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Abstract: The self-organization of open reaction systems is closely related to specific mechanisms that
allow the export of internally generated entropy from systems to their environment. According to the
second law of thermodynamics, systems with effective entropy export to the environment are better
internally organized. Therefore, they are in thermodynamic states with low entropy. In this context,
we study how self-organization in enzymatic reactions depends on their kinetic reaction mechanisms.
Enzymatic reactions in an open system are considered to operate in a non-equilibrium steady state,
which is achieved by satisfying the principle of maximum entropy production (MEPP). The latter
is a general theoretical framework for our theoretical analysis. Detailed theoretical studies and
comparisons of the linear irreversible kinetic schemes of an enzyme reaction in two and three states
are performed. In both cases, in the optimal and statistically most probable thermodynamic steady
state, a diffusion-limited flux is predicted by MEPP. Several thermodynamic quantities and enzymatic
kinetic parameters, such as the entropy production rate, the Shannon information entropy, reaction
stability, sensitivity, and specificity constants, are predicted. Our results show that the optimal
enzyme performance may strongly depend on the number of reaction steps when linear reaction
mechanisms are considered. Simple reaction mechanisms with a smaller number of intermediate
reaction steps could be better organized internally and could allow fast and stable catalysis. These
could be features of the evolutionary mechanisms of highly specialized enzymes.

Keywords: enzymes; kinetic data analysis; steady state; self-organization; maximum entropy production

1. Introduction

Enzymatic reactions are the most common biochemical reactions in living cells and are
essential for almost all cellular processes. The structures, functions, and kinetic properties of
modern enzymes have changed considerably during evolution. Since biological evolution
is widely regarded as an optimization process, the evolution of enzymes could be explained
as the result of evolutionary optimization [1–5]. In recent decades, various optimization
principles have been proposed to explain the kinetic properties of modern enzymes [1–17],
but a general agreement on this topic has not yet been reached among researchers.

From a thermodynamic point of view, according to the second law of thermodynamics,
the change in entropy dictates the direction of all spontaneous processes in nature. The
general form of the second law of thermodynamics is: dS = diS + deS, where dS is the total
net change in entropy of the system, diS is the entropy generated by irreversible processes
within the system, and deS is the entropy exported from the system to its environment.
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While diS can only be positive, deS can be either zero or negative. For a closed system
where deS = 0, the total net entropy change always increases or remains constant. Hence,
dS = diS ≥ 0. In this case, the system spontaneously approaches the equilibrium state with
maximal entropy. However, if the system is open and can exchange heat and matter with its
environment, it can avoid the equilibrium state by exporting internally generated entropy
to its environment [18]. If such a mechanism allows efficient, energetic decomposition
of incoming metabolites (energy dissipation) and efficient export of internally generated
entropy to the environment, the system can make a spontaneous transition from a state of
higher to a state of lower entropy and thus spontaneously become better organized [18,19].
It follows from thermodynamic laws that any system characterized by an irreversible flow
of entropy will automatically self-organize [18,19]. Such spontaneously self-organizing
processes are statistically highly improbable (though possible) in closed thermodynamic
systems but highly probable in open systems. Open systems can persist longer in ordered
states with lower entropy because, according to the second law of thermodynamics, a
nontrivial and stable steady state with dS = 0 for deS = −diS ≤ 0 can occur. Hence, in open
systems, highly ordered systems under non-equilibrium conditions can spontaneously set
up, producing entropy and releasing it to the environment [18]. Biological systems are
considered as such.

An enzyme-catalyzed reaction possesses a specific reaction mechanism in which the
catalytic site of the enzyme attracts substrate molecules from the environment, converts
them into a product (dissipates energy), and then releases them back into the environment.
These mechanisms are represented by the kinetic reaction schemes and described by the
corresponding kinetic models. Different kinetic mechanisms of enzyme reactions have
evolved during biological evolution in response to different environmental and metabolic
conditions [20]. Enzymatic reactions in living cells are supposed to take place in open
reaction systems under non-equilibrium conditions in (more or less) stable quasi-steady
states. Such thermodynamic states are generally characterized by slowly changing ther-
modynamic forces and fluxes, resulting in continuous entropy production and dissipation
of free energy. Their properties could be explained by irreversible steady-state thermody-
namics rather than reversible equilibrium thermodynamics. Several researchers [21–24]
have identified the principle of maximum entropy production (MEPP), also known as the
MEP conjecture, as a basic assumption for the thermodynamic analysis of non-equilibrium
steady states. According to MEPP, an open thermodynamic system spontaneously evolves
towards the steady state characterized by the maximal entropy production rate. The system
reaches this steady state spontaneously because it is statistically most probable [23–26].
There is general agreement that MEPP is a suitable optimization approach for the analysis
of stationary near-equilibrium processes in which a linear force-flow relationship holds [27].
In the analysis of non-equilibrium stationary processes, MEPP is adopted as a working
hypothesis [27]. Several published papers show that enzymes and metabolic networks
operate according to MEPP [10–17,28,29]. Based on this knowledge, it could be suggested
that MEPP could be one of the most important thermodynamic principles explaining the
kinetic properties of modern enzymes.

MEPP is often used for analyzing various open non-equilibrium systems in physics,
chemistry, and biology [22]. According to MEPP, the entropy production of the system
is maximized with respect to one or more selected system parameters [30]. In this way,
parameter values that account for the optimal thermodynamic performance of the system
in a steady state are calculated. Different theoretical formulations of MEPP exist in the
literature [22]. In this study, the entropy production of the system is maximized by searching
for maximal overall reaction flux at fixed thermodynamic force. MEPP is also closely
related to the principle of maximal Shannon information entropy (MaxEnt). Namely,
the non-equilibrium steady state of an open system characterized by maximal entropy
production rate should, at the same time, also be characterized by the maximal value of the
Shannon information entropy [23–26]. This means that the steady state of maximal entropy
production (MEP) is also statistically the most probable steady state of the system. On the
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other hand, it has been found that MEPP not only governs the evolution of non-equilibrium
physical and chemical processes but is also closely related to different hypotheses from
evolutionary biology [31].

This work uses MEPP as a theoretical thermodynamic framework to study the self-
organization of linear irreversible enzyme reactions. The goal is to gain new insights
into how the kinetic reaction mechanism of a linear enzyme reaction affects quantities
such as the entropy production rate, the catalytic efficiency of a reaction, the Shannon
information entropy of a reaction, the reaction sensitivity to external perturbations, the
reaction stability, and standard kinetic parameters such as the Michaelis–Menten constant,
the catalytic constant, and the specificity constant. To this end, two- and three-state
irreversible kinetic schemes of an enzyme reaction are investigated and compared in detail.
For both reaction schemes, MEPP predicts that the reaction flux of an enzyme reaction in
its most probable thermodynamic steady state should be controlled by the diffusion of the
reactants. Optimal solutions for the Michaelis–Menten constant, the catalytic constant, and
the specificity constant are derived analytically. These solutions resemble in all aspects
the kinetic criteria for diffusion-limited or catalytically optimal (perfect) enzymes. The
results of our study suggest that reaction mechanisms may be essential for the optimization
of enzyme performance and the self-organization of biochemical reactions. Theoretical
solutions show that all thermodynamic and kinetic properties of enzymatic reactions
strongly depend on the number of intermediate reaction steps or, equivalently, on the
number of intermediate enzymatic functional states within the whole reaction mechanism.
In this context, reaction mechanisms with a smaller number of intermediate functional
states are, by default, better internally organized and characterized by lower Shannon
information entropy. This is reflected in a higher entropy production rate, better catalytic
performance, and higher reaction stability and response to external perturbations.

2. Results and Discussion
2.1. Optimal Enzyme State and Diffusion-Limited Enzymes

Optimal values of the enzyme rate constants, corresponding to the maximal rate of
entropy production in an irreversible two-state kinetic scheme, shown in Figure 1a, can be
easily analytically derived and calculated by using Equation (28). Since the numerator of
Equation (28) is constant, maximal reaction flux is achieved when the denominator of this
equation is minimal. Demand that the first derivative of the denominator in Equation (28)
with respect to k+2 equals zero yields k+2 op =

√
K+S. By considering K+ = k+∗1 k+2 = k+∗1 opk+2 op

we directly obtain k+∗1 op[S] = k+2 op, which is, in our model, a global optimality condition for
establishing a steady state with a maximal entropy production rate. In the above condition,
the rate constant k+2 describes the pure enzymatic catalytic step ES→ E+ P. On the other
hand, the product k+∗1 [S] is known as the pseudo-first-order rate constant, which describes
the transition S+ E→ ES and depends on the second-order diffusion rate constant k+∗1
as well as on the substrate concentration [S]. The parameter k+∗1 describes the diffusion
of substrate molecules to the enzyme’s active site and is a subject of optimization in our
model. [S] is the enzyme’s steady-state substrate concentration. In our further analysis,
we demonstrate that condition k+∗1 op[S] = k+2 op globally affects practically all aspects of the
enzyme thermodynamics and kinetics and implies that the reaction flux of an enzyme reaction
is under the condition of maximal entropy production rate controlled only by diffusion. Even
more, it will be demonstrated that this is also statistically the most probable steady state of
a reaction. We have also shown that the above condition predicted by MEPP represents a
reasonable theoretical basis for the thermodynamic explanation of the already-known features
of diffusion-controlled enzymes that operate in a catalytically optimal manner. Such enzymes
exist in nature, and their features are well described in terms of Michaelis–Menten (KM) and
specificity (kcat/KM) constants.
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tively. The symbols 𝑣  , 𝑣  , and 𝑣   designate the external incoming and outgoing fluxes of 
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Figure 1. Kinetic schemes of an enzyme reaction considered for thermodynamic analysis with
MEP principle. (a) Kinetic scheme of the irreversible two-state enzyme reaction. E and ES are
enzyme functional states of a free enzyme and an enzyme in complex with the substrate, respec-
tively. Transitions between the enzyme’s functional states are described by the enzyme rate con-
stants: k+∗1 —second-order (diffusion) forward rate constant and k+2 ¯first-order forward rate constant.
(b) Kinetic scheme of the irreversible three-state enzyme reaction. E, ES, and EP are the functional
states of a free enzyme, an enzyme in complex with a substrate, and an enzyme in complex with a
product, respectively. Transitions between enzyme states are described by the enzyme rate constants,
which are designated as: a+∗1 —second-order (diffusion) forward rate constant, and a+2 , a+3 —first-
order forward rate constants. In both cases, open reaction systems are considered in a non-equilibrium
steady state. The symbols S and P designate a substrate and a product, respectively. The symbols
vS in, vS out, and vP out designate the external incoming and outgoing fluxes of metabolites, which are:
vS in—incoming flux of a substrate, vS out—outgoing flux of a substrate, and vP out—outgoing flux of
a product.

The condition k+∗1 op[S] = k+2 op dictates that the steady state with a maximal rate in the
entropy production is established when all forward rate constants are equal. It is generally
known that these parameters are different when considering individual enzymes. The
internal enzymatic reaction steps described by k+2 could generally be much faster than the
diffusion of substrates to the enzyme’s active site, as described by k+∗1 . However, according
to the above optimality condition, very fast internal enzymatic molecular transitions do not
improve the enzyme’s catalysis performance. Diffusion to the active site is a rate-limiting
step for the entire reaction and dictates the upper value of the overall reaction flux in a
steady state. It follows directly from our theoretical model that the maximal rate of entropy
production and, thus, maximal reaction rate are achieved if internal enzymatic reaction
steps are as fast as the substrate’s diffusion to the enzyme catalytic site.

Replacement of the optimal forward rate constant k+op

(
k+op =

√
K+S

)
with

k+op = k+∗1 op[S] = k+2 op in Equations (19) and (20), accounting for the state with maximal
entropy production rate, results in equal steady-state concentrations [E] = [ES] = [E]tot/2.
According to Equation (5), this results in a uniform probability distribution of the enzyme’s
functional states p1 = p2 = 0.5, and, according to Equation (4), in the maximal Shannon in-
formation entropy H = ln(2). This result highlights that the steady state with the maximal
rate in entropy production is statistically also the most probable steady-state of the reaction.
The same result can be obtained by considering k+op = k+∗1 op[S] = k+2 op in Equation (29).
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A closer inspection of the reaction stability, described by the trace of the Jacobian matrix
(Equation (30)), shows that Tr(J) is equal (except for the minus sign) to the denominator of
Equation (28) for the reaction flux. It thus possesses a unique maximal value Tr(J) = −2k+op

for the same optimal rate constant k+op and the same condition k+∗1 op[S] = k+2 op as the rate
of entropy production and the Shannon information entropy; this result is graphically
presented in Figure 2 for the two- and three-state kinetic schemes, solid and dash-dot
lines, respectively. As can be seen from the bottom panel of Figure 2, the largest values
of Tr(J) (i.e., the least negative among all possible states) for both reaction schemes are
consistent with the statistically most probable steady states predicted with MEPP and
Shannon entropy. This result suggests that the statistically most probable state is the least
stable and, therefore, the most flexible among all possible steady states.
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Figure 2. Thermodynamic optimization of the two- (solid lines) and the three-state (dash-dot lines)
irreversible enzyme reaction: steady-state reaction flux normalized with the total enzyme concen-
tration (v /[E]tot) (upper panel), Shannon information entropy (H) (middle panel), and the trace of
the Jacobian matrix (Tr(J)) (lower panel) in dependence on the enzyme forward rate constants k+

or a+ for the two- and the three-state kinetic schemes, respectively. The optimal value of the rate
constants k+op and a+op corresponds with the maximal reaction flux, the maximal Shannon information
entropy, and the maximal trace of the Jacobian matrix. Calculations are performed for the following
values of the model parameters: [S] = 1 µM, K+ = 100 µM−1s−2 (for the two-state kinetic scheme)
and [S] = 1 µM, K+ = 100 µM−1s−3 (for the three-state kinetic scheme).
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The optimality condition k+∗1 op[S] = k+2 op allows the prediction of the optimal Michaelis–
Menten constant for the two-state kinetic scheme. According to Equation (24) and the
condition k+∗1 op[S] = k+2 op, the optimal KM for the two-state reaction scheme is KM = [S]. In
general, for enzyme pathways operating at total capacity, optimal KM values for many en-
zymes are equal to or slightly higher than physiological substrate concentrations [6,8,32,33].
Accordingly, we obtained KM = [S] for the diffusion-limited enzymes operating at the
maximal reaction flux predicted by MEPP. We can further derive the optimal value of
the specificity constant, which is defined as the ratio kcat/KM. That is, by considering
Equations (23) and (24), and the condition k+∗1 op[S] = k+2 op, the optimal specificity constant
for the two-state kinetic scheme is equal to the optimal second-order (diffusion) rate con-
stant kcat/KM = k+∗1 op. If the specificity constant kcat/KM is similar in magnitude to the
diffusion rate constant k+∗1 , then according to [6,8,32,33], the enzyme is considered to be
catalytically optimal. As seen here, the condition k+∗1 op[S] = k+2 op, predicted by MEPP, is
global and implies that the statistically most probable steady states of enzyme reactions
are characterized by a maximal diffusion-limited reaction flux, which is a characteristic of
the catalytically optimal or diffusion-limited enzymes. As explicitly described here for the
two-state irreversible kinetic scheme, the same analysis is also performed for the three-state
kinetic scheme shown in Figure 1b. Modeling and analysis for the latter case are detailed in
Appendix A. In the following subsection, we present and discuss a detailed comparison of
the results obtained for both cases.

2.2. Broader Comparison of the Optimized Two- and Three-State Irreversible Kinetic Schemes

Enzymatic reactions investigated in experiments are observed as a series of multiple,
more or less stable, enzymatic functional states. The kinetic schemes of enzyme reactions
proposed by experimentalists include primarily only the most stable or most representative
states [34]. With that in mind, the two- and three-state kinetic schemes in Figure 1a,b
are here viewed as two isoenzymes that catalyze the same substrate to the same product,
first according to an irreversible two-state kinetic scheme (Figure 1a) and second with a
corresponding three-state kinetic scheme (Figure 1b). The values of both overall reaction
equilibrium constants K∗ for these two isoenzymes must be the same, since K∗ depends
only on the chemical nature of the substrate and the product. We further assume identical
environmental conditions, substrate and product concentrations, and the same values of
the parameter K+ for both isoenzymes. Both reactions are placed in their statistically most
probable steady state with the corresponding maximal values of the Shannon information
entropy and the rate of entropy production. We examine whether the two isoenzymes un-
der the same conditions have significant kinetic and thermodynamic efficiency differences
resulting from the differences in reaction mechanisms. To investigate this, we compare
optimal values of the quantities k+op, v/[E]tot, H, Tr(J), εv

S, kcat, KM, and kcat/KM for both
reactions. In calculations, we use a typical order of magnitude for the substrate concentra-
tion [S] ∼ 1 µM and the values K+ = 100 µM−1s−2 and K+ = 100 µM−1s−3 for the two-
and the three-state kinetic scheme, respectively. The value K+ = 100 µM−1s−2 is chosen
such that the predicted optimal diffusion rate constant for the two-state kinetic scheme is
k+∗1 = 107(Ms)−1 = 10 (µMs)−1, which is an order of magnitude lower than the maximal
experimentally determined value of this parameter (108 − 109 (Ms)−1) [4]. The latter value
is the upper limit of the diffusion-controlled binding step within the enzyme reaction
kinetics [4]. A detailed comparison of the results, calculated for both kinetic schemes, is
presented in Table 1.
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Table 1. Comparison of the parameters accounting for optimal enzyme performance within two-
and three-state kinetic schemes. Calculations for both kinetic schemes are performed under identical
conditions: [S] = 1 µM, K+ = 100 µM−1s−2 (for the two-state kinetic scheme) and [S] = 1 µM,
K+ = 100 µM−1s−3 (for the three-state kinetic scheme) within the most probable steady state
characterized by the maximal Shannon information entropy, maximal rate of entropy production,
and maximal trace of the Jacobian matrix.

Quantity and Its Unit
Two-State Kinetic

Scheme
Three-State Kinetic

Scheme

Expression Value Expression Value

k+op, a+op
[
s−1] k+op =

√
K+[S] 10 s−1 a+op = 3

√
K+[S] 4.6 s−1

v /[E]tot

[
µMs−1

]
k+op/2 5 s−1 a+op/3 1.5 s−1

H [/] Equation (29) ln(2) Equation (A14) ln(3)
Tr(J)

[
s−1] −2k+op −20 s−1 −3a+op −13.8 s−1

kcat, acat
[
s−1] k+op 10 s−1 a+op/2 2.3 s−1

KM, AM [µM] KM = [S] 1.0 µM AM = [S]/2 0.5 µM(
kcat
KM

)
,
(

acat
AM

) [
(µMs)−1

]
kcat
KM

= k+∗1 op 10 (µMs)−1 acat
AM

= a+∗1 op 4.6 (µMs)−1

εv
S [/] Equation (27) 1/2 Equation (27) 1/3

The results presented in Table 1 show that optimal enzyme performance strongly
depends on the number of enzyme functional states involved in the enzyme reaction
mechanism. Based on the comparison of the results shown in Table 1, we can conclude
that, under identical conditions, simple reaction mechanisms with a smaller number of
enzyme states, according to the model, result in faster and more efficient catalysis of a
given substrate compared to the reaction mechanisms with a larger number of enzyme
states. For example, the results in the first row of Table 1 show that the optimal k+op for
the two-state kinetic scheme is higher than the corresponding kinetic constant a+op for the
three-state kinetic scheme despite the same conditions. Thus, this result is independent of
the environmental conditions and is, as in reference [35], considered an intrinsic feature of
a given kinetic scheme.

The result can also be further generalized. Hence, for a linear scheme of an enzyme
reaction with n enzyme functional states, the generalized expression for the optimal rate
constant would be:

k+op = n
√

K+[S] (1)

As seen, k+op and the optimal solutions of all other quantities and parameters in Table 1,
which depend on k+op, decrease with increasing n. Accordingly, in the two-state kinetic
scheme, a higher value of k+op results in the highest value of the reaction flux normalized
by the total enzyme concentration (second row in Table 1). Even if the optimal kinetic
rate constants for both kinetic schemes were the same, i.e., k+op = a+op (in our model,
this is possible for [S] = 1 µM and K+ = 1), the steady-state reaction flux in the two-
state kinetic scheme would be higher as in a three-state scheme, i.e., v /[E]tot = k+op/2
and v /[E]tot = k+op/3, respectively. As seen from the third row of Table 1, the maximal
value of the Shannon information entropy in the two-state kinetic scheme is lower than
in the three-state scheme. This is consistent with the generalized form of the second law
of thermodynamics described in the Introduction. In our case, the maximal Shannon
information entropy calculated for the two-state kinetic scheme (H = ln(2)) is lower
than that in the three-state kinetic scheme (H = ln(3)). Further comparison of the model
calculations shows that the optimal value of the trace of the Jacobian matrix (Tr(J)) (the
fourth row of Table 1) for the two-state scheme is lower (more negative) than that for
the three-state scheme. According to several references [36–40], this is associated with
greater reaction stability of the two-state reaction mechanism (see lower panel of Figure 2).
From the model results presented in the fifth row of Table 1, it can further be seen that the
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optimal value of the catalytic constant kcat (reaction flux normalized by the total enzyme
concentration at very high substrate concentration) for the two-state kinetic scheme is again
higher than that for the three-state kinetic scheme.

The results presented in the second and the sixth row of Table 1 are discussed together.
The expression obtained for the optimal reaction flux normalized by the total enzyme
concentration in the two-state kinetic scheme (second row of Table 1) shows that optimal
flux equals one-half of the saturation flux v /[E]tot = k+op/2. The optimal Michaelis–Menten
constant (KM) for that case (row six in Table 1) is KM = [S]. These two results imply that
optimal flux in the two-state kinetic scheme is achieved at the steady-state [S], which is
also physiologically most effective. That is indeed an ideal case for achieving optimal
enzyme catalysis. As can be seen from Table 1, this is not quite the same for the three-
state kinetic scheme since the optimal reaction flux is equal to one-third of the saturation
flux v /[E]tot = a+op/3 and the optimal Michaelis–Menten constant (AM) is by a factor 2
lower than the optimal physiological value of [S], i.e., AM = [S]/2. These differences also
result in different flux regulations. Enzymes operating according to the three-state kinetic
scheme are saturated at lower substrate concentrations. Therefore, they may not be as
sensitive (compared to the two-state case) to changes in substrate concentrations around
the physiological values of [S]. That is demonstrated using numerical simulations. Figure 3
shows the response of the reaction flux with respect to the time-dependent substrate
concentration for both kinetic schemes. Typical signals used in numerical simulations
are shown in Figure 3a,c. In both reactions, steady states with a maximal rate of entropy
production were first established at the substrate concentration [S] = 1 µM. The initial
steady state is in both figures presented for the negative values of time (t < 0). Then, at
t = 0, a transient 10% increase in [S] is generated, followed by the time-dependent decay
of [S] (t > 0) as predicted by the dynamical system for each kinetic scheme. The resulting
time courses of the reaction fluxes are then calculated with both kinetic models. Despite
the same initial substrate concentrations in the steady state and the same increase in [S]
at t = 0, the corresponding response of reaction flux at t = 0 is higher for the two-state
(Figure 3b) than for the three-state kinetic scheme (Figure 3d). This is a consequence of a
higher elasticity coefficient εv

S in the case of the two-state reaction scheme (see the last row
in Table 1). As can be seen from Equation (27), εv

S depends on the initial steady-state [S] and
the parameter KM. Since [S] is equal in both cases, the differences in flux responses are due
to different optimal KM (or AM) values for both kinetic schemes, an intrinsic property of the
specific reaction mechanism [35]. As shown in Figure 3, the decay rate, which is inversely
proportional to a half-decay time (t1/2), of either variable [S] or the reaction flux v, as seen
in Figure 3b,d, is also much higher in the two-state as in the three-state kinetic scheme. That
is due to differences in the stabilities of the reaction systems, which is reflected in different
values of Tr(J).

Finally, we discuss the results obtained for the specificity constants in row seven of
Table 1. The specificity constants (kcat/KM), (acat/AM), for the two- and three-state kinetic
schemes, respectively, predicted by MEPP, are for both cases equal to the corresponding
second-order diffusion rate constant k+∗1 op and a+∗1 op. That is expected for diffusion-limited
enzymes. Since the specificity constants depend on kcat and acat, which are different for
the two kinetic schemes, the specificity constant also depends on the reaction mechanism.
This result contrasts previous theoretical studies [4,41–43] where authors assumed that the
second-order diffusion rate constant should or might be considered entirely independent of
specific reaction mechanisms, depend solely on diffusional factors, and remain unaffected
during evolutionary enzymatic development. For example, Pettersson [4] carried out
a theoretical investigation on the evolution of enzyme kinetics and assumed that the
second-order rate constant is a fixed parameter in the history of enzyme evolution with
the highest possible value k+∗1 = 109 (Ms)−1, which is the upper limit for the diffusion-
controlled binding step. In contrast, the results of our model show that the second-order rate
constant in calculating the optimal rate constant k+op depends on the reaction mechanism.
If we recall the generalized expression for the optimal rate constant of the n-step reaction
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mechanism k+op = n
√

K+[S] (see Equation (1)) and take into account the well-known relation
between the first- and the second-order rate constant k+op = k+∗op [S] [34], it follows that
k+∗op = n

√
K+[S]/[S]. Thus, if K+ and [S] are considered fixed model parameters, the optimal

diffusion rate constant decreases as n increases. Hence, both k+∗op and kcat/KM depend
on the intrinsic properties of a given reaction mechanism, which is a direct theoretical
result of applying MEPP. This agrees with the discussion in reference [35]. Accordingly, the
specificity constant for the two-state kinetic scheme is slightly higher than that calculated for
the three-state scheme. However, both results are still within the same order of magnitude.
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Figure 3. Time-responses of the reaction flux v(t) and the substrate concentration [S] (t) to a tran-
sient increase in the substrate concentration [S] above the steady-state value. (a,c) show the time-
dependences of the substrate concentration [S] (t) after a transient 10 % increase above the steady-state
value and its decay back to a steady state for the two- and three-state kinetic schemes, respectively.
(b,d) show the corresponding response of the reaction fluxes v(t) for the two- and three-state kinetic
schemes, respectively. The transient [S] (t) is simulated as follows: at t < 0 [S] = 1 µM, at t = 0
[S] = 1.1 µM, and at t > 0 [S](t) is calculated with the corresponding dynamical system for either
two- (Equations (12)–(15)) or three-state (Equations (A1)–(A5)) kinetic schemes. These two dynamical
systems also calculate the reaction fluxes v(t ). The total enzyme concentration used in the simulations
is [E]tot = 0.1 µM, and the values of the kinetic parameters k+op and a+op used are given in Table 1.

Finally, Figure 4 summarizes all predicted optimal reaction parameter values and
enables their comparison for the two- and three-state kinetic schemes in a single graphi-
cal representation. The optimal values of each parameter for the three-state scheme are
expressed as a proportion of the corresponding two-state scheme values.
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schemes of an enzyme reaction. The optimal values of individual parameters for the three-state
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(red color). Legend: k+op, a+op—forward rate constants for the two- and three-state kinetic schemes,
respectively, v /[E]tot—steady-state reaction flux normalized with the total enzyme concentration,
H—Shannon information entropy, Tr(J)—trace of the Jacobian matrix, kcat, acat—enzyme catalytic
rate constants for the two- and three-state kinetic schemes, respectively, KM, AM—Michaelis–Menten
constants, kcat/KM, acat/AM—specificity constants, and εv

S—elasticity coefficient.

Based on the MEPP, we have also shown that in the most probable thermodynamic
state, the maximal optimal reaction flux, which is established for a given thermodynamic
force, is limited by diffusion. This result is consistent with the notion of diffusion-limited
or catalytically optimal enzymes. The concept of diffusion-limited enzymes is well known,
and catalytic optimality in enzyme kinetics is not an idealized theoretical concept. It occurs
in nature but is a rare phenomenon. Exemplary enzymes that are supposed to operate close
to the optimal catalytic state are the triose phosphate isomerase [4,15,16,41] and a family
of β-Lactamase enzymes [11,12,44]. It has been suggested [6,8] that a compromise in the
evolution of a simple enzyme function led to the condition where none of the transition-
state barriers of a multistep enzyme reaction should be rate-limiting. This means that
the activation energies of all reaction steps in an enzyme reaction are equal. In terms of
enzyme rate constants, this is equivalent to the globally optimal condition obtained in our
analysis based on MEPP (k+∗1 op[S] = k+2 op and a+∗1 op[S] = a+2 op = a+3 op) for the two- and
three-state kinetic schemes, respectively. A similar criterion to that predicted by MEPP in
this work has been observed in previous kinetic experiments and was used to evaluate the
catalytic optimality of β-Lactamase enzymes [44]. Moreover, Heinrich et al. [2] also found
in their theoretical studies based on flux maximization that the maximal reaction flux in the
two-state kinetic scheme of the enzyme reaction is established under the same condition
k+∗1 [S] = k+2 as in our work. A common feature of all these conditions is that catalytically
perfect enzymes should not contain any intrinsic rate-limiting reaction steps. Hence, the
overall reaction flux in the steady state is limited solely by the diffusion of a substrate to
the enzyme’s active site. A diagram of the potential energy as a function of the reaction
coordinate for such diffusion-limited or, in other words, catalytically perfect enzyme, as
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predicted here with MEPP for the two-state scheme, must consist of two equal transition-
state barriers, as schematically presented in Figure 5. According to the kinetic scheme
presented in Figure 1a) the transition-state barrier of the first reaction step S + E→ ES(

∆G‡
1

)
is equal to the transition-state barrier of the second reaction step ES→ E + P

(∆G‡
2). Applying the well-known Eyring equation, this equality (∆G‡

1 = ∆G‡
2 ) turns out

to be k+∗1 [S] = k+2 in terms of kinetic parameters. That is again the same condition as
predicted with MEPP in this work.
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2 are two equal transition-state barriers.

3. Methods and Materials: Theory, General Considerations and Basic Principles
3.1. General Considerations

In this work, the irreversible two and three-state kinetic schemes of an enzyme reaction
in a non-equilibrium steady state are considered for thermodynamic investigation with
MEPP. The corresponding kinetic schemes are presented in Figure 1.

The kinetic schemes shown in Figure 1 should be viewed as simple toy models of
an open chemical reactor (e.g., continuous-flow stirred-tank reactor) operating in a non-
equilibrium steady state at constant pressure and temperature. The enzyme is immobile
(fixed to a solid surface and not carried by the flows) and cannot be destroyed or created
within the reactor. The total enzyme concentration in the model is constant, which is
considered by the fixed value of the model parameter [E]tot. The solution has an influx
vS in with only the substrate molecules as a solute, which yields a known initial substrate
concentration within the reactor. As the solution flows through the system, it interacts
with the enzyme, and a portion of the substrate molecules is transformed into the product,
while the remaining are left over. The solution flowing through the reactor quickly reaches
a stationary composition. This is achieved by considering the outgoing fluxes of the
leftover substrate molecules vS out and the product molecules vP out. The fluxes vS in,
vS out, and vP out are considered constant. A non-equilibrium steady state is established
if vS in = vS out + vP out. The latter condition, and a fixed total enzyme concentration,
imply mass conservation of the reaction system, which is necessary for establishing a
non-equilibrium steady state.
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Furthermore, it is considered that stationary concentrations [S] and [P] are consid-
erably different from corresponding equilibrium concentrations [S]eq. and [P]eq.. In this
sense, the reactions are irreversible and should not be viewed as thermodynamically ideal
reversible processes in (or close to) a thermodynamic equilibrium state. The processes
under investigation could not be turned in opposite directions by small changes in reaction
parameters [S] and [P]. There is a high overall thermodynamic force (∆G � 0) of the for-
ward reaction S→ P . The latter condition is often fulfilled in experiments where the initial
substrate concentration ([S]0) is much higher than the initial product concentration ([P]0),
i.e., [S]0 � [P]0 (usually [P]0 = 0). The same condition also holds for the in vivo biological
reactions, where the product concentration remains low due to continuous product uptake
by subsequent reactions [45]. The model setup, in general, follows the conditions discussed
in the reference [46].

Our theoretical analysis relies mainly on the principles of statistical thermodynamics.
A large number of enzyme molecules is considered by the model parameter [E]tot. Enzyme
molecules can be found in different functional enzymatic states, and the occupation of these
states is evaluated statistically by the steady-state probabilities pi. The Shannon information
entropy of the steady-state probability distribution for the occupation of enzyme states is
calculated. The time evolution of the concentrations of different enzymatic states is described
by the mass-action kinetics, and the optimal enzyme behavior in the steady state is obtained
by MEPP. Optimal model solutions are normalized per total enzyme concentration [E]tot. The
properties of the system’s statistically most probable steady state are theoretically investigated
using thermodynamic optimization principles MEPP, MaxEnt, and other analytical methods
such as linear stability analysis and metabolic control analysis (MCA).

3.2. Entropy Production

The rate of entropy production in an enzyme reaction is defined as:

σ =
vX
T

, (2)

where v is the overall reaction flux in a steady state, X is the overall thermodynamic force
of the reaction or reaction affinity, and T is the absolute temperature, which is considered
constant. For both kinetic schemes shown in Figure 1, the overall reaction flux in a steady state
is derived by considering the irreversible Haldane–Brigs enzyme model. Detailed modeling
for the two-state scheme is given in the next section, “Kinetic and thermodynamic modeling”,
and for the three-state scheme in “Appendix A”. The affinity of a reaction is defined as a
negative change of the Gibbs free energy (−∆G) of the step S→ P in a steady state:

X ≡ −∆G = RTln
(

K∗
[S]
[P]

)
, (3)

where K∗ is a reaction equilibrium constant, R is the universal gas constant, and [S] and [P]
are the steady-state substrate and product concentrations, respectively.

According to MEPP, open thermodynamic systems in a steady state are characterized
by the maximum entropy production rate. Hence, for both kinetic schemes presented in
Figure 1, the rate of entropy production is maximized with respect to the kinetic param-
eters. According to the basic thermodynamic formulation of MEPP, the maximal rate of
entropy production in a steady state is achieved by the maximal reaction flux at a con-
stant thermodynamic force [22,30]. In this case, the elementary rate constants appear as
natural variables for flux maximization. Under suitable optimization conditions described
later, there is a unique maximum of the reaction flux corresponding to the maximum rate
of entropy production according to Equation (2). Optimal solutions for the elementary
enzyme rate constants are derived, allowing the derivation of the optimal catalytic and
Michaelis–Menten constant, as well as their ratio, known as the enzyme specificity constant.
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3.3. Shannon Information Entropy

The Shannon information entropy in an enzyme reaction is defined as:

H = −∑n
i=1 pi ln(pi), (4)

where pi represents the steady-state probability of occupying the i-th enzyme functional
state, defined as:

pi =
[xi]

[E]tot
, (5)

where [E]tot is the total enzyme concentration and [xi] is the concentration of the i-th enzyme
state. The Shannon information entropy is expressed as a function of the enzyme rate
constants. As in one of our recent works, its maximal value is used as a statistical measure
of a reaction system’s most probable steady state [15]. Optimal values of elementary
rate constants obtained by maximization of the entropy production rate result in the most
uniform probability distribution of enzyme functional states and, thus, in the maximal value
of the Shannon information entropy. The Shannon entropy is maximized by considering
∑i pi = 1.

3.4. Sensitivity Analysis

The response or sensitivity of the reaction flux to external signals is analyzed in terms
of elasticity coefficients (εv

S) known from Metabolic Control Analysis (MCA). The elasticity
coefficient (εv

S) is a quantity that measures the sensitivity of a reaction flux (v) with respect
to changes in substrate concentration ([S]) and is defined as [47,48]:

εv
S =

(dv/v)
(d[S]/[S])

=
dln(v)

dln([S])
, (6)

3.5. Stability Analysis

The stability of steady states in enzyme-catalyzed reactions is analyzed by linear
stability analysis [36,37]. Each of the kinetic schemes presented in Figure 1 is described
by a corresponding kinetic model—a system of ordinary non-linear first-order differential
equations of the form:

.
X = f (X), X ∈ Rn, (7)

where X is an n-dimensional state vector,
.
X is its first-order time derivative, and f (X) is a

non-linear function. The steady state of Equation (7) is defined as:

.
XX=X∗ = f (X∗) = 0, (8)

where X∗ represents the steady-state solution of Equation (7). The stability of this steady
state is investigated by the linearization of f (X) in the vicinity of X∗. For this purpose,
the Jacobian matrix (J) of the system is constructed, and the trace of the Jacobian matrix
(Tr(J)) is calculated. According to references [36–40], stable and rigid steady states are
characterized by Tr(J) � 0, while stable and flexible steady states are characterized by
negative values of Tr(J) slightly smaller than zero. We investigate how Tr(J) behaves under
maximal entropy production rate and maximal Shannon information entropy. Hence, we
investigate the stability of an enzyme reaction’s most likely steady state.

3.6. Optimization Conditions

In our previous works [13–15], we investigated the conditions for the existence of
a unique maximum in the rate of entropy production for two- and four-state reversible
enzyme kinetic schemes. We have proposed a general condition that can be used to analyze
reversible and irreversible kinetic schemes [13–15]. The same condition is also used in
this work. In short, the basic constraint considered is that the overall change in Gibbs free
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energy within the transformation of one substrate molecule into a product depends solely
on the chemical nature of the substrate and the product and not on the kinetic properties
of the enzyme [2,34,41]. This well-known and widely accepted constraint implies that the
overall equilibrium constant (K∗) is a fixed reaction parameter. The equilibrium constant
(K∗) can be further expressed in terms of forward and backward enzyme rate constants
(k±i ) as:

K∗ =
k+∗1 k+2 k+3 . . . k+n
k−1 k−2 k−3 . . . k−∗n

. (9)

It follows from Equation (9) that enzyme rate constants cannot be varied independently.
Variation of any arbitrarily chosen rate constant should come across with the variation of
one or more of the other rate constants so that K∗ remains unchanged. The equilibrium
constant K* represents the intrinsic relationship between enzyme rate constants under
arbitrary conditions, either within the equilibrium, the steady state, or the time-dependent
transient state [34]. However, as shown in [13], the constraint of a fixed K* does not directly
imply the existence of a unique maximum of the entropy production rate. It applies to
physical situations where the entropy production rate asymptotically approaches a finite
and maximum value for infinite values of the enzyme rate constant. It is known that the
values of the enzyme rate constants (k±i ) cannot be infinite and are limited upwards by
several factors [2,3,49–55]. In agreement with this finding, we explicitly require that a
unique maximum in the rate of entropy production occurs for non-infinite values of the rate
constants, which is reached when the products K+ and K− of all forward and backward
enzyme rate constants, respectively, are also fixed parameters [13–15]:

K+ = k+∗1 k+2 k+3 . . . k+n , (10)

K− = k−1 k−2 k−3 . . . k−∗n . (11)

The constraints given in Equations (10) and (11) are consistent with Equation (9). Since,
in this work, irreversible kinetic schemes are investigated, the constraint given in Equation
(10) is of particular importance. Under this constraint, the entropy production rate, Shannon
information entropy, and the trace of the Jacobian matrix are maximized with respect to en-
zyme rate constants. Such a state of the system can be calculated using standard mathematical
procedures for finding extreme values of functions of one or more variables.

3.7. Kinetic and Thermodynamic Modeling of the Irreversible Two-State Kinetic Scheme

The kinetic scheme of the irreversible two-state enzyme reaction is shown in Figure 1a.
The system variables are concentrations of substrate [S], product [P], free enzyme [E],
and enzyme in complex with the substrate [ES]. The time evolution of these variables is
determined with the kinetic model that represents a dynamical system of four ordinary
differential equations:

d[S]
dt

= vS in − k+∗1 [S][E]− vS out, (12)

d[P]
dt

= k+2 [ES]− vP out, (13)

d[E]
dt

= −k+∗1 [S][E] + k+2 [ES], (14)

d[ES]
dt

= k+∗1 [S][E]− k+2 [ES], (15)

where k+i are the enzyme forward rate constants, while vS in, vS out, and vP out are the
external metabolic fluxes, as indicated in Figure 1a. In the model, it is assumed that enzyme
molecules are not carried in or out of the reaction system by external fluxes. Thus, by
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summing up Equations (14) and (15), it follows that d/dt ([E] + [ES]) = 0, which means
that the total enzyme concentration ([E]tot) is a conserved quantity:

[E]tot = [E] + [ES]. (16)

By considering vS in = vS out + vP out and summing up Equations (12), (13) and (15)
yield d/dt ([S] + [ES] + [P]) = 0, which implies that the sum [S](t) + [ES](t) + [P](t) is
constant at any time and is, hence, a conserved quantity. The latter condition and the
constant total enzyme concentration (Equation (16)) imply the conservation of the mass of
the entire reaction system ending up in an actual non-equilibrium steady state.

Considering Equations (14) and (16) under steady-state conditions, we obtain the system of
two algebraic equations with steady-state concentrations [E] and [ES] as unknown quantities:

k+∗1 [S][E]− k+2 [ES] = 0, (17)

[E]tot = [E] + [ES], (18)

with the corresponding steady-state solutions:

[E] = [E]tot
k+2

k+2 + k+∗1 [S]
, (19)

[ES] = [E]tot
k+∗1 [S]

k+2 + k+∗1 [S]
. (20)

Considering that the velocity of the product formation for the reaction presented
in Figure 1a is v = k+2 [ES], and that the steady-state concentration [ES] is given with
Equation (20), the overall steady-state reaction flux is expressed as:

v =
[E]tot k+2 k+∗1 [S]

k+2 + k+∗1 [S]
. (21)

The above expression can be rearranged into a standard form:

v =
vmax [S]
KM + [S]

, (22)

where vmax = kcat[E]tot is the saturated reaction flux achieved for [S]→ ∞ , and KM is
a half saturation constant known as the Michaelis–Menten constant. Here, the reaction
parameters kcat and KM are:

kcat = k+2 , (23)

KM =
k+2
k+∗1

. (24)

By considering Equations (4), (5), (19) and (20), the Shannon information entropy
expressed as a function of the enzyme rate constants reads:

H = −
k+2

k+2 + k+∗1 [S]
ln

(
k+2

k+2 + k+∗1 [S]

)
−

k+∗1 [S]
k+2 + k+∗1 [S]

ln

(
k+∗1 [S]

k+2 + k+∗1 [S]

)
. (25)
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The trace of the Jacobian of the system of Equations (12)–(15) is:

Tr(J) = Tr


−k+∗1 [E] 0 −k+∗1 [S] 0

0 0 0 k+2
−k+∗1 [E] 0 −k+∗1 [S] k+2

k+∗1 0 k+∗1 [S] −k+2

 = −
(
k+∗1 [S] + k+2

)
, (26)

In the derivation of Equation (26), we considered a much lower concentration of the
enzyme than that of the substrate ([E]� [S]).

If we take the natural logarithm of Equation (22) and then calculate the first derivative
of the resulting expression with respect to [S], the elasticity coefficient (εv

S), defined with
Equation (6), is:

εv
S =

KM

KM + [S]
. (27)

The reaction velocity Equation (21), the Shannon information entropy Equation (25),
and the trace of the Jacobian matrix Equation (26) are then all optimized with respect to
enzyme rate constants by considering the optimization condition Equation (10). For the
irreversible two-state kinetic scheme, this condition is K+ = k+∗1 k+2 . According to this
condition, the rate constants k+∗1 and k+2 could not be considered independent variables
simultaneously. If, for example, k+2 is taken as an independent variable, k+∗1 must vary
according to Equation (10): k+∗1 = K+/k+2 . Therefore, if in Equations (21), (25) and (26), k+∗1
is replaced by the ratio K+/k+2 , then all quantities v, H, and Tr(J) become functions of a
single variable k+2 :

v
(
k+2
)
=

[E]tot K+[S]

k+2 + K+

k+2
[S]

, (28)

H
(
k+2
)
= −

k+2
k+2 + K+

k+2
[S]

ln

 k+2
k+2 + K+

k+2
[S]

− K+

k+2
[S]

k+2 + K+

k+2
[S]

ln

 K+

k+2
[S]

k+2 + K+

k+2
[S]

, (29)

Tr(J)
(
k+2
)
= −

(
k+2 +

K+

k+2
[S]

)
. (30)

Equations (28)–(30) are essential in optimizing the two-state irreversible kinetic scheme.
They could also be rewritten for the case of taking the rate constant k+∗1 as an independent
variable. The choice of variables (k+2 or k+∗1 ) does not affect the final optimization solutions.

In Section 2. Results and Discussion, we first describe the optimization of the two-state
kinetic scheme shown in Figure 1a. We then compare all optimal solutions for the two- and
three-state irreversible kinetic schemes. All derivations and calculations for the three-state
kinetic scheme are presented in Appendix A to avoid repetitions of similar expressions.

4. Conclusions

The theoretical analysis of chemical kinetic mechanisms in the context of self-organization
can contribute significantly to a better understanding of the organization and evolution of
biological systems. Such mechanisms are closely related to the fluxes of matter required
in open systems to absorb, generate, and export entropy. According to the second law
of thermodynamics, open systems with effective mechanisms responsible for exporting
internally generated entropy to the environment can organize themselves much better, avoid
the accumulation of entropy within the system, and thus survive in non-equilibrium (steady)
states that are characteristic of biological systems. In this context, we have studied the
linear kinetic mechanisms of enzymatic reactions with MEPP. The influence of the kinetic
mechanism on the ability of the enzyme-catalyzed reaction to self-organize is examined.
Several thermodynamic quantities and kinetic parameters are analyzed to quantitatively
evaluate these aspects.
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A widely accepted view is that ancestral enzymes were generalists, catalyzing a broad
set of substrates from which modern highly specialized enzymes evolved [35,56,57]. Ances-
tral enzymes exhibited broad substrate specificity due to complex structures with multiple
catalytic sites [35,56] and were also relatively slow catalysts [4,56]. It is proposed [35,56]
that evolutionary selection pressure towards increased catalytic activity may have resulted
in more specialized enzymes with higher enzyme specificity. Such a long-term process of
enzymatic evolutionary specialization might have resulted in a loss of catalytic activity for
other possible substrates [56,58]. This means some enzymatic functional states could have
considerably changed their stability during specialization or even vanished. If such molecular
events have occurred during evolution, this may have affected the number of representative
enzyme functional states and, thus, also the kinetic mechanisms of enzyme reactions. From
this point of view, it seems natural to test how the essential reaction parameters in enzyme-
catalyzed reactions depend on kinetic reaction mechanisms. Our theoretical analysis indicates
that optimal enzyme performance depends on the number of enzyme functional states or
elementary reaction steps. Based on the MEPP, which is assumed here to be an essential
criterion for enzyme evolution, it is found that kinetic mechanisms with a lower number of
enzymatic states may result in higher entropy production rate, which, according to widely ac-
cepted view [35,56], might be a characteristic of higher-evolved specialized enzymes (so-called
enzyme specialists). Our results show considerable intrinsic differences between two- and
three-state kinetic mechanisms with a clear indication that entropy decreases due to a loss of a
single internal enzymatic functional state resulting in increased entropy production rate and
increased enzyme catalytic activity and higher enzyme sensitivity to external perturbations.
In addition, the basic enzymatic kinetic parameters such as Michaelis–Menten and specificity
constants are also considerably higher for the two-state kinetic scheme than the three-state
scheme under the same conditions. Theoretical results presented in this work indicate that loss
of stability in functional enzymatic states or their complete extinction might have been critical
molecular events in the evolution of fast specialized enzymes. Within a system consisting of
a large number of molecules, this results in a loss of a high number of degrees of freedom
within the system and increases the export of entropy from the system to its environment. As
a consequence, the entire macroscopic system may become better internally organized.
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Appendix A. Mathematical Modeling of the Three-State Kinetic Scheme

The kinetic scheme of the irreversible three-state enzyme reaction is shown in the
main text in Figure 1b. In this case, the system variables are the concentrations of substrate
[S], product [P], free enzyme [E], the enzyme in a complex with the substrate [ES], and
the enzyme in complex with the product [EP]. The time evolution of these variables is
determined with the following dynamical system:

d[S]
dt

= vS in − a+∗1 [S][E]− vS out, (A1)
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d[P]
dt

= a+3 [EP]− vP out, (A2)

d[E]
dt

= −a+∗1 [S][E] + a+3 [EP], (A3)

d[ES]
dt

= a+∗1 [S][E]− a+2 [ES], (A4)

d[EP]
dt

= a+2 [ES]− a+3 [EP], (A5)

where a+i are the enzyme forward rate constants. As in the two-state kinetic scheme, the
summation of Equations (A3)–(A5) gives the conservation of the total enzyme concentration:

[E]tot = [E] + [ES] + [EP]. (A6)

Summation of Equations (A1), (A2), (A4) and (A5) under the condition vS in = vS out +
vP out yields [S](t) + [ES](t) + [EP](t) + [P](t) being a conserved quantity. Thus, the mass
of the entire system is constant, and the reaction is in a non-equilibrium steady state. By
considering Equations (A3), (A4) and (A6) under steady-state conditions, we obtain the
system of three algebraic equations with steady-state concentrations [E], [ES], and [EP] as
unknown quantities:

−a+∗1 [S][E] + a+3 [ES] = 0, (A7)

a+∗1 [S][E]− a+2 [ES] = 0, (A8)

[E]tot = [E] + [ES] + [EP]. (A9)

The corresponding steady-state solutions are:

[E] = [E]tot
a+2 a+3

a+∗1 [S]a+2 + a+∗1 [S]a+3 + a+2 a+3
, (A10)

[ES] = [E]tot
a+∗1 [S]a+3

a+∗1 [S]a+2 + a+∗1 [S]a+3 + a+2 a+3
, (A11)

[EP] = [E]tot
a+∗1 [S]a+2

a+∗1 [S]a+2 + a+∗1 [S]a+3 + a+2 a+3
. (A12)

These steady-state concentrations (Equations (A10)–(A12)) are later used to derive the
steady-state reaction flux and the Shannon information entropy for that case.

The optimization condition (10) (see the main text) for the three-state kinetic scheme is
K+ = a+∗1 a+2 a+3 . In this case, there are three variables. Two can be chosen as independent,
while the third must vary so that the product K+ remains fixed. There are three ways
to determine two independent and one dependent variable. First, a+∗1 and a+2 could be
independent and a+3 the dependent variable that varies according to Equation (10), i.e.,
a+3 = K+/

(
a+∗1 a+2

)
. If a+∗1 and a+3 are independent, then a+2 = K+/

(
a+∗1 a+3

)
, and, if a+2 and

a+3 are independent, then a+∗1 = K+/
(
a+2 a+3

)
. As explained in the main text, optimization

results are always the same and do not depend on the choice of independent variables.
Here we chose a+2 and a+3 as independent variables and consider a+∗1 = K+/

(
a+2 a+3

)
in

Equations (A10)–(A12).
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The rate of product formation for that case is v = a+3 [EP]. Hence, by considering
Equation (A12) for [EP] and a+∗1 = K+/

(
a+2 a+3

)
in the latter equation, the overall steady-

state reaction flux for the three-state kinetic scheme presented in Figure 1b) is:

v
(
a+2 , a+3

)
=

[E]totK
+ [S]

a+2 a+3 + K+ [S]
a+2

+ K+ [S]
a+3

. (A13)

Considering Equations (4), (5) and (A10)–(A12), and a+∗1 = K+/
(
a+2 a+3

)
the Shannon

information entropy for that case is:

H
(
a+2 , a+3

)
= − a+2 a+3

a+2 a+3 +
K+[S]

a+2
+

K+[S]
a+3

ln

 a+2 a+3
a+2 a+3 +

K+[S]
a+2

+
K+[S]

a+3


−

K+[S]
a+2

a+2 a+3 +
K+[S]

a+2
+

K+[S]
a+3

ln

 K+[S]
a+2

a+2 a+3 +
K+[S]

a+2
+

K+[S]
a+3


−

K+[S]
a+3

a+2 a+3 +
K+[S]

a+2
+

K+[S]
a+3

ln

 K+[S]
a+3

a+2 a+3 +
K+[S]

a+2
+

K+[S]
a+3

.

(A14)

By considering the system of Equations (A1)–(A5), the condition [E] � [S] and
a+∗1 = K+/

(
a+2 a+3

)
, the trace of the Jacobian matrix is:

Tr(J) = −
(

K+

a+2 a+3
[S] + a+2 + a+3

)
. (A15)

The overall steady-state reaction flux can be expressed in the form of Equation (22)
with the catalytic constant (acat) and the Michaelis–Menten constant (AM) defined as:

acat =
a+2 a+3

a+2 + a+3
, (A16)

AM =
a+2 a+3

a+∗1 (a+2 + a+3 )
. (A17)

The elasticity coefficient εv
S is the same as for the two-state irreversible kinetic scheme

(Equation (27)).
The central result obtained by maximization of Equation (A13) is the optimality

condition in the form a+op = a+∗1 op[S] = a+2 op = a+3 op with a+op = 3
√

K+[S] that accounts
for the maximal entropy production rate. Hence, the maximal reaction flux normalized
by the total enzyme concentration predicted by MEP is v/[E]tot = a+op/3. As in the
two-state kinetic scheme, the insertion of a+op = a+∗1 op[S] = a+2 op = a+3 op into Equations
(A10)–(A12) gives equal steady-state concentrations [E] = [ES] = [EP] = [E]tot/3. The
definition pi = [xi]/[E]tot yields a uniform steady-state probability distribution of an
enzyme’s functional states p1 = p2 = p3 = 1/3. Therefore, according to Equation (A14),
maximal Shannon information entropy is H = ln(3). For the same optimality condition,
the trace of the Jacobian matrix (Equation (A15)) achieves its maximal (least negative)
value Tr(J) = −3a+op, the optimal catalytic constant (acat) (Equation (A16)) is acat = a+op/2,
and the optimal Michaelis–Menten constant (Equation (A17)) is AM = [S]/2. Hence, the
optimal specificity constant is (acat/AM) = a+∗1 op. Since it has the same magnitude as the
second-order diffusion rate constant, that is a sign of a diffusion-limited and catalytically
perfect enzyme.
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15. Šterk, M.; Markovič, R.; Marhl, M.; Fajmut, A.; Dobovišek, A. Flexibility of enzymatic transitions as a hallmark of optimized
enzyme steady-state kinetics and thermodynamics. Comput. Biol. Chem. 2021, 91, 107449. [CrossRef]
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