We can see that AdaBoost incor-
rectly classifies the white group as negative. Meaning, that 
AdaBoost classifies the White group as having never used 
heroin, even though they did. On the other hand, the algo-
rithm misclassifies other groups, such as Mixed-White/Asian, 
Mixed-Black/Asian, and Other, as positive. It classifies those 
groups as heroin users, whereas they never used it. From 
this, we can see how AdaBoost outcomes are unfair to cer-
tain demographic groups.

Fig. 3  Evaluation of classifi-
cation of Drug consumption 
dataset using attribute age as a 
sensitive attribute (lower values 
represent better results)

Fig. 4  Evaluation of classifica-
tion of Drug consumption data-
set using attribute ethnicity as a 
sensitive attribute (lower values 
represent better results)
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Fig. 5  Accuracy of each sensi-
tive feature group achieved by 
algorithms for classification of 
Drug consumption dataset using 
age as a sensitive attribute

Fig. 6  Accuracy of each sensi-
tive feature group achieved by 
algorithms for classification of 
Drug consumption dataset using 
ethnicity as a sensitive attribute

Table 3  View of a few instances incorrectly classified by AdaBoost 
and correctly classified by Fair AdaBoost when ethnicity as a sensi-
tive feature

Instance Sensitive feature 
group

Ground truth AdaBoost 
prediction

Fair 
AdaBoost 
prediction

#134 Mixed-White/
Asian

False True False

#1462 Mixed-Black/
Asian

False True False

#217 White True False True
#333 White True False True
#908 Other False True False

Table 4  View of a few instances incorrectly classified by AdaBoost 
and Fair AdaBoost when ethnicity as a sensitive feature

Instance Sensitive feature 
group

Ground truth AdaBoost 
prediction

Fair 
AdaBoost 
prediction

#23 White True False False
#58 White True False False
#1503 Mixed-White/

Asian
False True True

#744 Mixed-White/
Asian

True False False

#914 Mixed-White/
Black

True False False
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Table 4 shows a few instances incorrectly classified by 
AdaBoost and Fair AdaBoost when the sensitive feature is 
ethnicity. In 4 out of 5 cases, we see that algorithms classify 
samples as false negatives. Those instances belong to the fol-
lowing groups: White, Mixed-White/Asian, and Mixed-White/
Black. Interestingly, they both misclassify another instance 
of a Mixed-White/Asian group, but in this case, they incor-
rectly classify it as positive. Compared to previous instances 
that are misclassified only by AdaBoost, we can see that 
usually White race, even if it appears in some of the Mixed 
groups, can be incorrectly classified as non-user.

Next, we look at the instances incorrectly classified by 
AdaBoost and correctly classified by Fair AdaBoost when 
the sensitive feature is age, shown in Table 5. We observe 
that AdaBoost incorrectly classifies younger groups as posi-
tive, i.e., heroin users. On the other hand, it misclassifies 
instances of the 55–64 age group as negative. This means 
that AdaBoost can perceive younger people as heroin users 
while the elders as non-users.

Lastly, we show instances misclassified by both Ada-
Boost and Fair AdaBoost when the sensitive feature is age in 
Table 6. In 4 out of 5 cases, algorithms classify instances as 
false negatives. However, we cannot conclude which groups 
algorithms lean to, since out of four groups, it misclassifies 
the youngest two and the oldest two groups. The instance of 
the middle age group 35–44 is classified as false positive.

From instances misclassified only by AdaBoost, we could 
see a glimpse of bias and potential harm to specific groups. 

In neither case, the algorithm misclassifies an instance of 
the 65+ age group, achieving 100% accuracy in the oldest 
age group. Instances incorrectly classified by both AdaBoost 
and Fair AdaBoost can be considered more challenging than 
the others. This especially stands for instances that appear 
in misclassified instances of both sensitive features, such as 
instance #23.

Conclusion

In this work, we tackle the common unfairness problem in 
machine learning. Certain human traits used in decision-
making can heavily influence the outcomes of ML mod-
els due to various reasons. These features, called sensitive 
features, should not be deal-breakers, and equal quality of 
service should be allowed regardless of the sensitive feature 
group. We address the unfairness in the UCI Drug consump-
tion dataset, which uses the ethnicity and age of individuals 
as features. To this end, we propose Fair AdaBoost, based on 
AdaBoost, which considers fairness in the instance weights 
adaptation stage. While updating instance weights, we take 
into account fairness, presented as a difference between the 
maximum accuracy of any sensitive feature group and the 
accuracy of the group instances belongs to. We evaluate this 
proposed method with a binary classification task, determin-
ing if the person ever used heroin.

The results showed that Fair AdaBoost outperforms other 
algorithms regarding fairness and standard classification 
metrics as well. In both experiments with different sensitive 
features, some algorithms achieve similar results in some 
metrics, but we mostly focus on comparison with AdaBoost. 
The good results Fair AdaBoost achieves in standard classifi-
cation metrics show that it is improving fairness and keeping 
the overall good quality AdaBoost already has.

We further analyze the results of algorithms by each sen-
sitive feature group. We compare the accuracy of each sensi-
tive group that algorithms achieve to find that Fair AdaBoost 
achieves high results in every group. In both experiments, 
it achieves 100% accuracy in at least one group, namely 
the 65+ age group and Mixed-Black/Asian ethnicity group. 
Then, we compare a few instances from both experiments 
that were incorrectly classified only by AdaBoost and mis-
classified by both AdaBoost and Fair AdaBoost. We dis-
cuss the difference between false positive and false negative 
cases, their sensitive feature group, and the ramifications of 
it. Interestingly, when ethnicity is used as a sensitive feature 
group, White people are usually classified as false negatives, 
whereas other groups are classified as false positives.

In the future, this approach should be evaluated on more 
than one dataset for more conceivable results. Different base 
estimators in the ensemble could be used since, in this work, 
we examine Fair AdaBoost with only the CART decision 

Table 5  View of a few instances incorrectly classified by AdaBoost 
and correctly classified by Fair AdaBoost when age as a sensitive fea-
ture

Instance Sensitive 
feature 
group

Ground truth AdaBoost 
prediction

Fair 
AdaBoost 
prediction

#645 18–24 False True False
#134 25–34 False True False
#439 35–44 False True False
#429 45–54 False True False
#360 55–64 True False True

Table 6  View of a few instances incorrectly classified by AdaBoost 
and Fair AdaBoost when age as a sensitive feature

Instance Sensitive 
feature 
group

Ground truth AdaBoost 
prediction

Fair 
AdaBoost 
prediction

#1845 18–24 True False False
#198 25–34 True False False
#410 35–44 False True True
#23 45–54 True False False
#81 55-64 True False False
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tree as a base estimator. The results showed that fairness 
could be incorporated into the boosting technique, which is 
why it would be interesting to see it incorporated into other 
algorithms, such as XGBoost. Also, the proposed method 
should be evaluated along with other competing fair ensem-
ble classifiers on multiple datasets.
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