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Vehicle moving on a continuously supported beam with irregular surface
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ABSTRACT: In this paper a stochastic analysis is performed for single-degree-of-freedom vehicle
moving uniformly along an infinite Bernoulli-Euler beam with random surface irregularities and sup-
ported by a Kelvin foundation. Both the beam and the foundation are assumed to be homogeneous,
and all the material parameters of the system are assumed to be deterministic. Initially the equa-
tions of motion for the vehicle and beam are formulated in a moving co-ordinate system following
the vehicle, and the frequency response functions for the displacement of the vehicle mass and beam
are determined. Subsequently the surface irregularities are modelled as a random process. The dis-
placement variance of the vehicle mass as well as the displacement variance of the beam under the
oscillator are determined in terms of the autospectrum of the surface irregularities.

1 INTRODUCTION

A system consisting of a beam supported by a Kelvin foundation has often been used to represent a
road, runway or railway track. Both the load from moving vehicles and the parameters of the beam
and support may be considered stochastic variables, and different aspects of stochastic analysis have
been considered in a number of papers.

Sobczyk (1970) performed an analysis of a Bernoulli-Euler beam on a random Kelvin foundation
due to random excitation. Later, Fryba et al. (1993) examined the behaviour of an infinitely long
Bernoulli-Euler beam on a Kelvin foundation with randomly varying parameters along the beam.
Chang and Liu (1996) performed an analysis of a single degree of freedom (SDOF) vehicle moving
along a finite beam with random surface on a nonlinear deterministic Kelvin foundation using finite
elements and Monte Carlo simulation. Usually, when a vehicle moving on a beam structure is con-
sidered, the vehicle-beam interaction is disregarded. Examples include the work by Lombaert et al.
(2000) and Mertrikine and Vrouwenvelder (2000).

In reality, parameters of the support may be frequency dependent, (Dieterman and Metrikine 1996
Metrikine and Popp 2000). In the present paper the parameters of the foundation are, nevertheless,
assumed to be frequency independent and deterministic. However, the surface of the beam is irregular,
described by a weakly homogeneous random process. An analytical method is presented for the
analysis of an SDOF vehicle moving uniformly along the beam. The problem is formulated in a local
co-ordinate frame following the vehicle, and interaction between the vehicle and the beam is taken
into account. No Monte Carlo simulation is necessary since the system is assumed to be linear. A
numerical example is given for surface irregularities with an autospectrum, which is often used to
describe irregularities of a road surface. For certain configurations of the system, the interaction is
shown to have a significant influence on the dynamic amplification of the displacement response of
both the vehicle mass and the beam.



2 THEORY

A single-degree-of-freedom (SDOF) vehicle moves at the constant velocity v along a homogeneous
Bernoulli-Euler beam supported by a homogeneous Kelvin foundation, thus having the along beam
position x = vt at the time ¢, see Fig. 1. The vehicle mass, spring stiffness, and viscous damping
coefficient are denoted my, ko, and cp, respectively, whereas the beam has the bending stiffness £ 1
and the mass per unit length p. The Kelvin foundation has the stiffness « and the viscous damping -y
per unit length. All material properties of the system are assumed to be deterministic.

f o™ »s

Figure 1: SDOF vehicle moving along a Bernoulli-Euler beam with irregular surface and supported
by a Kelvin foundation.

The vehicle is in constant contact with the beam surface, which has the irregularities y = y(z) =
y(vt) measured from the mean level of the surface perpendicular to the beam axis. In a local moving
co-ordinate system defined by the transformation x = z — vt, the equation of motion for the vehicle
due to the surface irregularities becomes

d’z dz . 1
mo g + ¢ pro 4(0,t) — vy’ (vt) | + ko (z — u(0,t) — y(vt)) =0, (1)
where the prime denotes differentiation with respect to the argument. The vertical displacements
of the vehicle mass and beam relative to the respective positions in the state of static equilibrium

are denoted z = z(t) and u = u(y,t),respectively. Furthermore, the notation 4 = % y has been
introduced.
In the local co-ordinate frame, the equation of motion for the beam may be written
EIa4u +p|i—2v 0u +v? L + <ﬂ U@u) + Kku = f(t)6(x) (2)
e U — 20— — — V5 = .
axt " ax " aE) " Ox X

Here, i = %%?I is the local acceleration whereas f(t) is the moving load and d(x) is the delta
X

function. The force on the beam originates from the SDOF vehicle, i.e. f(t) = —mo-(‘ﬁ;—.} —mog, g
being the gravitational acceleratzion. In the following analysis only the stochastic response will be
considered, hence f(t) = —mg%ﬁz- will be used.



2.1 Frequency Response Functions for Vehicle and Beam Displacements
In fixed coordinates, harmonically varying surface irregularities with wavelength L are given by

y(z) = Y, 3)

where Y is the amplitude, ¢ = +/—1 is the imaginary unit and k = 27:75 is the wavenumber. By insertion
of Eq. (3) with z = vt into Eq. (1), the equation of motion for the vehicle becomes
d? d . _ ; ;
moﬁj + ¢ (d—j —u(0,t) — sze“"t> + ko (z —u(0,t) — Ye“"t) =, 4)
in which w = kv denotes the apparent circular frequency of the surface irregularities as seen from the
vehicle in the local coordinate system. ,
Solutions to Eqs. (4) and (2) with f(t) = —mo‘fl—tf- are on the form,

2(t) = Z(w)e™ | uj(x,t) =Uj(x,w)e™ , 7=1,2,3,4, (5)

where Z (w) is the vehicle amplitude. Uj(x,w) = mow?Z (w)U; (w)e*XiX are the amplitude functions
for the four bending wave components in the beam. Here U'j (w) are the amplitudes at y = 0 for har-
monic excitation with unit amplitude, i.e. f(¢) = €%, and the wavenumbers K; = K (w) correspond
to the roots of the characteristic polynomial
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For v = 7 = 0 a cut-off frequency, w, = /K[, exists. When w < w,, no travelling waves without
attenuation will propagate. Furthermore, only two of the solutions to equation (6) are physically valid
on either side of the load, (Andersen, Nielsen, and Kirkegaard 2001). The subscripts j = 1,2 will be
used for the components existing at x < 0 (i.e. behind and under the load), whereas the components
existing at x > 0 (i.e. in front of the load) have subscripts j = 3, 4.

At x = 0 the displacement, rotation and bending moment of the beam must be continuous func-
tions of . A unit amplitude load implies a jump of 1 in the shear force at the point where the load is
applied. Hence, with the positive directions defined in figure 1 the amplitudes ﬁj (w) are obtained by
the following system of equations,

K; + 0. (6)

1 1 - o= U, 0

iKy iKy —iK; —i Ky U, 0
(K2 (1K) —(iKs)? —GED? || |= | o | @
(iK1)? (iK3)? —(iK3)® —(iKy4)? Uy —~1/EI

From Eqs. (4) and (5) the amplitude of the SDOF mass, Z(w), is calculated as
Z(w) = sz(w)Y , Hzy(w) = (iwcy + ko) /D(w), (8)
where the denominator, D(w), is given by
D(w) = (—w2m0 + ’I:wCo + ]{Zo) - (’iw3m000 + w2m0k0) Z 0]' (w) (9)
j=1

Analogously, the beam displacement may be found as

U(x,w) = Hyy(x,w)Y , Hyy(x,w)= Hyz(x,w)Hzy(w). (10)




Here the frequency response function Hyz(x,w) is given by

J2 o
g K ={1,2} forx <0
H ,w) = mow? U;(w)etfix | {j.l’J.Z} {1, - 11
UZ(X ) 0 J;l .7( ) {{Jl)JZ}z {3,4} forX>O ( )

2.2 Random Surface Irregularities

In practice the surface irregularities are not harmonically varying, but will instead be described by a
weakly homogeneous stochastic process. Given the one-sided autospectral density S (w) for the sur-

face irregularities, the one-sided autospectral density Sz (w) for the displacement of the SDOF vehicle

can be found. Also, the one-sided cross-spectral density Sy (x1, x2,w) for the beam displacement

at two points X3 and x2 on the beam axis can be calculated. Thus, see e.g. Lin (1967),

Sz(w) = |Hzy w)[* Sy (w), (12)

Svv(x1, x2,w) = Hiy (x1,w) Hyy (x2,w) Sy (w), (13)

where Hzy (w) and Hyy (x,w) are defined previously and Hjy (x1,w) is the complex conjugate of
Hyy(x1,w). The principle of superposition is valid, because the governing equations are all linear.

From the Wiener-Khintchine relation the auto-covariance function xzz(7) for the vehicle dis-
placement and the cross-covariance function sy (X1, x2,7) for the beam displacement may be ex-
pressed as

e () = /Ooo cos(wt)Sz(w)dw, (14)

(oe]
kuu(Xxi, X2, T) = 2/0 (COS((&)T)S?}U - sin(wT)SgU) dw, (15)

respectively, where SgU and SSU are the real and imaginary parts of Sy (x1, x2,w), respectively.

2.3 Non-dimensional Parameter Description

The dynamic response of the vehicle and beam is self-induced, i.e. no external load acts on the system.
Therefore, only the relative size of the system parameters is of importance. Dimension analysis and
a further study of the system equations would imply that the following non-dimensional identities
govern the problem,

We mo

QOZﬂvﬂcz_,MOZ—ayzl, (16)

Wy wo pLe Ve

Co a7

. Co = v

T a/moke T 2R’
Here wy = +/ko/my is the circular eigenfrequency of the SDOF vehicle and w. = vk, is a character-
istic circular frequency of the surface roughness, k. being the corresponding characteristic wavenum-
ber. L. is a characteristic wavelength for bending waves in the beam, and . is the corresponding
characteristic phase velocity. They are defined as

2 EI
L= =0 0= {7, (18)

We

respectively. It should be noticed that v serves as a kind of Mach number putting the vehicle velocity
relative to the velocity of the bending waves.




3 NUMERICAL EXAMPLES

Irregularities of a road surface are often modelled as a weakly homogeneous process {Y (z) , z € R}
having the one-sided autospectral density

0 k ¢ [k, k2]
Sy (k) = ’ ’ 19
Y( ) { U%’kI;]—kkzll?lz , kE[kl,kz] ) (19)
where af, is the variance of the surface irregularities. The spectrum has a slope of 1:2 in double-
logarithmic mapping and is valid for wavelengths between I, = 0.1 m and L; = 10 m corresponding
to k1 = 21—65 m~! and ky = % m~!. The characteristic wavenumber for the surface roughness is
chosen as k, = +/kiko, which lies in the middle of the [k;, k] interval on a logarithmic scale. A

wavenumber domain representation is obtained by substituting & = w/v into Eq. (19),

. { 0 W Lol (20)

2 wWiw v )
o i I w € [w,ws)

where w; = k1v and we = kov. Subsequently Sz (w) is found by insertion into Eq. (12).

In the following an analysis will be carried out for the variance of the SDOF mass displacement
response, 0% = kzz(0), and the variance of the beam displacement response directly under the vehi-
cle, 03 = kyy(0,0,0). Due to the linearity of the problem 0% and o are proportional to o%. Hence,
it is convenient to describe the respective variances by the dynamic variance amplification factors,

2 2
9z U

87 =—5,8U=—- (21)
Oy gy

3.1 Influence of Track Stiffness

A beam with the mass per unit length g = 100 kg/m is considered. The vehicle has the circular
eigenfrequency wg = 27 s~* and the damping ratio (o = 1, which are assumed to be typical values.
The analysis is performed for the point mass my = 1000 kg, and the characteristic wavelength of
bending waves and the circular cut-off frequency are both varied. The values I, = 1,10,100 m and
Q. =0.1,1,10 are used. It should be noticed that with the definitions (16) to (18) an increase of (),
will imply an increase in both x and ET for constant L., whereas an increase in L, only leads to an
increase in F1 for constant €)..

Figure 2 shows the dynamic amplification factors sz and sy as functions of the vehicle veloc-
ity in the v € [1 m/s,100 m/s] interval. Further to the results obtained using the indicated theory
(the continuous curves), reference results (the dashed curves) are shown for a situation where the
interaction between the beam and the vehicle is not taken into consideration, i.e. the vehicle does
not feel the displacements of the beam, but only the surface roughness. In this case the denominator
D(w) = (—w?myg + iwcy + ko) is used instead of the original denominator (9).

In the reference case with no interaction the response of the point mass decreases for increasing
values of v beyond 10 m/s. The reason is that )y = 1 when v = 1 m/s and wp move to the bottom
of the frequency range for the autospectra when v = 10 m/s. For velocities of more than 10 m/s,
wq lies outside the frequency range. When interaction of the vehicle and beam is taken into account
the response of both the SDOF mass and the beam is almost unchanged, if the spring stiffness of the
Kelvin foundation and the bending stiffness of the beam is sufficiently high. This also applies to the
SDOF mass response when the stiffness of the beam and support is very low. In this case the estimate
of the beam response is, however, incorrect in the reference calculation at low velocities.
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Figure 2: Dynamic amplification of vehicle mass response (—) and beam response — ) at y = 0.
The dashed lines indicate the response when interaction between vehicle and beam is neglected.

For certain combinations of beam configurations and velocities, the beam response, and in some
cases also the SDOF mass response, is amplified drastically. Values of both amplification factors as
high as 103 are found with the most dramatic reinforcement taking place for Q, = 1 and L, = 10 m.
In a real structure, this may of course be modified by inherent mechanisms not accounted for in the
adopted model. Further, real road structures are typically very stiff in proportion to the suspension of
the vehicles, i.e. €, and L. are very large. Analyses show that in such cases the local peaks in the
amplification curves will move to higher velocities and the interaction between the vehicle and the
beam structure becomes less important, as indicated by Cebon (1993). However, for heavy freight
trains or high-speed passenger trains running on soft soil layers or rubber damping devices in metro
tunnels, a low stiffness of the beam and support relative to the stiffness of the vehicle may be expected.
Hence, the interaction may be of significant importance in the analysis of such problems.

3.2 Influence of Damping

Subsequently the system response is analysed for various combinations of the damping ratios ¢
and (.. The following values have been used for the remaining system parameters: nmy = 1000 kg,
wo = 2m s~ 1, p = 100 kg/m, Q. = 10, and L, = 10 m. The results of the analysis are illustrated in
Fig. 3. As it could be expected, the dynamic amplification of the SDOF mass displacement increases
significantly when the damping ratio (g is decreased. There is almost a one-to-one correspondence
between 1/ and sz for velocities close to 10 m/s. Here the eigenfrequency w. lies near the lower
bound of the frequency interval for the autospectra where the major part of the variation in the surface
irregularities is present.

However, the curves in Fig. 3 indicate that for velocities beyond 10 m/s an increase of the damping
ratio of the vehicle is a disadvantage, especially when the damping in the support is relatively low.
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Figure 3: Dynamic amplification of vehicle mass response (—) and beam response (— ) at x = 0.
The dashed lines indicate the response when interaction between vehicle and beam is neglected.

Thus, a quite significant peak arises for the combination ¢ = 1, {, = 0.01 and v ~ 40 m/s. At this
velocity the eigenfrequency of the vehicle lies way below the bottom frequency of the autospectrum
for the surface roughness. Hence, the origin of the peak must be resonance in the beam. For ¢ = 0.01
the peak is still present, though it is less pronounced. However, when both the vehicle and the beam
are critically damped, the peak vanishes. Here the interaction has no influence on the displacement
response of neither the SDOF mass nor the beam for the entire velocity range considered (the dashed
and continuous curves coincide).

In practice vehicles are (close to) being critically damped. However, depending on the material
of the underlying structure it seems likely that ¢ will be of the order 0.01 to 0.1. This means that a
strong displacement amplification will actually occur at a certain critical velocity of the vehicle.

4 CONCLUSIONS

The response of a single-degree-of-freedom vehicle moving with constant speed along a Bernoulli-
Euler beam resting on a viscoelastic foundation of Kelvin type has been investigated. Only the
stochastic part of the response due to random surface irregularities has been considered.

The analysis shows that when the beam and the supporting structure are relatively stiff compared
to the suspension of the vehicle, the influence of interaction between the beam and vehicle is insignif-
icant. This is in agreement with assumptions made by Lombaert et al. (2000). When the beam and
the supporting structure are relatively flexible, the vehicle response is not significantly affected by the
interaction terms. Their influence on the beam response is, however, essential.

For the given autospectrum of the surface roughness, some coincidences of the parameters of the
beam, foundation and of the vehicle velocity may prove critical. For a critically damped vehicle a



significant displacement variance amplification of the order 1(° relative to the surface roughness may
take place. Resonance of the vehicle as an isolated system is not the main problem in this case, which
indicates that for a vehicle moving on a structure, which may interact with the vehicle, the mechanical
design of both vehicle and structure is of great importance. Actually, it has been found in the analysis
that a reduction of the damping in the vehicle may prove beneficial at high velocities. Nevertheless,
when the damping of the vehicle is reduced, the dynamic amplification of the response is increased
drastically at velocities where the eigenfrequency of the SDOF system lies within the frequency range
of the autospectrum for the surface roughness.

The analysis shows that the interaction between the vehicle and the supporting structure should
not be neglected in the analysis of supporting structures with a low bending stiffness and a low cut-off
frequency. Also it should be noticed that neglecting the interaction in the devised analytical method
does not make the calculation of the displacement variance amplification any simpler. In any case,
the terms of the beam displacement that influence the vehicle mass displacement must be found, if
the beam displacement under the vehicle is to be determined.
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