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ABSTRACT: The impact of microwave (MW) irradiation on
protein folding, potentially inciting misfolding, was investigated by
employing molecular dynamics (MD) simulations. Twenty-nine
proteins were subjected to MD simulations under equilibrium
(300 K) and MW conditions, where the rotational temperature
was elevated to 700 K. The utilized replacement model captures
the microwave effects of δ- and γ-relaxation processes (frequency
range of ∼300 MHz to ∼20 GHz). The results disclosed that MW
heating incited a shift toward more compact protein conforma-
tions, as indicated by decreased root-mean-square deviations, root-
mean-square fluctuations, head-to-tail distances, and radii of
gyration. This compaction was attributed to the intensification of intramolecular electrostatic interactions and hydrogen bonds
within the protein caused by MW-destabilized hydrogen bonds between the protein and solvent. The solvent-accessible surface area
(SASA), particularly that of polar amino-acid residues, shrank under MW conditions, corresponding to a reduced polarity of the
water solvent. However, MW irradiation produced no significant alterations in protein secondary structures; hence, MW heating was
observed to primarily affect the protein tertiary structures.

1. INTRODUCTION
Protein folding, a critical determinant of correct protein
functionality within cells, is a subject of immense scientific
inquiry due to its profound implications for understanding
cellular processes and treating an array of maladies.1−4 The
delicately maintained tertiary structure of peptides and
proteins in solution results from a competition between
intramolecular torsional bending and nonbonded interactions,
such as hydrogen bonds, salt bridges, and hydrophobic
interactions, under the influence of the surrounding solvent.
The potential influence of environmental factors, particularly

microwave (MW) radiation, on protein folding has drawn
significant attention.5−10 MW radiation, a nonionizing electro-
magnetic radiation prevalent in many modern applications, is
suspected of having notable impacts on cellular structures and
functions11,12 by altering the structural dynamics of bio-
macromolecular chains such as peptides,13 proteins,8,9,11

DNA,14,15 and RNA,16 the aberrant processes generally
associated with the onset of neurodegenerative disorders and
certain types of cancer.17−25

Two potential modalities of the influence of MW on protein
folding have been postulated. The first is the induction of
equilibrium effects with microwaves raising the temperature of
exposed materials. Given that protein folding and stability are
temperature-dependent, it is plausible that microwave-induced
heating could perturb these processes.26 On the other hand,
microwave radiation might instigate nonequilibrium effects,
potentially disrupting the balance of forces governing protein

folding by inducing molecular vibrations or rotations.27−29

Auerbach and co-workers indeed provided convincing
experimental evidence using quasielastic neutron scattering
measurements that in a MW-irradiated system, the rotational
temperature may substantially exceed the translational one.30

The exploration of the impact of MW on protein folding has
yielded intriguing insights. A novel mechanism of microwave
catalysis, based on rotationally excited polar reactive species,
has been proposed and validated through computer
simulations of neutral ester hydrolysis.31 This mechanism
suggests a reduced activation free energy when the rotational
temperature exceeds the translational temperature, indicating a
catalytic effect.31 Further work has provided an analytical
solution of microwave catalysis, aligning with Monte Carlo
simulations and experimental observations in polyethylene
terephthalate solvolysis.32 Nonequilibrium molecular dynamics
(MD) simulations have been used to investigate the dynamics
of hydrogen bonds in bulk water under MW heating.33−36

These studies have shown that an increased rotational
temperature modifies the average path of the hydrogen-bond
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switch and decreases the decay times of water molecule
reorientation.
We recently reported novel findings concerning the effect of

MW radiation on the conformational preferences of a small
helical β-peptide.13 We found that while conventional heating
leads to a total loss of structure, MW heating precipitates a
more subtle shift in the conformational equilibrium. This shift
is attributed to the rotationally excited water molecules under
MW radiation, which form fewer hydrogen bonds with the
peptide. Consequently, the peptide retains more intra-
molecular interactions, enabling it to maintain stable compact
conformations. Moreover, these changes were also observed to
trigger the formation of previously unseen misfolded structures
not present under conventional heating, indicating the
potential of MW radiation to act as a catalyst for peptide
and protein misfolding.
In the current MD simulations of 29 proteins, we observed

changes in protein structural properties when the rotational
temperature of water was increased to 700 K, with the
translational temperature held at 300 K. This approach
effectively mimicked the δ- and γ-relaxation processes typically
observed in the dielectric spectra of protein solutions within
the MW frequency range of approximately 300 MHz to 20
GHz.37 We observed a strengthened intramolecular hydrogen
bond network, leading to more compact protein config-
urations, as indicated by reduced root-mean-square deviation
(RMSD), root-mean-square fluctuation (RMSF), and radius of
gyration (RGYR) values. Proteins also displayed a decreased
solvent-accessible surface area (SASA), particularly for polar
residues, although the secondary structure remained largely
unchanged. This can be ascribed to the water solvent
exhibiting a less polar and less protic nature under MW
conditions.

2. COMPUTATIONAL METHODS
We conducted MD simulations of 29 proteins under two
conditions: equilibrium and MW conditions. The 29 protein
structures were chosen based on the simulation efficiency from
the larger set of 52 proteins described in the PhD thesis of
Martina Setz,38 who selected X-ray diffraction (crystal)
structures based on the following parameters: resolution
≤1.5 Å, no coordinated ions or ligands, no DNA- or RNA-
binding, monomer in solution, and less than 250 amino-acid
residues. Crystal structures not matching the resolution
criterion were also chosen if they had a paired NMR structure.
This protein set was used in the work of Diem and
Oostenbrink as well to characterize the effects of backbone
reparameterization39 and of different choices to compute
nonbonded interactions.40 Table S1 in the Supporting
Information lists all selected X-ray diffraction and NMR
structures.

2.1. Preprocessing. To prepare the protein structures for
MD simulations, hydrogen atoms were added where necessary
using the molecular geometry to position them. If a structure
had missing coordinates for heavy atoms, an initial energy
minimization of these missing atoms was conducted in vacuo:
all atoms except the missing ones were position-constrained,
and Lennard-Jones interactions were turned off (but the
charges were kept), so the atoms could move more freely. For
all proteins, an energy minimization was performed by using
the steepest descent algorithm with an initial step size of 0.01
nm and a maximum step size of 0.05 nm. A minimum of 100
and a maximum of 1000 minimization steps were made. The

energy convergence threshold was 0.001 kJ/mol for
minimizations in vacuo and 0.01 kJ/mol in solvent. The
reaction field method41 was used for long-range electrostatic
interactions beyond a cutoff radius of 1.4 nm. The reaction
field relative permittivity was set to 61. Forces on bonds were
explicitly calculated (no bond length constraints were used). If
present, crystal waters were energy minimized with 100 in
vacuo steps using the position-constrained solute. To relax the
whole system, the energy was minimized again in vacuo
without any position restraints for a maximum of 100 steps. If
heavy atoms were originally missing, the maximum number of
steps was increased to 1000. Then, the system was solvated in a
rectangular box with a minimum distance of 0.23 nm between
any existing atom and the center of geometry of any added
solvent molecule. Proteins were solvated in SPC water using a
1.2 nm distance between the box wall and the protein. Periodic
boundary conditions were imposed, and the solvent was energy
minimized with position-restrained solute by using a harmonic
function with a force constant of 25 MJ/(mol·nm2).
Subsequently, ions were added by randomly replacing water
molecules more than 0.4 nm away from any protein atom. For
protein simulations, Na+ and Cl− ions were added at a
physiological saline concentration of 0.15 mol/L each,
calculated from the number of water molecules in the box. If
necessary, Na+ or Cl− ions were removed to balance the net
charge of the protein and to achieve electroneutrality in the
simulated system.

2.2. Equilibration. Each equilibration step or cycle was 20
ps long and consisted of 10,000 MD simulation steps with a
step size of 2 fs. The solvated structures were heated from 50
to 300 K in increments of 50 K. For the structures exposed to
MW radiation, an additional equilibration step was included
that increased the rotational bath temperature to 700 K. The
SPC water model characterizes water as a rigid molecule,
meaning the nine degrees of freedom (dof) of a water molecule
are reduced to six dof by fixing three (two bonds and one bond
angle), which do not contribute to the kinetic energy. The
remaining dof can be divided into three translational dofs and
three rotational dof. This allows us to heat the rotational and
translational degrees of freedom separately, with the rotational
temperature increased to 700 K to mimic the effect of MW
irradiation. Simultaneously, the force constant of the harmonic
position restraint on the solute atoms was reduced by one-
tenth in each step, starting from an initial value of 25 MJ/(mol·
nm2). The center of mass translation of all atoms was removed
after 1000 MD simulation steps. After the heating cycles, roto-
translational constraints on the solute atoms were initialized in
the last cycle.42 Finally, the pressure coupling to 1 atm was
switched on in the last cycle. In total, 160 ps were used for
equilibration to 300 K and 180 ps for the equilibration of the
system exposed to MW radiation.

2.3. Production Run. The MD simulations were
performed at constant temperature and volume at different
temperatures using the GROMOS software package43 in
combination with the GROMOS 54A8 united-atom force
field44 and the GROMOS-compatible SPC water model.45 We
employed the leapfrog integration scheme with a 2 fs time step
to solve the equations of motion. The SHAKE algorithm46 was
applied to constrain solute bond lengths with a relative
geometric tolerance of 10−4, while the SETTLE algorithm47

was utilized to constrain solvent bond lengths and angles. The
GROMOS software facilitated a separate coupling of transla-
tional and internal-rotational dof. Three distinct heat baths
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were employed for (1) the dof of solute, (2) the rotational, and
(3) the translational dofs of the solvent. Since the SPC water
model molecules are rigid, they lack vibrational dofs.
The weak-coupling thermostat48 maintained the temper-

atures of all three baths at 300 K for equilibrium simulation
conditions. For nonequilibrium simulations of MW heating,
only the rotational dof temperature of solvent molecules was
raised to 700 K, with the remaining two heat baths held at 300
K. We based the selected rotational temperature of 700 K on
previous studies,13,49 estimating the MW power required to
maintain 1 mol of water at 700 K rotational temperature,
which aligns well with a typical power of MW reactors of
around 1000 W. A MW reactor projecting 1000 W of
microwaves onto a 30 by 40 cm area corresponds to the
electric field strength amplitude (E0) of 2.51 × 103 V/m. To
counteract the energy dissipation in nonequilibrium MW
simulations of condensed matter, we applied a relatively short
relaxation time, τ, of 0.01 ps.
Production run MD simulations were performed for 100 ns,

both at equilibrium 300 K conditions and for the systems
subjected to MW radiation.

3. RESULTS AND DISCUSSION
To investigate the effects of MW heating on the characteristics
of proteins, we analyzed and compared the MD trajectories
under equilibrium 300 K and nonequilibrium 700 K conditions
(Figure 1). Specifically, we calculated structural properties,
including the root-mean-square deviations (RMSD) with
respect to reference protein structures obtained from
experimental X-ray crystallography data, the root-mean-square
fluctuations around the average atomic positions (RMSF), the
intra- and intermolecular hydrogen bond statistics, the head-to-
tail distances, and the radii of gyration of each protein.
Moreover, we quantified van der Waals and electrostatic
interactions within the protein, as well as between the protein
and solvent. A summary of these results is displayed in Tables
1 and 2, while per-protein data is depicted in Supporting
Information in Chart S1 through Chart S14. Statistical
uncertainties on the per-protein data were obtained from a
block averaging approach,50 as implemented in GROMOS+
+.51 For each protein, the decrease/increase was also
determined as the average value at 300 K divided by the
corresponding average value at 700 K, subsequently subtracted

by 1. The standard error of the mean for the decrease/increase
was calculated as the standard deviation of the per-protein
ratio divided by the square root of the number of measure-
ments per protein.
Given that comparing the RMSD values of structures with a

different number of amino acid residues can be misleading due
to the inherent size dependence of positional RMSD, we
normalized our results to correct for the number of amino-acid
residues in each protein structure. Specifically, we employed
the formula derived by Carugo and Pongor52 that translates
the RMSD value of any protein structure into the equivalent
RMSD value for a 100-residue protein structure, which we
term RMSD100. The equation we used is as follows:

Figure 1. Average RMSD (left) and average RMSF (right) of each protein at 300 and 700 K over the entire time span of the MD trajectory (100
ns).

Table 1. Average Values of the Structural Analyses of the 29
Investigated Proteins

analysis 300 K 700 K
decrease/
increase

RMSD (nm)a 0.270 ± 0.022 0.240 ± 0.010 −13.1% ± 4.5%
RMSF (nm)b 0.184 ± 0.122 0.153 ± 0.109 −19.0% ± 5.2%
RGYR (nm)c 1.237 ± 0.003 1.212 ± 0.003 −2.0% ± 0.3%
H2T (nm)d 2.002 ± 0.071 1.893 ± 0.064 −10.0% ± 4.6%
nHB

PPbbe 56.8 ± 0.7 57.5 ± 0.7 1.6% ± 1.3%
nHB

PPf 388.2 ± 0.9 393.5 ± 1 1.2% ± 0.2%
nHB

PWg 396.7 ± 2.2 329.1 ± 1.8 −20.7% ± 0.8%
SASA (nm2)h 38.991 ± 0.214 35.297 ± 0.278 −10.5% ± 0.5%
SASA (polar)
(nm2)i

30.028 ± 0.194 26.832 ± 0.228 −12.1% ± 0.6%

SASA
(nonpolar)
(nm2)j

9.015 ± 0.115 8.577 ± 0.127 −5.1% ± 1.3%

aAverage MD trajectory protein backbone RMSD value compared to
the experimentally determined protein structure. bAverage MD
trajectory RMSF of the protein backbone. cAverage radius of gyration
of proteins. dAverage head-to-tail distance of proteins. eAverage
number of structure-forming intraprotein hydrogen bonds. fAverage
number of total intraprotein hydrogen bonds. gAverage number of
intermolecular hydrogen bonds between the protein and water
molecules. iSolvent-accessible surface area of all protein amino acid
residues. hSolvent-accessible surface area of polar protein amino acid
residues. jSolvent-accessible surface area of nonpolar protein amino
acid residues.
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=
+

RMSD
RMSD

1 ln N100
100 (1)

where RMSD represents the original RMSD value and N is the
number of amino-acid residues in the protein structure. This
approach ensures a meaningful comparison between structures
of different sizes, with the caveat that this method has not been
validated for protein structures with less than 40 amino acid
residues.
During MW radiation, rotational excitation of polar solvent

molecules induces changes in the structural properties of
proteins. In our MW MD simulations, the proteins’ temper-
ature was maintained at 300 K, even as the rotational
temperature of the solvent was increased to 700 K. This fact
underscores that the observed structural modifications are
likely attributable to direct interactions between proteins and
solvent molecules. Consistent with the β-peptide analysis,13

our data reveal an average destabilization of 20.7% in the
number of hydrogen bonds interfacing the proteins with the
solvent. Concurrently, the level of protein hydration decreases
at the higher rotational temperature of 700 K, augmenting the
strength of intraprotein hydrogen bonds. This is attested by a
slight but significant rise of 1.6% in the average number of
structure-forming intraprotein hydrogen bonds and a 1.2%
overall increase in the number of intraprotein hydrogen bonds.

These results thus suggest that the proteins’ intramolecular
hydrogen bond network becomes more robust in the context
of the MW-elevated rotational temperatures.
The enhanced stability of the intramolecular hydrogen bond

network likely causes proteins to adopt more compact
conformations, as depicted in Figure 2, which presents the
superposition of protein atoms over the course of the MD
trajectories. As evident from the figure, the protein structure
appears denser when it is subjected to MW heating.
Specifically, at the elevated rotational temperature of 700 K,
the average RMSD value decreases to 0.240 nm, translating to
a 13.1% reduction from the RMSD at 300 K. Similarly, the
average RMSF of the protein backbone decreases to 0.153 nm
at 700 K, representing a 19.0% reduction relative to the RMSF
at 300 K. Furthermore, the average radius of gyration shrinks
to 1.212 nm at 700 K, forming a modest 2.0% decrease from
300 K, which can be associated with the enhanced compact-
ness of the protein structure at higher rotational temperatures.
Moreover, the average head-to-tail distance shortens to 1.893
nm at 700 K, representing a significant decrease of 10.0% from
300 K. Collectively, these outcomes point to the substantial
impact of MW heating on the structural properties of proteins.
Concomitantly, the solvent-accessible surface area decreases

by 10.5% under MW conditions. Intriguingly, nonpolar amino
acids (Ala, Cys, Ile, Leu, Met, Phe, Trp Tyr, and Val)
experience a more pronounced reduction (12.1%) at higher
rotational temperatures compared with their polar (Arg, Asn,
Asp, Glu, Gly, Gln, His, Lys, Pro, Ser, and Thr) counterparts
(5.1%). This difference likely arises because water tends to
adopt a less polar character under MW conditions, as
suggested by our data. This could lead polar amino acid
residues to minimize their exposure to the increasingly apolar
solvent environment, while the nonpolar amino acid residues
remain comparatively less perturbed.
Conversely, the effects on the secondary structure elements

under equilibrium and MW conditions were found to be less
pronounced or even insignificant. The frequency of helices
displayed a minor increase of 1.7% ± 5.1% under MW
conditions, a statistically insignificant shift. The frequency of
beta sheets was observed to reduce by 3.8% ± 3.5%, and the
incidence of undefined structures decreased by 1.2% ± 1.3%.
These relatively minor alterations in the secondary structures

Table 2. Average Intraprotein and Protein−Water
Interaction energies (in kJ/mol)

300 K 700 K decrease/increase

Evdw
PPa −2125 ± 4 −2101 ± 4 1.3% ± 0.2%

Ees
PPb −6594 ± 31 −7248 ± 37 −9.3% ± 0.7%

Etot
PPc −8719 ± 31 −9349 ± 35 −7.0% ± 0.6%

Evdw
PWd −352 ± 4 −568 ± 5 −39.1% ± 2.2%

Ees
PWe −11,142 ± 59 −8250 ± 54 36.5% ± 1.3%

Etot
PWf −11,493 ± 57 −8818 ± 52 31.4% ± 1.1%

aIntramolecular intraprotein interaction energy�van der Waals
contribution. bIntramolecular intraprotein interaction energy�
electrostatic contribution. cIntramolecular intraprotein interaction
energy. dIntermolecular protein−water interaction energy�van der
Waals contribution. eIntermolecular protein−water interaction
energy�electrostatic contribution. fIntermolecular protein−water
interaction energy.

Figure 2. Superpositions of protein (PDB ID: 2NLS) atoms over the entire time span of the MD trajectory (100 ns). Displayed are the
experimental structure in cartoon (left) and the structures for equilibrium MD simulations at 300 K (center) and for MW heating with a
nonequilibrium rotational temperature of 700 K (right).
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suggest that the major structural changes detected at higher
rotational temperatures largely involve shifts in the proteins’
tertiary structure. To get a complete picture of the MW
irradiation effects on the structure of proteins, one must also
consider the alterations in intraprotein and protein−solvent
interactions, presented in Table 2.
Under MW heating, the total intramolecular nonbonded

energy of the proteins decreased by 7.0%, on average,
indicating strengthened interactions within proteins. The
largest contribution to this change is due to the strengthened
electrostatic interactions (9.3%), while the van der Waals
interactions weakened by 1.3%. The stronger intramolecular
interactions under MW conditions are a consequence of more
intraprotein hydrogen bonds (1.2%) and the shorter average
distance of these hydrogen bonds (by 1.0%; data not shown).
This trend coincides with a previous β-peptide study,13 which
shows a 7.3% decrease in intramolecular interaction energies
under MW conditions, which originated almost exclusively
from electrostatic interactions through the reinforcement of
intramolecular hydrogen bonds.
Concomitantly, the interactions between the proteins and

solvent were weakened by 31.4%, on average, under MW
radiation. The largest contribution to this change is due to the
weakened electrostatic interactions (36.5%) as a result of the
solvent becoming less polarized due to faster rotations of water
molecules. In contrast, since their contribution is minimal, the
van der Waals interactions between the proteins and solvent
strengthened by 39.1% but had a minimal effect on the total
protein−solvent interactions. The previous β-peptide study
showed no change in peptide-solvent van der Waals
contributions, arguably because the β-peptide was much
shorter and less structured than the proteins in our study. In
a structured protein, less polar MW-heated water molecules
can occupy smaller cavities on the protein surface and interact
favorably in terms of the van der Waals interactions.

4. CONCLUSIONS
The present study utilized MD simulations to investigate the
impact of MW irradiation on the protein structure and
energetics. By increasing the rotational temperature to 700 K
while maintaining the protein temperature at 300 K, we aimed
to delineate structural and energetic changes induced
specifically by MW heating rather than bulk temperature
effects.
The results reveal that MW irradiation in the 300 MHz to 20

GHz frequency range prompts notable modifications in the
tertiary structure of proteins. Remarkably, these changes occur
with minimal impact on the secondary structure elements, such
as unfolding,27 within a 100 ns time frame. Under MW
conditions, proteins tend to adopt more compact conforma-
tions, as evidenced by decreased RMSD, RMSF, head-to-tail
distance, and radius of gyration. The observed compaction
appears to arise from the strengthening of intramolecular
interactions, particularly electrostatic interactions and hydro-
gen bonds within the protein. Concurrently, the protein−
solvent hydrogen bond network becomes destabilized under
MW-induced heating, presumably causing contraction of the
protein structure.
The reinforcement of intramolecular hydrogen bonds and

electrostatic interactions indicates that the protein structure
becomes more robust under MW irradiation. As the water
takes on less polar character at elevated rotational temper-
atures, polar amino acid residues decrease solvent exposure by

moving to the protein interior. The resulting dense, tightly
packed conformations enhance the structural integrity of the
protein in the altered solvation environment.
However, the limitations of our replacement model for MW

radiation should be acknowledged. This model does not
account for the direct effect of MW on proteins, which may
introduce artifacts. Previous MD simulation studies incorpo-
rating oscillating electric fields53,54 have demonstrated
disruption in hydrogen bonding, especially for charged
residues, which undergo more localized motion. This suggests
that protein groups such as −OH, −NH2, and −COOH could
be affected by MW; therefore, it is conceivable that if charged
protein groups were exposed to a sufficiently strong external
electromagnetic field, more hydrogen bond breaking could
lead to more substantial and irreversible changes in protein
structure changes.
While this study primarily focused on the influence of MW

heating on protein structure, the downstream functional
implications of these structural changes remain to be fully
elucidated. Compaction and rigidification of the protein
structure might impede the dynamics and conformational
transitions necessary for protein function. Additionally, the
reduced solvent accessibility of polar amino acid residues
under MW conditions could potentially influence interprotein
interactions, ligand binding, and enzymatic activity.
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