Aalborg Universitet

Numerical Modelling of Non-Newtonian Fluid in a Rotational Cross-Flow MBR

Bentzen, Thomas Ruby; Ratkovich, Nicolas Rios; Rasmussen, Michael R.; Madsen, S.; Jensen, J. C.; Bak, S. N.

Publication date: 2011

Document Version Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

Bentzen, T. R., Ratkovich, N. R., Rasmussen, M. R., Madsen, S., Jensen, J. C., & Bak, S. N. (2011). *Numerical Modelling of Non-Newtonian Fluid in a Rotational Cross-Flow MBR*. Poster presented at 6th IWA Specialist Conference on Membrane Technology for Water and Wastewater Treatment, Aachen, Germany.

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Numerical modelling of non-Newtonian fluid in a rotational cross-flow MBR

T. R. Bentzen¹, N. Ratkovich¹, M. R. Rasmussen¹, S. Madsen², J. C. Jensen² and S. N. Bak²

¹Aalborg University, Department of Civil Engineering, Sohngaardsholmsvej 57, DK-9000 Aalborg, Denmark. (E-mail: trb@civil.aau.dk; nr@civial.aau.dk; mr@civial.aau.dk) ²Grundfos BioBooster A/S, Poul Due Jensens Vej 7, DK-8850 Bjerringbro, Denmark. (E-mail: <u>steffenmadsen@grundfos.com; jecjensen@grundfos.com; snbak@grundfos.com</u>)

Introduction & Objectives

- Fouling is the main bottleneck of the widespread of MBR systems.
- Process hydrodynamics can decrease and/or control fouling.
 - by increasing liquid cross-flow velocity.
- Rotational cross-flow (RCF) MBR (Grundfos BioBooster®) (Fig. I)
 - Rotating impellers between filtration and aeration membrane discs prevent fouling.
 - It operates up to 5 times higher sludge concentration than in conventional MBR systems (TSS up to 50 g· l^{-1}).
 - Impellers ensures low viscosity in the reactor biomass due to the non-

- Newtonian behaviour of activated sludge.
- \downarrow energy consumption and \uparrow flux.

Background

Viscosity of non-Newtonian (NN) liquids

Shear stress (τ) can be related to shear rate ($\dot{\gamma}$) according to a power-law relationship.

 $\tau = m \dot{\gamma}^n$

 $m = 0.001 \exp(2 TSS^{0.41})$

$n = 1 - 0.23 \text{ TSS}^{0.37}$

where *m* is the flow consistency index (Pa·sⁿ) and *n* is the flow behaviour index (-).

Wall shear stress in rotating systems

- Impellers generate scouring effect.
- in shear stress prevent particles to attach to membrane surface due to larger tangential velocities.

* where v is kinematic viscosity ($v = \mu/\rho$), k is velocity factor and G'(0) and α are dimensionless velocities in the tangential direction.

Methodology

Tangential velocity measurements

- RCF MBR operates between 50 to 350 rpm (Fig. 2).
- Experimental tangential velocity measured at 59, 119 and 177 rpm with water
- Measured with Laser Doppler Anemometry (LDA) (Fig. 3)
- LDA is an optical technique to measure velocity field in transparent media and cannot be used with activated sludge.

CFD model (Fig. 4)

- Star CCM+V6.02
- Single phase and rigid body motion
- Laminar and k- ϖ SST

Results and discussion

Tangential velocity measurements

• A good agreement between the experimental measurements and the CFD simulation results, with an error up to 8 % (Fig. 5).

Wall shear stress (Fig. 6)

- It was inferred from CFD simulation that values of the shear stress were accurate (Fig. 7).
- The velocity factor (k) for the RCF MBR was found to be 0.795 \pm 0.002 (R² = 0.957), which is within the limits of k for impeller with vanes (0.35 to 0.85).
- CFD model was modified to account for NN behaviour for 3 different TSS concentrations (30, 40 and 50 g·l⁻¹) and 4 rotational speeds (50, 150, 250 and 350 rpm).
- α was found to be 0.525 \pm 0.008 (R² = 0.946), that can be used for the different angular velocities and TSS

Figure 4. Real and virtual representation of impeller and membrane.

12.000

40 g/l

24.000

Wall Shear Stress: Magnitude (Pa)

36.000

50 g/l

60.000

48.000

concentrations.

Area-weighted average shear stress (Fig. 8)

An empirical relationship, to determine the areaweighted average shear stress in function of angular velocity (in rpm) and TSS was developed:

$$\bar{\tau} = 0.369 \ \frac{\Omega}{\ln \Omega} + 0.013 \ TSS^2 - 2.873$$

119 and 177 rpm).

♦ 30 g/l

📕 40 g/l

🔺 50 g/l

60

50

Figure 7. Shear stress vs. radius for three different TSS concentrations (30, 40 and 50 g·l⁻¹) at an angular velocity of 250 rpm.

Figure 8. Area-weighted average shear stress vs. radius for three different TSS concentrations (30, 40 and 50 $g \cdot l^{-1}$) at an angular velocity of 250 rpm.

Conclusions

- A proper validation of the CFD model was made in terms of tangential velocity measurements using a LDA system with water.
- RCF MBR operates with AS and LDA measurements cannot be made.
- CFD model was modified to account for the viscosity of AS.
- Local shear stress at any place of the membrane surface and area-weighted average shear stress was determined.
- An empirical relationship was made, to determine the area-weighted average shear stress in function of the angular velocity (in rpm) and the TSS.

