Pseudo-Differential Equations in Spaces
of Different Smoothness Exponents
on Variables
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Abstract We study a model elliptic pseudo-differential equation and simplest
boundary value problems for ahalf-space and aspecial cone in Sobolev-Slobodetskii
spaces which have different smoothness with respect to separate variables. Sufficient
conditions for aunique solvability for such boundary value problems are described
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1 Introduction

The theory of pseudo-differential operators was appeared near a half-century ago,
and it has taken attention of mathematicians for a long time [1- 3]. More general
Fourier integral operators and new functional spaces were studied in this context.
As arule the theory means constructing a symbolic calculus and an index formula.
Such a theory is very convenient for generalization on smooth compact manifolds
without a boundary, but for more complicated situations new constructions and new
approaches were needed. More complicated situations mean presence of a smooth
boundary, or more generally a non-smooth boundary. For manifolds with a smooth
boundary a certain approach was suggested in [4], and it was based the factorization
principle for an elliptic symbol atboundary points. This method is not applicable for
manifolds with a non-smooth boundary, and it has initiated a lot of approaches for
“non-smooth” situations [5, 6, 10- 14].

This paper presents a future development of the second author’'s approach [17- 20]
to the theory of pseudo-differential equations and related boundary value problems
in non-smooth domains.
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2 Elliptic Pseudo-differential Operators

2.1 Sobolev-Slobodetskii Spaces of Different Smoothness

Following to [15] (see also [16]) we introduce useful notations. A multidimensional
Euclidean space R" isrepresented as an orthogonal sum of subspaces in which only
some of coordinates x1,x2,...,Xm are nor vanishing. Namely, if K ¢ 1 , M is
not empty set we put

RK= {xeRM:x = (X{,....,.Xm), Xj = 0,Vj] / K}c RM.
Let K1, K2, . Knc{l, 2,..., M} be anonempty set so that

n

(jKj ={1,2,...,M}, KinKj =0,i=1j, cardKj= kj.

j=1

Thus, we obtain the representation
RM = RKL® RK2® ees ® RKn,

where xKj is an element of the space R Kj. For functions defined in RM we use the

standard Fourier transform

NE) = f eixEn(x)dx, £= (6,...,£Em).

R"

LetS = (s! ..., sn). Now we introduce the Sobolev-Slobodetskii space H S(R M)
as a Hilbert space with the inner product

(f, g9) = f f (x)g(x)dx

and the norm

nf ns = I W1 + 16k: DBL(L + 16K2[)22ees(1 + IEKN2ZNIF(O\ 2d ~

Such H S-spaces have the same properties similar to usual Sobolev-Slobodetskii
spaces [16]. Particularly, the usual space H s(R M) is obtained under the following
choice of subsets Kj and parameters Sj:

Ki= Kz = eee=Kn-1=0, Kn={1,2,...,M}, S=(0,0,...,0, s).
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2.2 Model Operators and Equations

According to the local principle we will concentrate on studying a model pseudo-
differential equation with operator with a symbol non-depending on a spatial variable.

Model pseudo-differential operators Let A(¢), £ € R be a measurable function.
A model pseudo-differential operator A is defined as follows

1

(Au)(x0 = o

/ / A Eu(y)dyde,

RM RM

and the function A(€) is called a symbol of the pseudo-differential operator A.
We consider here the following class of symbols A(§) satisfying the condition

7 7

o [TA + 18k, D% < JA©] < 2 [TA + 1€k, D,

j=1 j=1 (%)
a;eR, j=1,2,...,n,

with positive constants ¢, ;.
Leta= (o, ..., q)

Lemma 1 Let A be a pseudo-differential operator with the symbol A(E) satisfying
the condition (). Then A : HS(RM) — HS=°RM) is g linear bounded operator.

Proof Indeed, we have

laull_o = [ T+ 16 0™ Ruoras =
RM j=1

= / (14 [k, DS (1 €, 262702 o (1 4 |€g, DS | A(©)iT (€))7 <
RM

<0 /(1 + 1€k DA+ (€, D2 -+ (L4 €k, D* ()P dE = ool [ull3,
RM

and the proof is completed. |
Thus, we can start studying a solvability for the equation
(Aw)(x) = v(x), xeRY, )

where A is a pseudo-differential operator with the symbol A(¢) satisfying the con-
dition (%), and the right hand side v € H5*(RM).
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Corollary 1 If A is apseudo-differential operator with the symbol A (£) satisfying
the condition (*) then the Eq.(1) with an arbitrary right hand side v e H S-a(RM)

has unique solution u e H S(RM). The apriori estimate

lHlulls < CliviiS-a

holds.

Proof The operator A-1 with the symbol A-1(£) is a pseudo-differential operator.
Its symbol satisfies the condition (*) with order - a instead of a. Then we have

u= A-1lv,

and therefore

HullS = 11A-1VvIIS =

f(1 + I6KL)ZEL(L + 16K21)2R o= (1 + I£KyJ)ZNIAAL(e>V (O12dE < c-21v 1S-

R"
and the sentence is proved. [}

Unfortunately, such a simple conclusion is possible for the space RM. If we will
take adomain D ¢ RM and will try to study a solvability for similar equation then
we will obtain alot of difficulties related to invertibility of operators.

W e extract special canonical domains D in Euclidean space R M. Such domains
are conical domains and we will start from a standard convex cone in Euclidean space
non-including a whole straight line. Let CKj ¢ R Kj and we would like to consider
the equation

(Au)(x) = v(x), x e CKj. (2)

Direct applying the Fourier transform does not give the required answer since we
have no the convolution theorem. The Eq. (2) can be rewritten in the form

(PKjAuU)(x) = v(x), x e Ckj,

where PKj is the restriction on CKj,

/0 W oy \u(x), x e Ckj;
(PKju)(x) = 0, x e Ck.

and to use the Fourier transform we need to know what is the Fourier image of the
operator PKj.
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Structure of projectors For a general convex cone Cm ¢ Rm one can define the

Bochner kernel [7- 9]

Bm(z) = j eixzdx, z = (zl,...,zm),

C

and the following representation in Fourier imaged

(FP+u)(£) = 1lim / Bm(£' - M, £Em- Vm+ iT)u(n', Vm)dn,
TN+ J
Rm

here P+ is the projector on the cone Cm [14, 17]. There are certain concrete realiza-

tions in the latter formula.

Example 1 We consider here one-dimensional case in which we have only one cone,
and this cone is R+ [4]. For this case it was proved for a function u(x), x e R, that

+TO
1 i f u(n)dn
(FP+u)(£) = - u(£) +
2 2Rlpv § £—n
—JO

As aconsequence we have for a function u(x), x e Rmand the cone Rm = {x e

Rm:x = (x x m), xm > 0} the following result
+TO
(EF ey = ek 4oy, fuELnm nm o A sl BN
2 2n J £m nm
—to

Example 2 Letm = 2, and
Cy = {xeR2:x = (x1,x2), x2> a\xl\a > 0}
Then we have [21]

UEY af2, £2) + u(El- af2, £2) |
2 +

rn
(FPc+u)(£) =

+TO +TO
i f u(n, £2)dn i f u(n, £2)dn
tv.p.— [/ - —v.p.— [ .
2n J =1+ af2 - n 2n J £1 - af2- n

Example 3 Letm = 3,and C+°2= {x e R3:x2> alkx1\+ a2Xk2¥. Then
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(FPc+a2u)(£i, £2,£3) =

_ U(E1l - alf£3, £2- a2£3,£3) + u(E1l+ alf3, £2- a2£3, £3)
= 4 +

+ A (S1u)(E1+ fIIE3>E2 - a2£3, £3) - " (SIU)(EL- fII£3 £2 - a2£3, £3)+

U(ELl- alf3, £2+ a2£3, £3) + u(E1+ alf3 £2+ a2£3, £3)

+ 4 +

+ A (S1u)(E1+ alf3>£2+ a2E3»£3) - A (S1u)(E1—alf3 £2 + a2£3>£3)+

(S2u)(E1- alf3, £2+ a2€3, £3) + (S2u)(E1+ alf3, £2 + a2£3, £3)

+ 2 +

+ (S1S2u)(E1+ alf3, £2+ a2E3»£3) — (S1S2u)(£1—alf3, £2+ a2£3>£3)-

(S2u)(E1- alf3, £2 - a2€3, £3) - (S2u)(E1+ alf3, £2 - a2£3, £3) _
- 2 -

-(S 1S2u)(E1+ alf3, £2 a2£3, £3) + (SI1S2u)(E1 - alf3, £2- a2£3, £3)-

where
+TO
< i f u(t,£2,£3)dT
(S1u)(£1,£2,£3) = v.p— ,
2n J £1 -t
-TO
+TO
f i f £n £3)d
{Suyer b ey = vpt u(E” n, £3)dn
2 u £2 - N
-TO

This case was studied in [22]

Elliptic equations and complex variables This approach is related to the function
theory of many complex variables, namely to functions which are holomorphic in
radial tube domains [7- 9].

Let CKj C RKj,j = 1,...,n, be convex cones non-including a whole straight
line in RKj.Let us compose thesetC = CKL x ... CKn.

Lemma 2 The set C isa cone in RM non-including a whole straight line in R M.

Proof Indeed, C is acone sinceeach Cj isacone. Ifwe will assume that C includes a
certain line in R M then we will conclude that each cone Cj includes a certain straight
line. m]
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Now we will start studying a solvability of the equation
(Au)(x) = v(x), xeC, 3)

and the solution is sought in the space H*(C).

Definition 1 The space H*(C) consists of functions (distributions) from H*(RM)
with supports in C.

The right-hand side v is chosen from the space H(;g*‘”(C); by definition the space
HOS (C) is a space of distributions on C, admitting a continuation on HS(RM). The
norm in the space H; (C) is defined as

llvllg = inf [1£f]]s.

where the infimum is taken over all continuations £/f on the whole RM,
Fourier image of the space H*(C) will be denoted by H5(C)

Definition 2 A radial tube domain over the cone C is called a domain in M-
dimensional complex space CY of the following type

TWO)={zeC” . z=x+iy,xeR” ye(C).
A conjugate cone é is called such a cone in which for all points the condition
x-y>0, Vyec(C,

holds; x - y means inner product for x and y.

Definition 3 The wave factorization of an elliptic symbol A () with respect to the
cone C is called its representation in the form

A&) = Ax(E)A-(E),

where factors A_(£), A_(£) must satisfy the following conditions:
(1) A.(&), A_(§) are defined for all § € R may be except the points & € 9 é;
(2) A.(&), A_(&) admit an analytic continuation into radial tube domains T(é),

*
T (— C) respectively with estimates

A € +inl < e [Ja+ €k, + 7k, D,
j=1

i *
|AZNE —in)] < e [JA + 1k |+ 17, )7, ¥reC, =j eR.
j=1
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The vector x = (si,..., sn)is called an index of the wave factorization.

To apply the Fourier transform to the Eq. (3) we need to know what is FPC;
here F denotes the Fourier transform in M -dimensional space. Let us introduce the
following notations. For every CK we consider corresponding radial tube domain

* *

T(Ckj) over the conjugate cone and an element of T (C Kj) will be denoted by
£Kj + itKj.Moreover, for £Kj we will use the notation £Kj = (£Kj, Skj), where £k is
the kjth coordinate, and £Kj denotes left other coordinates. The same notations will

be used for x e RKj,xKj = (xK., xkj).
As before we denote by P C the restriction operator on C . Obviously,

PC= N PKj.
i=1

and then
n

Bm (z) = Y[Bkj (ZKj), z = (ZKi, mmm, ZKn)m
i=1

The last our observation is the following:

n
T(C) = I_IT(CKi),
j=1

*

and the Bochner kernel Bm (z) will be a holomorphic function in T (C).

Theorem 1 If the symbol A(£) admits the wave factorization with respect to the

cone C with the index > such that pkj - sj|< 1/2,j = 1,...,n, then the Eq. (3)

has unique solution in the space H S(C)for arbitrary right hand sidev e H®-“ (C).
The apriori estimate

IJulls < const |]lv]l+a
holds.

Proof We use the Wiener-Hopf method [4, 14]. Let Iv be an arbitrary continuation
of v onto RM then we put

u_(x) = (Ev)(x) - (Au)(x),
so that v_(x) = O for x e C. Further,
(Au)(x) + u_(x) = (Iv)(x),

and after applying the Fourier transform and the wave factorization we obtain
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A=(E)u (E) + A=\E)u-(£) = A=(£)(IV)(E) (4)

Now we can use the following result (see [14]).

Property 1 Ifu—e HS(RM \C), A=1is afactor of the wave factorization then
A=1u- e HS+a-!E(RM \ C).

Obviously, the summand A=(£)u(£) belongs to H S-!B(C) according to Lemma 1
and holomorphic properties, and A=1(£)u—£) belongs to H s—£(RM \ C) according
to Property 1.

The right hand side A (£)(lv)(£) belongs to the space H s—b(Rm) (Lemma 1),
and since \®j - sj\< 1/2,j = 1,...,n, itcan be uniquely represented as

A=LEXN)(E) = v+(£) + V-(£), (5)
where
v+(£) = Bm ~ (ENe»(£)) , v-(E) = (I - Bm) (a”™ (EWV)(£)) .
The representation (5) is true since the operator BM : H5(RM)~ H5(R M) for
\I/ 1/2,j =1,...,n, and we remind that \ffij - sj\< 1/2,j = 1,..., n,.
Further, we rewrite the equality (4) in the form
A= (E)U(E) - V+(£) = v-(£) - A=x(E)u—£),

and we obtain that a distribution from H 5(C) equals to a distribution from H 5(RM \
C). But for such small 5 this common distribution should be zero only [14]. Thus,

A=(E)U(E) - V+(£) = O,

or in other words
U(E) = A=\E£)Bm (a —1(£Ne)(£))

A priori estimate is based on Lemma 1 and boundedness property of the operator
BM : H5(RM) A~ H5(RM). Indeed,

W\ = lulls = IM=1(£)Bm (a=1(EWV)(E)) lIs <

< const \\Bn (A=\NEWV)(£)) oK< const \\NA=L(£)(M(£)\\s—x <

< const \XIv)(£) \S-a = const Wv \\§-a < const W\¥-a,

and Theorem1is proved. O
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Multiply solutions For the cone CKj,j = 1,...,n, we suppose that a surface of
this cone is given by the equation xkj = pj (xK.), wherepj : Rkj—L~ R is asmooth
function in Rkj—L\ {0}, and pj (0) = O.

Let us introduce the following change of variables

Jtkj = xKj
\th = xkj —pj(xk)

and we denote this operator by Tpj : RKj # R Kj. Since the cone is in one part of a
half-space then points of the second part of a half-space will be fixed. Such change
of variables can be defined for distributions also [22].

Below we will use notation Fm for the Fourier transform in m-dimensional space,
so that the notation FKj will be the Fourier transform in R Kj.

Following to [22] we conclude

FKjTPj = VPjFKj-

Further, we introduce Tp : RM ~ R M by the formula

n
Tp = I_Iij
j=1

and construct the operator

for which we have
Fm Tv = VpFm -

Letusintroduce vectors N = (n1,..., nn),L = (I3, 1 n), 6=(61, 5 n), nj,
lj eN, |§]< 1/2,j = 1,...,n, and apolynomial QN (i), i e RM satisfying the
condition

n
iono ~ T @+ iiKjinj, (6)

j=1

Theorem 2 Ifthe symbol A (i) admits the wavefactorization with the index >, >x —
S = N + S, then a general solution of the Eq.(3) in Fourier images is given by the

formula

u(i) = A=\i)Qn(i)Bm Q—1(0 A=1(i)(EVv}(i)+

nn

E - E cl(iK)iRdiked---it1

=1l2=1 In=1
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wherecL (xX'K) e H SI(Rm-n) are arbitraryfunctions, SL=(s1- »x1+ I1- 1/2,...,
sn- x»xn+ In- 1/2), lj = 1, 2,..., nj), j = 1, 2,..., n, lv isan arbitrary contin-
uation of v onto H S—a (R M).

The a priori estimate

m 2 il
v \—a + Xl lisi

I1=112=1 In=1

holds.

Proof Similar to the proof of Theorem 1 we obtain the equality (4). Further, let

us note that the function A=1(£)(lv)(£) belongs to the space H s—k(RM). So, if
take an arbitrary polynomial QN (£) satisfying the condition (6) then the function

ON-1(£)A=1(E£)(lv)(£) will belong to the space H —5(R M).

Further, according to the theory of multidimensional Riemann problem [14] we
can represent the latter function as a sum of two summands, this is so called ajump
problem which can be solved by the operator BM:

Q—AZIW ) = f+ + f—

where f+ e H-5(C), f—e H-5(RMN\C),

f+ = Bm(A~Am ), f—= (I - Bm)(A=T(Ev}).

Multiplying the equality (4) by Q—1(£) we rewrite it in the form

gqnlA=u+ Q—I1AJli—= f+ + f—
or
QN1A=u —f+ = f——Qn A=1u—
In other words
A=u—qgnf+= gnf——A=rli— (7)

The left hand side of the equality (7) belongs to the space H —N—5(C), bur the
right hand side belongs to the space H -N—-5(RM \ C). Therefore, we have

Fn\NA=u- Qnf+) = FM\Qnf—- A=lu—),

where the left hand side belongs to the space H —N—5(C), but right hand side belongs
to the space H N-5(RM \ C), from which we conclude immediately that this is a
distribution supported on the surface dC.

The form for such a distribution is given in [22] for the cone CKj with help of the

operator Vv . Thus, we apply the operator Tv to the latter equality and obtain
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TPFM1(A=u — QNf+) = TpFM1(QNf——A=1u—),

so that both left hand side and right hand side is a distribution supported on the
hyper-plane xkL = 0, xk = 0,..., xkn = 0. Then

TPFML(A=u — QNf+) =

nl n2 nn

= E E ..~ cl (xK)S(1—=I\xk1)S (12—1)(xkz) *==S(In—1)(xkn),
N=1l2=1 In=1

whereL = 11,..., In), XK = (xXKI,..., xKn) e RM—n, Sis the Dirac mass-function.

Applying the Fourier transform we obtain

FMTpFM1(A=u — QNf+) =

mn Nz m

= E E ...E'cl(iK)iRediV eeeit 1, (8)
N=1R=1 In=1

Taking into account that FM TpF—1we can write

ni n2 m

ot wn-
A=u —QnU = Vp-1 £ 'E -T , C(iK)K\—" ~ Teesi\
\h=1L=1 In=1

or finally

u(i) = A—1(i) Qn (I)B—Q— i) A=1(i)(iv)(i)+

o m 17 1 7 1\ (9)
+a=(i)VPpMEE ... £ C(iK)ik\—lik21- it
\lI=1 =1  In=1 )

To obtain a priori estimates let us note that all summands in the formula (8)

should belong to the space H S—s-(RM). We take one of summands and estimate
corresponding integral.

ICI (iK )ik\—1ik2d s « « i t 1118—k <

n I I
ic1(ikK)2A (1 + ik I3 n rikjizgi—nd i~ dikd <
RM i=1 j=1 i=1
n n

< J ict(iK)i2nm (@ + liKj i2sj—k +1j—)dikK N dikj,



Pseudo-Differential Equations in Spaces of Different 265

and for existence of each integral of the type

+TO

f oL+ I1EK \+ IEKj\V2(sj—d+1j—1)dEK]
o)

the condition
2(sj —>xj+ lj —1) < —1 (H0)

is necessary. It is equivalent to the following condition

sJ- »xJ+ 1J< 1.

Since we have sj - Xxj + Ij = —nj —5j + 1j then we see that the condition (10) is
satisfied for all
Ij = 1,2,.. .,nj,

but it is not satisfied for Ij = nj + 1. After integration on all £kf we will find that

cl (EK) e H SI(Rm—n), where S1 = - K + li- 1/2,...,sn- X+ In- 1/2),

s
andlj = 1,2, ...,nj,J = 12 ,n.
For apriori estimates we have

\\A=1(£) Qn (£)Bm Q— (E)A=L(E)W )(£)Ills <
< const\Bm Q-1 (E)A=1L(E)m (E)\\s—ox+N <
< const \\Q-1(£)Az\£)m(£)\\s—ok+N <

< const \\(IV)(E)\\s—etN—N+K—-a = const \\(IV)(E)\\s—a < const \\W\\+a

according to Lemma 1 and the factthat S - »x+ N = 5\5j\< 1/2,J = 1,...,n.
To estimate other summands in the formula (9) we use above considerations.
Really, if cL(EK) e H SI(Rm —n) then each summand cL (EK)EK\—IEKk2-1 mmmfkn—1 in

the formula (9) belongs to the space H SH£RM). Thus, we have

The latter estimate was obtained above. The Theorem 2 is proved. O
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Remark 1 This formula includes the operator Vp. Examples2 and 3 give exact
representation for this operator for certain concrete cones.

Conclusion

These studies led to different boundary value problems for such elliptic pseudo-
differential equations in cones similar to [14, 17, 18]. Particularly, for the case of
Theorem 2 ageneral solution of the Eq. (3) includes alot of arbitrary functions from
corresponding Sobolev-Slobodetskii spaces. To determine these functions uniquely
one needs some additional conditions (not necessary boundary conditions). We will
try to describe certain statements of boundary value problems in forthcoming papers.
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