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1. INTRODUCTION

Let E be a Banach space and A be a closed linear operator in E whose domain D(A) ⊂ E is not
necessarily dense in E. Consider the problem of defining the function

u(t) ∈ C([0, 1], E)
⋂

C2((0, 1], E)
⋂

C((0, 1),D(A)),

satisfying the abstract Euler–Poisson–Darboux equation

u′′(t) +
k

t
u′(t) = Au(t), 0 < t < 1, (1)

as well as some boundary conditions.

The statement of boundary conditions for the Euler–Poisson–Darboux equation, due to the singu-
larity of the equation at the point t = 0, depends on the parameter k ∈ R. Various types of boundary
conditions at the points t = 0 and t = 1, as well as the corresponding criteria for the uniqueness of the
solution boundary and nonlocal problems were established in [1, 2].

Problems of solvability of boundary value problems for a nonsingular second-order equation (the
case k = 0 in the equation (1)) with various assumptions on the operator A can be found in ([3], Ch. 3,
Sec. 2), [4], ([5], Ch. 2), [6]. Results on the solvability of boundary value problems in a half-space
for the Euler–Poisson–Darboux equation in partial derivatives are given in ([7], Sec. 41), and the
boundary value problems on the semiaxis for abstract singular equations were studied in [8, 9]. Historical
information and a detailed range of questions for equations containing the Bessel operator can be found
in the introduction of monographs [10, 11].

In this paper, we present sufficient conditions for the unique solvability of the Dirichlet and Neumann
boundary value problems for an abstract Euler–Poisson–Darboux equation (1) and also for a number of
degenerate differential equations on a finite interval [0, 1]. Moreover, for t = 1 the boundary condition of
the third type will be set.
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2. THE k < 1 CASE FOR THE EULER–POISSON–DARBOUX EQUATION.
DIRICHLET CONDITION FOR t = 0

For the Dirichlet problem of the form

u(0) = u0, αu(1) + βu′(1) = u1, (2)

where α, β ∈ R, the following criterion for the uniqueness of a solution was proved in [1].
Theorem 1. Let k < 1 and A be a linear closed operator in E. We assume that the boundary

problem (1), (2) has a solution u(t). For this solution to be unique, necessary and sufficient, that
none of the λn, n ∈ N zeros of the function

Υα,β
2−k(λ) = (α+ β − βk)Y2−k(1;λ) + βY ′

2−k(1;λ), (3)

where

Y2−k(t;λ) = Γ(3/2 − k/2)
(
t
√
λ/2

)k/2−1/2
I1/2−k/2

(
t
√
λ
)
, (4)

Γ(·) is Euler gamma function, Iν(·) is modified Bessel function, would not be an eigenvalue of the
operator A, i.e., λn /∈ σp(A).

Theorem 1 is established under very general conditions on the operator A, which do not ensure the
solvability of the Dirichlet problem. In the following theorem, we give sufficient conditions for its unique
solvability. In what follows, we will use notation

√
λn = iμn, where μn are positive function zeros

(α+ β(1− k)/2)J1/2−k/2(μ) + βμJ ′
1/2−k/2(μ)

μ1/2−k/2
,

obtained from Υα,β
2−k(λ) after replacing

√
λ = iμ.

Theorem 2. Let k < 1, α
β > k − 1, A be a linear closed operator in E, u1 ∈ D(A2), and also for

all n ∈ N the zeros of λn defined by the equalities (3), (4) of the function Υα,β
2−k(λ), belong to the

resolvent set ρ(A), and the estimate

sup
n∈N

|λn| ||(λnI −A)−1|| < M0 < ∞. (5)

Then, the problem

u′′(t) +
k

t
u′(t) = Au(t), u(0) = 0, αu(1) + βu′(1) = u1 (6)

is uniquely solvable and its solution has the form

u(t) =
2k/2+1/2t1−k

(α+ β − βk)Γ(3/2 − k/2)

×
∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)Y2−k(t;λn)

(μ2
n − (1/2 − k/2)2)J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2λn(λnI −A)−1u1. (7)

Proof. As is known [12, points 15.33–15.35], zeros λn of the function Υα,β
2−k(λ) simple, negative and

lim
n→∞

λn

n2 = −π2. Arrange them in descending order and using the equality

λn(λnI −A)−1u1 = I +A(λnI −A)−1u1, (8)

let us write (for now formally) the series (7) in the form

u(t) = ψk(t)u1 +
2k/2+1/2t1−k

(α+ β − βk)Γ(3/2 − k/2)

×
∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)Y2−k(t;λn)

(μ2
n − (1/2 − k/2)2)J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2A(λnI −A)−1u1, (9)
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where

ψk(t) =
2k/2+1/2t1−k

(α+ β − βk)Γ(3/2 − k/2)

×
∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)Y2−k(t;λn)

(μ2
n − (1/2 − k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2 . (10)

In particular, it follows from the equality (8) that the multiplication of the resolvent (λnI −A)−1u1
by a λn corresponds to the application of the operator A.

Denoting
√
λn = iμn, defined by the equality (10), the function ψk(t) in terms of Bessel functions of

the first kind Jν(·) can be rewritten in the form

ψk(t) =
2t1/2−k/2

(α+ β − βk)

×
∞∑

n=1

μnJ3/2−k/2(μn)J1/2−k/2(t;μn)

(μ2
n − (1/2 − k/2)2)J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2 =
t1−k

(α+ β − βk)
, (11)

the Dini expansion of the power function was used (see 5.7.33.19 [13])
∞∑

n=1

μnJ3/2−k/2(μn)J1/2−k/2(t;μn)

(μ2
n − (1/2 − k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2 =
1

2
t1/2−k/2, 0 ≤ t ≤ 1. (12)

In this way, ψk(t) = t1−k/(α + β − βk) and, as is easy to see, the function ψk(t)u1, t ∈ [0, 1], is a
solution to the problem (6) for A = 0.

Next, we study the convergence of the series in the formula (9). Same as in formulas (11) let’s write
it in the form

∞∑

n=1

μnJ3/2−k/2(μn)J1/2−k/2(t;μn)

(μ2
n − (1/2 − k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2A(λnI −A)−1u1, λn = −μ2
n. (13)

Using the Abel transform, one establishes (see [14, p. 306]) simultaneous convergence, moreover, to the
same the sum of the next rows

∞∑

n=1

anbn,

∞∑

n=1

(a1 + a2 + · · ·+ an)(bn − bn+1)

provided that

lim
n→∞

(a1 + a2 + · · ·+ an)bn = 0. (14)

Let’s put

an =
μnJ3/2−k/2(μn)J1/2−k/2(t;μn)

(μ2
n − (1/2 − k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2 , bn = A(λnI −A)−1u1.

Then, due to (12)

|a1 + a2 + · · ·+ an| ≤ M1t
1/2−k/2, M1 > 0, (15)

and the difference bn − bn+1 is estimated using the inequality (5). Get

||bn − bn+1|| ≤ M0

(
1

|λn|
+

1

|λn+1|

)
||Au1|| ≤

M2||Au1||
n2

. (16)
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The condition (14) is obviously satisfied, and taking into account (15), (16), we have
∣∣∣∣∣

∣∣∣∣∣

∞∑

n=1

(a1 + a2 + · · ·+ an)(bn − bn+1)

∣∣∣∣∣

∣∣∣∣∣ ≤ M3t
1/2−k/2

∞∑

n=1

1

n2
||Au1||. (17)

It follows from the inequality (17) that the series (13) converges absolutely and uniformly in t ∈ [0, 1]
and, consequently, also the series in the formulas (7), (9) also converge.

It is easy to see that the representation (9) implies the validity of the boundary conditions u(0) = 0,
αu(1) + βu′(1) = u1 of problem (6).

Let us show that the series in the formula (9) can be term by term differentiated as u1 ∈ D(A2).
Consider a series of derivatives

∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)Y

′
2−k(t;λn)

(μ2
n − (1/2 − k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2A(λnI −A)−1u1. (18)

and transform it using the equality Y ′
2−k(t;λn) =

λnt
3−kY4−k(t;λn). and the shift formula with respect to

the parameter (see [15]). As a result (up to a power factor) we will have the series

1

3− k

∞∑

n=1

λnμ
3/2−k/2
n J3/2−k/2(μn)Y4−k(t;λn)

(μ2
n − (1/2 − k/2)2)J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2A(λnI −A)−1u1

=

∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)

(μ2
n − (1/2 − k/2)2)J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2

×
1∫

0

(1− s2)s2−kY2−k(ts;λn) dsλnA(λnI −A)−1u1 ds

=

1∫

0

(1− s2)s2−k

⎛

⎜⎝
∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)Y2−k(ts;λn)λn(λnI −A)−1Au1

(μ2
n − (1/2− k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2

⎞

⎟⎠ ds.

Using the equality (8), we obtain the sum of two series whose uniform convergence has already been
proven earlier and which can be integrated term by term by s. Thus, it is established that the series in
the formula (18) converges, and the series (9) can be differentiated term by term as u1 ∈ D(A).

Since by the condition u1 ∈ D(A2), the possibility of one more differentiation of the series in the
formula (9) installed in the same way.

We verify by direct differentiation that the function u(t) defined by the equality (9) satisfies task (6).
To do this, we calculate its derivatives. We have

u′(t) = ψ′(t)u1 −
2k/2+1/2

(α+ β − βk)Γ(3/2 − k/2)

×
∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)

(
(1− k)t−1Y2−k(t;λn) + t1−kY ′

2−k(t;λn)
)

(μ2
n − (1/2 − k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2 A(λnI −A)−1u1, (19)

u′′(t) = ψ′′(t)u1 −
2k/2+1/2

(α+ β − βk)Γ(3/2 − k/2)

×
∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)

(μ2
n − (1/2 − k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2

(
(1− k)(−k)t−k−1Y2−k(t;λn)
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+ (1− k)t−kY ′
2−k(t;λn) + t1−kY ′′

2−k(t;λn)
)
A(λnI −A)−1u1. (20)

Substituting (19), (20) into the left side of the equation (1), we get

u′′(t) +
k

t
u′(t) = − 2k/2+1/2

(α+ β − βk)Γ(3/2 − k/2)

×
∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)

(μ2
n − (1/2 − k/2)2)J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2

×
(
t1−k

(
Y ′′
2−k(t;λn) + (2− k)t−1Y ′

2−k(t;λn)
))

A(λnI −A)−1u1 =
2k/2+1/2t1−k

(α+ β − βk)Γ(3/2 − k/2)

×
∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)Y2−k(t;λn)

(μ2
n − (1/2− k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2λnA(λnI −A)−1u1 = Au(t).

Thus, the function u(t) defined by the equality (7) is a solution to the problem (6), and thus the theorem
is proved.

Example 1. In the particular case E = C, A ∈ R, A < 0, k = 0, formula (7) has the form

u(t) =
21/2t

(α+ β)Γ(3/2)

∞∑

n=1

μ
3/2
n J3/2(μn)Y2(t;λn)

(μ2
n − (1/2)2)J2

1/2(μn) + μ2
n

(
J ′
1/2(μn)

)2λn(λnI −A)−1u1

=
4

α+ β

∞∑

n=1

μn (sinμn − μn cosμn) sinμnt

(μ2
n +A)(μn − cosμn sinμn)

u1,

where μn are function zeros

(α+ β/2)J1/2(μ) + βμJ ′
1/2(μ)

μ1/2
.

It is easy to see that in this scalar case the solution is also the function

sin
(
t
√
−A

)
u1

α sin
√
−A+ β

√
−A cos

√
−A

.

Therefore, due to the uniqueness of Theorem 2, the sum of the used series can be found, which is equal
to

∞∑

n=1

μn (sinμn − μn cosμn) sinμnt

(μ2
n +A)(μn − cosμn sinμn)

=
(α+ β) sin

(
t
√
−A

)

4(α sin
√
−A+ β

√
−A cos

√
−A)

.

To conclude this section, we note that, in the language of control theory, Theorem 2 means
controllability from the zero position of the system described by the conditions (6).

3. THE k ≥ 0 CASE FOR THE EULER–POISSON–DARBOUX EQUATION.
NEUMANN’S WEIGHT CONDITION AT t = 0

For the Euler–Poisson–Darboux equation (1), consider a boundary value problem of the form

lim
t→0+

tku′(t) = u0, αu(1) + βu′(1) = u1, (21)

where k ≥ 0, α, β ∈ R.

In [1], the following criterion for the uniqueness of a solution was proved.
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Theorem 3. Let k ≥ 0 and A be a linear closed operator in E. We assume that the boundary
problem (1), (21) has a solution u(t). For this solution to be unique, necessary and sufficient,
that none of the λ̂n, n ∈ N zeros of the function

Υα,β
k (λ) = αYk(1;λ) + βY ′

k(1;λ), (22)

where Yk(t;λ) = Γ(k/2 + 1/2)
(
t
√
λ/2

)1/2−k/2
Ik/2−1/2

(
t
√
λ
)

, would not be an eigenvalue of the

operator A.

Theorem 4. Let k ≥ 0, α
β > 0, A be a linear closed operator in E, u1 ∈ D(A2), and also for all

n ∈ N the zeros of λ̂n defined by the equality (22) of the function Υk(λ), belong to the resolvent
set ρ(A), and the estimate

sup
n∈N

|λ̂n| ||(λ̂nI −A)−1|| < M0 < ∞.

Then, the problem

u′′(t) +
k

t
u′(t) = Au(t), lim

t→0+
tku′(t) = 0, αu(1) + βu′(1) = u1 (23)

is uniquely solvable and its solution has the form

u(t) =
23/2−k/2

α Γ(k/2 + 1/2)

×
∞∑

n=1

μ̂
k/2+1/2
n Jk/2+1/2(μ̂n)Yk(t; λ̂n)

(μ̂2
n − (1/2 − k/2)2)J2

k/2−1/2(μ̂n) + μ̂2
n

(
J ′
k/2−1/2(μ̂n)

)2 λ̂n(λ̂nI −A)−1u1. (24)

The proof of Theorem 4 on the solvability of the problem (23) is basically similar to the proof of
Theorem 2.

Example 2. In the particular case E = C, A ∈ R, A < 0, k = 2, the formula (24) has the form

u(t) =
21/2

(α)Γ(3/2)

∞∑

n=1

μ̂
3/2
n J3/2(μ̂n)Y2(t; λ̂n)

(μ̂2
n − (1/2)2) J2

1/2(μ̂n) + μ̂2
n

(
J ′
1/2(μ̂n)

)2 λ̂n(λ̂nI −A)−1u1

=
4

αt

∞∑

n=1

μ̂n (sin μ̂n − μ̂n cos μ̂n) sin μ̂nt

(μ̂2
n +A)(μ̂n − cos μ̂n sin μ̂n)

u1,

where μ̂n are the zeros of the function

(α− β/2)J1/2(μ) + βμJ ′
1/2(μ)

μ1/2
.

It is easy to see that in this scalar case the solution is also the function

sin
(
t
√
−A

)
u1

(α− β)t sin
√
−A+ βt

√
−A cos

√
−A

.

Therefore, due to the uniqueness of Theorem 4, the sum of the used series can be found, which is equal to
∞∑

n=1

μ̂n (sin μ̂n − μ̂n cos μ̂n) sin μ̂nt

(μ̂2
n +A)(μ̂n − cos μ̂n sin μ̂n)

=
α sin

(
t
√
−A

)

4
(
(α− β) sin

√
−A+ β

√
−A cos

√
−A

) .
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4. BOUNDARY VALUE PROBLEMS FOR DEGENERATE DIFFERENTIAL EQUATIONS
WITH POWER DEGENERACY

As applications of Theorems 2 and 4 in the Banach space E, consider the equation that degenerates
with respect to the variable t

tγv′′(t) + btγ−1v′(t) = Av(t), 0 < t < T. (25)

Let 0 < γ < 2, b ∈ R. The value of the parameter γ, 0 < γ < 2 means a weak degeneration of the
equation (25), in contrast to the case of strong degeneracy γ > 2, which will also be considered further
in the paper. For γ = 2, the Euler equation is obtained, which, as is well known, reduces to a non-
degenerate equation.

The setting of boundary conditions at the degeneracy point t = 0 depends on the coefficients b and
γ > 0 of the equation and these boundary conditions will be given below.

For b < 1, consider the problem of determining the function v(t) ∈ C([0, T ], E)
⋂

C2((0, T ], E),
belonging to D(A) for t ∈ (0, T ), satisfying the equation (25) and the Dirichlet conditions

v(0) = 0, αv(T ) + βv′(T ) = v1. (26)

Change of independent variable and unknown function

t =
(τ
δ

)δ
, δ =

2

2− γ
, v(t) = v

((τ
δ

)δ
)

= w(τ),

taking into account the equalities

v′(t) =
(τ
δ

)1−δ
w′(τ), v′′(t) =

(τ
δ

)2(1−δ)
(
w′′(τ) +

1− δ

τ
w′(τ)

)
,

reduces the weakly degenerate equation (25) to the Euler–Poisson–Darboux equation of the form

w′′(τ) +
k

τ
w′(τ) = Aw(τ), τ ∈ [0, l], (27)

where k = bδ − δ + 1, δ = 2
2−γ , l = δT 1/δ . To simplify the notation, we will further assume that T is

chosen so that l = 1. At the same time, the conditions (26) are converted into conditions respectively

w(0) = 0, αw(1) + βT−γ/2w′(1) = v1. (28)

The resulting problem (27), (28) has already been studied by us in paragraph 2. Returning to the
original Dirichlet problem (25), (26) for a weakly degenerate equation, using Theorem 2, we formulate
the following conditions unambiguous resolution.

Theorem 5. Let 0 < γ < 2, b < 1, k = 2(b−1)
2−γ + 1, δ = 2

2−γ , T = 1
δδ

, A is a linear closed operator

in E, v1 ∈ D(A2), and also for all n ∈ N the zeros of λn defined by the equality (3) of the function
Υα,β

2−k(λ), belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λn| ||(λnI −A)−1|| < M0 < ∞.

Then, the Dirichlet problem (25), (26) for the weakly degenerate equation is uniquely solvable
and its solution has the form

v(t) =
2k/2+1/2(δt1/δ)1−k

(α+ βT−γ/2(1− k))Γ(3/2 − k/2)

×
∞∑

n=1

μ
3/2−k/2
n J3/2−k/2(μn)Y2−k((δt

1/δ);λn)

(μ2
n − (1/2 − k/2)2) J2

1/2−k/2(μn) + μ2
n

(
J ′
1/2−k/2(μn)

)2λn(λnI −A)−1v1.
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As mentioned earlier, the setting of the boundary condition at the degeneracy point t = 0 depends
on the coefficient b. Let now the coefficient b > γ/2 in the equation (27). In this case, instead of the
Dirichlet conditions (26) the following conditions should be set

lim
t→0+

tbv′(t) = 0, αv(T ) + βv′(T ) = v1. (29)

Similar to Theorem 5, but using Theorem 4 instead of Theorem 2, and in this case we formulate the
conditions for unique solvability corresponding boundary value problem.

Theorem 6. Let 0 < γ < 2, b > γ/2, k = 2(b−1)
2−γ +1, δ = 2

2−γ T = 1
δδ

, A is a linear closed operator

in E, v1 ∈ D(A2), and also for all n ∈ N the zeros of λ̂n defined by the equality (22) of the function
Υα,β

k (λ), belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λ̂n| ||(λ̂nI −A)−1|| < M0 < ∞.

Then, the problem (25), (29) is uniquely solvable and its solution has the form

v(t) =
23/2−k/2

α Γ(k/2 + 1/2)

×
∞∑

n=1

μ̂
k/2+1/2
n Jk/2+1/2(μ̂n)Yk(δt

1/δ ; λ̂n)

(μ̂2
n − (1/2 − k/2)2)J2

k/2−1/2(μ̂n) + μ̂2
n

(
J ′
k/2−1/2(μ̂n)

)2 λ̂n(λ̂nI −A)−1v1.

Let us further consider the equation (25) in the case of strong degeneracy, when the parameter γ > 2.
Change of independent variable and unknown function

t =
(
−τ

δ

)−δ
, δ =

2

2− γ
v(t) = v

((
−τ

δ

)−δ
)

= ŵ(τ)

reduces the strongly degenerate equation (25) to the Euler–Poisson–Darboux equation of the form

ŵ′′(τ) +
p

τ
ŵ′(τ) = Aŵ(τ), 0 < τ < l, (30)

where p = 2(b−1)
γ−2 + 1, l = −δT−1/δ . To simplify notation, in what follows, as before, we will assume that

T is chosen so that l = 1.
In the case of strong degeneracy, the setting of the boundary conditions at the degeneracy point

t = 0 also depends on the coefficient b. Sufficient conditions for the unique solvability of boundary
value problems for the Euler–Poisson–Darboux equation (30), which reduce considered boundary value
problems for strongly degenerate equations are contained in Theorems 2 and 4; therefore, similarly
Theorems 5 and 6 establish the following assertions.

Theorem 7. Let γ > 2, b < 1, p = 2(b−1)
2−γ +1, δ = 2

2−γ , T =
(

1
−δ

)−δ
, A is a linear closed operator

in E, v1 ∈ D(A2), and also for all n ∈ N the zeros of λn defined by the equality (3) of the function
Υα,β

2−p(λ), belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λn| ||(λnI −A)−1|| < M0 < ∞.

Then, the Dirichlet problem (25), (26) for a strongly degenerate equation is uniquely solvable
and its solution has the form

v(t) =
2p/2+1/2(−δt−1/δ)1−p

(α+ β(1− p)T−γ/2)Γ(3/2 − p/2)

×
∞∑

n=1

μ
3/2−p/2
n J3/2−p/2(μn)Y2−p(t;λn)

(μ2
n − (1/2 − p/2)2)J2

1/2−p/2(μn) + μ2
n

(
J ′
1/2−p/2(μn)

)2λn(λnI −A)−1v1.
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Theorem 8. Let γ > 2, b > 2− γ/2, p = 2(b−1)
2−γ + 1, δ = 2

2−γ , T =
(

1
−δ

)−δ
, A is a linear closed

operator in E, v1 ∈ D(A2), and also for all n ∈ N the zeros of λ̂n defined by the equality (22) of
the function Υα,β

p (λ), belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λ̂n| ||(λ̂nI −A)−1|| < M0 < ∞.

Then, the problem

tγv′′(t) + btγ−1v′(t) = Av(t), lim
t→0+

t2−bv′(t) = 0, αv(T ) + βv′(T ) = v1

is uniquely solvable and its solution has the form

v(t) =
23/2−p/2

α Γ(p/2 + 1/2)

×
∞∑

n=1

μ̂
p/2+1/2
n Jp/2+1/2(μ̂n)Yp(−δt−1/δ ; λ̂n)

(μ̂2
n − (1/2 − p/2)2)J2

p/2−1/2(μ̂n) + μ̂2
n

(
J ′
p/2−1/2(μ̂n)

)2 λ̂n(λ̂nI −A)−1v1.

Finally, we formulate a theorem for the abstract analogue of the degenerate in space variable
differential equation with a power character of degeneracy. For ω > 0, consider the equation

v′′(t) = tωAv(t), 0 < t < T (31)

and boundary conditions

v(0) = 0, αv(T ) + βv′(T ) = v1. (32)

If A is the differentiation operator with respect to the spatial variable x, for example, Av(t, x) =
v′′xx(t, x), then the equation (31) is a degenerate hyperbolic generalization of the Tricomi equation, but
has a different character degeneracy compared to the previous degenerate equations. Therefore, the
abstract equation (31) is also natural call degenerate.

Change of variable and unknown function

t =
( τ
σ

)σ
, σ =

2

ω + 2
, v(t) =

(τ
σ

)σ
w̃(τ)

for T = 1
σσ reduces the problem (31), (32) to a boundary value problem for Euler–Poisson–Darboux

equations

w̃′′(τ) +
σ + 1

τ
w̃′(τ) = Aw̃(τ) (0 < τ < 1), lim

τ→0+
τσ+1w̃′(τ) = 0,

( α

σσ
+ β

)
w̃(1) +

β

σ
w̃′(1) = v1.

Since the parameter of the Euler–Poisson–Darboux equation (1) satisfies the inequality k = σ+1 >
1, then by virtue of Theorem 4, the following assertion is true.

Theorem 9. Let ω > 0, σ = 2
ω+2 , k = ω+4

ω+2 , T = 1
σσ , A is a linear closed operator in E, v1 ∈

D(A2), and also for all n ∈ N the zeros of λ̂n defined by the equality (22) of the function Υα,β
k (λ),

belong to the resolvent set ρ(A), and the estimate

sup
n∈N

|λ̂n| ||(λ̂nI −A)−1|| < M0 < ∞

Then, the problem (31), (32) is uniquely solvable and its solution has the form

v(t) =
23/2−k/2σσt

(α+ βσσ) Γ(k/2 + 1/2)

×
∞∑

n=1

μ̂
k/2+1/2
n Jk/2+1/2(μ̂n)Yk(σt

1/σ ; λ̂n)

(μ̂2
n − (1/2 − k/2)2)J2

k/2−1/2(μ̂n) + μ̂2
n

(
J ′
k/2−1/2(μ̂n)

)2 λ̂n(λ̂nI −A)−1v1.
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