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INTRODUCTION

Multimedia content distribution has received a
lot of attention lately in the mobile world. New
ways to convey multimedia content to mobile
devices are discussed after the recent failure of
DVB-H and DVBM. Besides the bare technolo-
gy there is also the question how mobile users
are looking at multimedia content. So far the
main architecture was designed such that the
overlay network with its highly centralized archi-
tecture is providing the content, and the mobile
users are consuming it. But more and more
users are starting to generate and collect their
own content that they would like to distribute
among each other in local area networks.

Apart from this discussion in this work we
investigate the possibility of sending multimedia
content from one device to many devices in clos-
er proximity. In our previous work we have
shown that it is possible to share photos and
audio files among mobile devices even across
different platforms [1]. Therefore, in this work
we address mobile video as the next logical step.

Synchronized video playback can be used
among friends to show their latest videos to each

other. Exchanging music videos is especially
interesting at social events if everybody can play
them at the same time. Another fascinating
application is for home entertainment: we can
deploy a simple server that broadcasts a live
video stream (e.g. a sporting event) that is acces-
sible on every mobile device in the household.

In this article we not only present a mobile
application supporting the described use cases,
we also advocate the use of network coding in
order to address the channel characteristics of
wireless networks and the limited energy of
mobile devices.

SHORTCOMINGS OF
EXISTING SOLUTIONS

There are several applications that can stream
multimedia content to the iPhone, for example
AirVideo and TVersity. Basically these applica-
tions run a webserver to which the iPhone media
player can connect. A TCP connection is estab-
lished and the player issues standard HTTP
range requests, then the webserver sends raw file
data with HTTP headers in response. This
approach has the clear drawback that with an
increasing number of receivers the bandwidth of
a given cell or access point will become the bot-
tleneck due to the use of unicast connections.

In order to prove this, first we used a single
iPod Touch to connect to an AirVideo server
running on an iMac to play a video that was pre-
viously transcoded to a suitable format for the
iPhone platform (Xvid and AAC codecs with an
overall data rate of 500 kb/s). The video play-
back was fine, so this approach is sufficient for a
single device playing a single media file. As the
next step, we tried the same experiment with five
iPod Touches as receivers, and we often experi-
enced stuttering in the video playback. We also
monitored the network traffic with Wireshark
running in promiscuous mode.

The server sending rates in the two experi-
ments are shown in Fig. 5 as captured by Wire-
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shark. We observed that the overall throughput
reached 16 Mb/s in a few seconds, and it
remained this high for several hundred seconds.
We can conclude that the video playback on the
iPod Touches was not satisfactory due to the
insufficient incoming data. Thus if we connect to
the same server with multiple devices at the
same time, we can quickly saturate the wireless
network. This is an inherent drawback of unicast
connections.

If we intend to efficiently deliver the same
content to several devices, multicast transmis-
sions provide a favorable solution. In [2] it was
shown that multicast video streaming is feasible
on the iPhone platform with network coding.
The limitation of this work was the lack of syn-
chronized playback and the reliance on jailbro-
ken components on the iPhone. Moreover, the
architecture design was limited to point-to-multi-
point communication, whereas network coding
implies the possibility of recoding packets at the
intermediate nodes. This feature is particularly
useful if the source and the receiver do not have
a direct link, that is we have a multihop network.

SCENARIO AND SOLUTION
In our scenario a server S wants to reliably trans-
mit the same media file to several nearby
receivers, t1, t2, …, tN, via a wireless link. This
basic scenario is depicted in Fig. 1. As men-
tioned earlier, the traditional point-to-point data
distribution paradigms (i.e., unicast transmis-
sions) provide poor utilization of the available
network resources for one-to-many services.
Since all receivers are interested in the same
content, we can efficiently utilize the wireless
channel with broadcast transmissions.

Under ideal channel conditions all broadcast
packets are delivered to all nodes simultaneous-
ly. In real-life wireless networks packet losses
frequently occur [4]; thus, some sort of retrans-
mission is necessary to ensure reliability (i.e., to
correct packet losses at the receivers). A simple
solution would be that the individual nodes
request all missing packets from the original
source. This would imply that every lost packet
is transmitted again, and if packet losses are
uncorrelated, most retransmissions will not be
useful to many receivers since they have received
those packets in the first place. To put it differ-
ently, it is likely that a single retransmission will
only benefit a single receiver.

A shrewd way to maximize the impact of each
retransmission is by using network coding [3, 4].
Researchers have shown that network coding
can provide several advantages: improved
throughput, robustness, security, and lower com-
plexity in communication networks [5].

NETWORK CODING
Network coding differs from channel or source
coding, because it is not limited to end-to-end
communication, but allows on-the-fly recoding of
information whenever needed. Another impor-
tant fact is that network coding breaks with the
store-and-forward policy of existing communica-
tion systems. It has been widely accepted that in
packet-based communication networks, all pack-
ets that enter a node will also leave the node in

one way or another (packet drops due to buffer
overflow are neglected for ease of illustration).
In contrast, a network coding-enabled communi-
cation node is able to recode incoming data to
tailor it to the needs of the outgoing channels.
Network coding was introduced by Ahlswede et
al. in [3] for fixed networks, and it was adapted
by other researchers for wireless and mobile net-
works [6].

Figure 2 gives a basic overview of the opera-
tions performed in a network coding system. If
we intend to encode a large file, it should be
split into several chunks, also called generations,
each consisting of g packets [4]. Otherwise, the
computational complexity of the encoding and
decoding operations would be prohibitively high.

The top component in Fig. 2 is the encoder
that generates and transmits linear combinations
of the original data packets in the current gener-
ation. Addition and multiplication are per-
formed over a Galois field; therefore, a linear
combination of several packets will have the
same size as a single packet. Note that any num-
ber of encoded packets can be generated for a
single generation. The middle layer in this sys-
tem is the wireless channel, where packet era-
sures may occur depending on the channel
conditions. The network nodes receive a series
of encoded packets that are passed to the
decoder (the bottom component in the figure),
which will be able to reconstruct the original
data packets after receiving at least g linearly
independent packets.

Recoding is an additional operation of net-

Figure 1. A server S transmitting data to N receivers t1, t2, …, tN.

t1 t2 tN
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work coding that is not directly shown in this fig-
ure. Recoding means that all network nodes are
allowed to generate and send new encoded pack-
ets (i.e., new linear combinations of the packets
they have previously received).

An obvious benefit of using network coding is
that a network node is no longer required to
gather all data packets one by one; instead, it
only has to receive enough linearly independent
encoded packets. This is important for our sce-
nario since we can simultaneously serve multiple
nodes with a single transmission by sending a
linear combination instead of choosing a specific
packet.

As does any other coding operation, network
coding involves computational overhead, which
might be prohibitive from a practical point of
view. The authors in [7] proposed an efficient
solution for mobile devices. We can use a sys-
tematic code to ensure reliability with low over-
head. It is not necessary to always send encoded
packets while using network coding. Uncoded
packets can be considered primitive linear com-
binations, and thus can be processed by the
decoder. A simple and efficient method is to
transmit each generation in two stages. In the
first stage, the source transmits all packets
uncoded. Each of these packets will contain new
useful information for the individual receivers.
In the second stage, the source will generate and
send random linear combinations of the original
data in order to correct packet losses, which
have occurred during the first stage. Note that a
single encoded packet can potentially correct
different losses at different nodes. With this
approach we can maximize the number of nodes
for which a packet is useful.

In order to illustrate the advantage of net-
work coding for the envisioned use case, we
show Fig. 3, where the leftmost mobile device

would like to share a video file with three other
devices in close proximity. One of the three
receivers has a larger distance to the originating
device. Based on the distance, the packet error
rate differs significantly. Here we assume that
the first-tier neighbors have a 10 percent loss
rate, while the second-tier device has a packet
error rate of 50 percent. Those values are rea-
sonable and were reported in [8]. If communica-
tion is only allowed on the blue links (i.e., the
originating device is transmitting packets), the
overall time until all devices receive the file
depends primarily on the second-tier neighbor.

If we enable multihop relaying (the red links in
Fig. 3), the first-tier neighbors can also try to for-
ward packets to the second tier. The problem is
that the relaying devices need to be coordinated in
order to not convey redundant information (i.e.,
to prevent the same packet being relayed twice).
Here network coding enables the relaying devices
to recode previously received packets in such a
way that redundant information is minimal.

IMPLEMENTATION
This section discusses the implementation of the
application based on the ideas outlined above.
Our primary target platform is the iPhone, where
the Objective-C language is mandatory for
graphical user interface (GUI) development, but
we chose to write most of our application in
C++ in order to facilitate its porting to other
mobile platforms. GCC 4.2 is the default inter-
nal compiler in the Xcode development environ-
ment, and it can be used to compile C++ source
files in Objective-C++ mode and link with the
generated object files. Consequently, the GUI
that has to be written in Objective-C can call
regular C++ code, and a high degree of plat-
form independence can be achieved. Note that

Figure 2. Overview of network coding.
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we used iPhone OS v. 3.1.3 for development.

STREAMING
When the streaming server starts, it enumerates
its network interfaces in order to find out its IP
and broadcast address corresponding to the
wireless network interface.

Upon user request it opens the selected video
or audio file, then determines its media type and
overall size. The packet payload size is set to
1024 bytes and generation size is 64. Upon creat-
ing a new data stream, the server reads a data
chunk (64 kbytes) from the file to fill the input
buffer for the first generation. It also calculates
the total number of generations based on the
overall file size. Then it begins to send uncoded
packets and some metadata with a specified data
rate, which is slightly higher than the native data
rate of the media file. All packets are sent to the
broadcast address of the wireless interface. After
sending 64 uncoded packets, the server transmits
several encoded messages in order to repair all
packet losses of the individual receivers. The
actual number of these extra encoded packets
can be adjusted based on the current network
conditions. Of course, this approach would
require periodic feedback from several receivers.
A simple solution is to always add a large over-
head (e.g., 50 percent) to combat packet losses
even under the worst conditions. After sending a
specific number of encoded packets, the server
moves on to the next generation. It fills its input
buffer with a new data chunk that is read from
the input media file. Then it begins to broadcast
uncoded (and later encoded) packets for the
current generation, and this process continues
until we reach the end of the input file.

Note that the streaming server can easily be
integrated into the client application to enable
users to stream multimedia content from their
mobile devices.

PLAYBACK
The most important question is how to play the
incoming media stream on the iPhone. The
built-in media player (an instance of the
MPMoviePlayerController class) can play a local
file in the application bundle or open an HTTP
network stream at a given URL. We intend to
initiate playback when only a small part of the
entire file is received, and this media player can-
not play an incomplete file because it tries to
buffer up a significant amount of data in the
beginning. Using any other media player is not
recommended by Apple, so the only solution is
to run a web server on localhost that can contin-
uously feed the incoming data into the player
itself.

The media player issues standard HTTP
range requests, which will be processed by the
embedded web server in our application. Each
range request is served by a new POSIX thread.
The range in the first request is always 0-1,
which means the first 2 bytes of the file. The
response will contain the size of the whole file,
and the media player uses this information and
the media file header to issue further range
requests to the web server. It can decide to close
the current socket before the actual range
request is fully served, and the web server must

be able to detect this behavior in order to avoid
sending packets that will not be processed by the
player.

The web server feeds the media player with
raw data of a generation when it is completely
decoded. Thirty seconds after transferring all
bytes from a generation, it will be considered
obsolete, and its data buffer will be deleted from
memory. This way we can avoid memory leaks,
which would quickly accumulate in our applica-
tion during the playback of long media files.

The built-in media player can only play video
files that use the QuickTime (.mov) container
format and H.264 or Xvid video codecs with a
suitable resolution for the iPhone/iPod Touch.
Therefore, the usual AVI videos must be
transcoded before streaming. This can be per-
formed with open-source tools like ffmpeg.

The media player is configured with the con-
trol mode option Volume Only so that users
cannot seek arbitrary offsets in the media stream.
It is important to point out that our application
has no control over the media player component
after the playback is started. The player cannot
be paused or stopped; there are only two call-
back functions that signal the host application
when the media file is preloaded and when the
playback is finished.

Starting the player imposes a significant load
on the CPU, and during this period (1–2 sec-
onds) a large number of incoming packets are
lost on the receivers. A simple way to overcome
this issue is to stop the streaming server for 2
seconds after sending out the very first packet.
This will give time for the built-in media player
to properly load up, and no packets will be lost
on the client devices.

Note that the video and audio codecs are
able to recover if some dirty data is transferred
to the player. This can happen under extreme
channel conditions, when the overhead sent
from the server is not enough to repair all pack-
et losses of the receivers. In this case we typical-

Figure 3. Using network coding in a two-tier topology.
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ly observe green boxes on screen and hear some
audio glitches, but the playback continues and
the errors disappear when channel conditions
return to normal.

SYNCHRONIZATION
The playback synchronization among multiple
devices is based on the assumption that every
client device decodes each generation at approx-
imately the same time. Slight variations are pos-
sible due to the differences in propagation and
processing delay and due to different packet era-
sures. The cumulative effect of these phenomena
translates to a variation that is always smaller
than 0.05 seconds. On the other hand, the start-
up of the media player can cause much bigger
deviations.

As mentioned before, a generation cannot be
fed to the player until it is completely decoded.
Each generation is protected by a mutex that is
initially locked by the main application thread.
When the generation is decoded the mutex is
unlocked, and the threads that are currently
serving the HTTP range requests can proceed
with reading the raw data of the decoded gener-
ation.

It is crucial that every player starts the play-
back at the same time. If a player starts later

than the others, it will not be able to catch up,
even though it decodes all subsequent genera-
tions at the right time. On the other hand, if a
player starts early, it will resynchronize with the
others (i.e., it will be stalled), since it cannot
decode generations earlier than the others.

The synchronization can be further improved
by performing explicit clock synchronization
among the individual receivers. For example, all
receivers can synchronize with the server’s clock,
and specific timestamps can be used to precisely
control the moment when the generations are
unlocked. Nevertheless, such high precision is
not required in our setup, and its implementa-
tion would involve additional overhead.

TESTBED
We have assembled a testbed to demonstrate the
capabilities of our application. The receiver grid
consists of 16 third-generation iPod Touch
devices, and can be seen in Fig. 4. The iPod
Touch technical specifications are shown in
Table 1.

For demonstration purposes, we chose the
10-minute-long “Big Buck Bunny” animation
movie that was released under the Creative
Commons Attribution 3.0 license. The original
HD movie was transcoded to a resolution of 480
× 320 pixels using the Xvid codec for video (bit
rate: 372 kb/s) and the MPEG-4 AAC codec for
audio (bit rate: 128 kb/s). The transcoded video
can be played on the iPhone/iPod Touch using
the built-in media player with a smooth playback
and fine quality. In [1] the full-blown testbed is
shown while playing this video using our applica-
tion.

The iPod Touches were connected to an ad
hoc wireless network that had been created
using a Nokia N95 mobile phone, as the iPhone
OS does not support the creation of ad hoc net-
works. The video stream was sent from another
iPod Touch that was running our application in
server mode. Although the streaming server has
been integrated into our application, unfortu-
nately it cannot access the video and audio files
stored on the iPhone due to Apple’s limitations.
An application can only access files within its
own application bundle. At the moment, the
only solution is to store all media files we want
to share in the application bundle.

In Fig. 5 we present the bandwidth usage of
our streaming server compared to the unicast
solutions mentioned earlier. All plots were gen-
erated by Wireshark during the playback of the
same video file. As seen on these plots, the
bandwidth usage is constant and never exceeds
100 kbytes/s, which is significantly lower than the
others. Note that adding additional receivers will
not have a negative impact on the performance
of our application, since we only use minimal
feedback from the clients. Moreover, the low
bandwidth usage infers that streaming multiple
videos at the same time might be a feasible idea.
In theory, 10 simultaneous video channels can be
broadcast if we assume a net throughput of
10–16 Mb/s in a typical wireless network.

Figure 4. The testbed consists of 16 third-generation iPod Touches, and the
video is streamed from another iPod Touch.
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Table 1. Technical specifications of the 3rd gener-
ation iPod Touch.

Processor ARM CORTEX-A8

Clock rate 833 MHz (underclocked to 600
MHz)

Memory 256 MB DRAM

Flash memory 32 or 64 Gbytes

Display 320 × 480 px, 3.5 in

Playback time Video: 6 hours, audio: 30 hours
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FUTURE WORK

The application can be extended in the future to
support user cooperation and multihop ad hoc
networks.

The number of extra encoded packets sent by
the server can be significantly reduced by using
cooperation among the receivers. Assuming that
the packet losses are uncorrelated, the cooperat-
ing devices can exchange missing packets with
each other; thus, the server can send less over-
head. It has been shown in [9] that using net-
work coding in such a cooperative cluster is an
efficient way of realizing packet exchange. The
clients simply broadcast recoded packets (for the
current generation), which most likely convey
information that is useful to the other receivers
in case of uncorrelated packet erasures. Howev-
er, if we implement this approach, precautions
must be taken to avoid massive collisions in the
network. We can use carefully chosen backoff
timers in the client applications to solve this
issue. For example, these timeouts can be adjust-
ed so that the receiver with the most packet loss-
es is given priority to request missing packets
from the others. Then the node with the most
knowledge will reply first with a series of recod-
ed packets.

So far we have only considered single-hop ad
hoc (IEEE 802.11b/g) networks, where we have
the convenience of the MAC layer performing a
fair division of available channel capacity if mul-
tiple nodes are sending packets and can sense
each other. In general, this is not true in multi-
hop networks where the hidden node problem is
responsible for many collisions. Request/clear to
send (RTS/CTS) acknowledgment and hand-
shake packets cannot be used for multicast trans-
missions; therefore, all nodes should follow the
same cooperative protocol to facilitate efficient
data dissemination.

The fundamental problem in multihop net-
works is that some nodes are not directly reach-
able by the source. Delivering the data stream to
all receivers is only possible if some nodes,
called relays, propagate the received data to
other nodes that are farther away from the
source. A relay node helps in the dissemination
process by generating and transmitting re-encod-
ed packets. Dynamically selecting these relays in
an ad hoc network is not a trivial problem, as
was shown in [10]. Currently the application is
capable of generating and forwarding recoded
packets. A severe limitation is that the physical
data rate of broadcast transmissions is fixed to 1
Mb/s on the iPhone platform, so receiving and
sending packets with a data rate close to 1 Mb/s
(which is typical for a video) is not possible. At
the moment, our solution is sufficient for propa-
gating an audio stream (having a bit rate of 128
kb/s) in a linear multihop network, where the
nodes are positioned to form a virtual line. But
as the network topology becomes more complex
or even dynamic, the nodes will broadcast a
spate of packets if we continue to use this
approach. This phenomenon was called the
broadcast storm problem in [11].

CONCLUSION

In this article we have introduced a way to dis-
seminate multimedia content in a synchronized
manner. We propose a method based on net-
work coding to efficiently deliver data from a
single source to many receivers. An application
running on Apple iPhone/iPod Touch devices
has been presented to show the feasibility of this
approach. We observe that the bandwidth usage
of this application is remarkably low in compari-
son with other existing solutions. In [1] the full-
blown testbed was shown while playing this video
using our application. The first commercial
implementation of this technology can be found
at [12].
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