# On the Unique Solvability of Boundary Value Problems for an Abstract Euler-Poisson-Darboux Equations on a Finite Interval 

A. V. Glushak*<br>(Submitted by A. B. Muravnik)<br>Belgorod State National Research University, Belgorod, 308015 Russia<br>Received December 27, 2022; revised January 23, 2023; accepted January 29, 2023


#### Abstract

Sufficient conditions for the unique solvability of boundary value problems for a number of abstract singular equations that are formulated in terms of the zeros of the modified function Bessel and the resolvent of the operator coefficient of the considered equations.


DOI: 10.1134/S1995080223030149
Keywords and phrases: Euler-Poisson-Darboux equation, singular equations, boundary value problem, Dirichlet and Neumann conditions, unique resolution.

## 1. INTRODUCTION

Let $E$ be a Banach space and $A$ be a closed linear operator in $E$ whose domain $D(A) \subset E$ is not necessarily dense in $E$. Consider the problem of defining the function

$$
u(t) \in C([0,1], E) \bigcap C^{2}((0,1], E) \bigcap C((0,1), D(A)),
$$

satisfying the abstract Euler-Poisson-Darboux equation

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{k}{t} u^{\prime}(t)=A u(t), \quad 0<t<1, \tag{1}
\end{equation*}
$$

as well as some boundary conditions.
The statement of boundary conditions for the Euler-Poisson-Darboux equation, due to the singularity of the equation at the point $t=0$, depends on the parameter $k \in \mathbb{R}$. Various types of boundary conditions at the points $t=0$ and $t=1$, as well as the corresponding criteria for the uniqueness of the solution boundary and nonlocal problems were established in [1, 2].

Problems of solvability of boundary value problems for a nonsingular second-order equation (the case $k=0$ in the equation (1)) with various assumptions on the operator $A$ can be found in ([3], Ch. 3, Sec. 2), [4], ([5], Ch. 2), [6]. Results on the solvability of boundary value problems in a half-space for the Euler-Poisson-Darboux equation in partial derivatives are given in ([7], Sec. 41), and the boundary value problems on the semiaxis for abstract singular equations were studied in [8, 9]. Historical information and a detailed range of questions for equations containing the Bessel operator can be found in the introduction of monographs [10, 11].

In this paper, we present sufficient conditions for the unique solvability of the Dirichlet and Neumann boundary value problems for an abstract Euler-Poisson-Darboux equation (1) and also for a number of degenerate differential equations on a finite interval $[0,1]$. Moreover, for $t=1$ the boundary condition of the third type will be set.

[^0]
## 2. THE $k<1$ CASE FOR THE EULER-POISSON-DARBOUX EQUATION. DIRICHLET CONDITION FOR $t=0$

For the Dirichlet problem of the form

$$
\begin{equation*}
u(0)=u_{0}, \quad \alpha u(1)+\beta u^{\prime}(1)=u_{1} \tag{2}
\end{equation*}
$$

where $\alpha, \beta \in \mathbb{R}$, the following criterion for the uniqueness of a solution was proved in [1].
Theorem 1. Let $k<1$ and $A$ be a linear closed operator in $E$. We assume that the boundary problem (1), (2) has a solution $u(t)$. For this solution to be unique, necessary and sufficient, that none of the $\lambda_{n}, n \in \mathbb{N}$ zeros of the function

$$
\begin{equation*}
\Upsilon_{2-k}^{\alpha, \beta}(\lambda)=(\alpha+\beta-\beta k) Y_{2-k}(1 ; \lambda)+\beta Y_{2-k}^{\prime}(1 ; \lambda) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{2-k}(t ; \lambda)=\Gamma(3 / 2-k / 2)(t \sqrt{\lambda} / 2)^{k / 2-1 / 2} I_{1 / 2-k / 2}(t \sqrt{\lambda}), \tag{4}
\end{equation*}
$$

$\Gamma(\cdot)$ is Euler gamma function, $I_{\nu}(\cdot)$ is modified Bessel function, would not be an eigenvalue of the operator $A$, i.e., $\lambda_{n} \notin \sigma_{p}(A)$.

Theorem 1 is established under very general conditions on the operator $A$, which do not ensure the solvability of the Dirichlet problem. In the following theorem, we give sufficient conditions for its unique solvability. In what follows, we will use notation $\sqrt{\lambda_{n}}=i \mu_{n}$, where $\mu_{n}$ are positive function zeros

$$
\frac{(\alpha+\beta(1-k) / 2) J_{1 / 2-k / 2}(\mu)+\beta \mu J_{1 / 2-k / 2}^{\prime}(\mu)}{\mu^{1 / 2-k / 2}},
$$

obtained from $\Upsilon_{2-k}^{\alpha, \beta}(\lambda)$ after replacing $\sqrt{\lambda}=i \mu$.
Theorem 2. Let $k<1, \frac{\alpha}{\beta}>k-1$, A be a linear closed operator in $E$, $u_{1} \in D\left(A^{2}\right)$, and also for all $n \in \mathbb{N}$ the zeros of $\lambda_{n}$ defined by the equalities (3), (4) of the function $\Upsilon_{2-k}^{\alpha, \beta}(\lambda)$, belong to the resolvent set $\rho(A)$, and the estimate

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left|\lambda_{n}\right|\left\|\left(\lambda_{n} I-A\right)^{-1}\right\|<M_{0}<\infty . \tag{5}
\end{equation*}
$$

Then, the problem

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{k}{t} u^{\prime}(t)=A u(t), \quad u(0)=0, \quad \alpha u(1)+\beta u^{\prime}(1)=u_{1} \tag{6}
\end{equation*}
$$

is uniquely solvable and its solution has the form

$$
\begin{gather*}
u(t)=\frac{2^{k / 2+1 / 2} t^{1-k}}{(\alpha+\beta-\beta k) \Gamma(3 / 2-k / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right) Y_{2-k}\left(t ; \lambda_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} \lambda_{n}\left(\lambda_{n} I-A\right)^{-1} u_{1} . \tag{7}
\end{gather*}
$$

Proof. As is known [12, points 15.33-15.35], zeros $\lambda_{n}$ of the function $\Upsilon_{2-k}^{\alpha, \beta}(\lambda)$ simple, negative and $\lim _{n \rightarrow \infty} \frac{\lambda_{n}}{n^{2}}=-\pi^{2}$. Arrange them in descending order and using the equality

$$
\begin{equation*}
\lambda_{n}\left(\lambda_{n} I-A\right)^{-1} u_{1}=I+A\left(\lambda_{n} I-A\right)^{-1} u_{1} \tag{8}
\end{equation*}
$$

let us write (for now formally) the series (7) in the form

$$
\begin{gather*}
u(t)=\psi_{k}(t) u_{1}+\frac{2^{k / 2+1 / 2} t^{1-k}}{(\alpha+\beta-\beta k) \Gamma(3 / 2-k / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right) Y_{2-k}\left(t ; \lambda_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} A\left(\lambda_{n} I-A\right)^{-1} u_{1}, \tag{9}
\end{gather*}
$$

where

$$
\begin{gather*}
\psi_{k}(t)=\frac{2^{k / 2+1 / 2} t^{1-k}}{(\alpha+\beta-\beta k) \Gamma(3 / 2-k / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right) Y_{2-k}\left(t ; \lambda_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} \tag{10}
\end{gather*}
$$

In particular, it follows from the equality (8) that the multiplication of the resolvent $\left(\lambda_{n} I-A\right)^{-1} u_{1}$ by a $\lambda_{n}$ corresponds to the application of the operator $A$.

Denoting $\sqrt{\lambda_{n}}=i \mu_{n}$, defined by the equality (10), the function $\psi_{k}(t)$ in terms of Bessel functions of the first kind $J_{\nu}(\cdot)$ can be rewritten in the form

$$
\begin{gather*}
\psi_{k}(t)=\frac{2 t^{1 / 2-k / 2}}{(\alpha+\beta-\beta k)} \\
\times \sum_{n=1}^{\infty} \frac{\mu_{n} J_{3 / 2-k / 2}\left(\mu_{n}\right) J_{1 / 2-k / 2}\left(t ; \mu_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}}=\frac{t^{1-k}}{(\alpha+\beta-\beta k)}, \tag{11}
\end{gather*}
$$

the Dini expansion of the power function was used (see 5.7.33.19 [13])

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu_{n} J_{3 / 2-k / 2}\left(\mu_{n}\right) J_{1 / 2-k / 2}\left(t ; \mu_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}}=\frac{1}{2} t^{1 / 2-k / 2}, \quad 0 \leq t \leq 1 \tag{12}
\end{equation*}
$$

In this way, $\psi_{k}(t)=t^{1-k} /(\alpha+\beta-\beta k)$ and, as is easy to see, the function $\psi_{k}(t) u_{1}, t \in[0,1]$, is a solution to the problem (6) for $A=0$.

Next, we study the convergence of the series in the formula (9). Same as in formulas (11) let's write it in the form

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu_{n} J_{3 / 2-k / 2}\left(\mu_{n}\right) J_{1 / 2-k / 2}\left(t ; \mu_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} A\left(\lambda_{n} I-A\right)^{-1} u_{1}, \quad \lambda_{n}=-\mu_{n}^{2} \tag{13}
\end{equation*}
$$

Using the Abel transform, one establishes (see [14, p. 306]) simultaneous convergence, moreover, to the same the sum of the next rows

$$
\sum_{n=1}^{\infty} a_{n} b_{n}, \quad \sum_{n=1}^{\infty}\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(b_{n}-b_{n+1}\right)
$$

provided that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(a_{1}+a_{2}+\cdots+a_{n}\right) b_{n}=0 \tag{14}
\end{equation*}
$$

Let's put

$$
a_{n}=\frac{\mu_{n} J_{3 / 2-k / 2}\left(\mu_{n}\right) J_{1 / 2-k / 2}\left(t ; \mu_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}}, \quad b_{n}=A\left(\lambda_{n} I-A\right)^{-1} u_{1}
$$

Then, due to (12)

$$
\begin{equation*}
\left|a_{1}+a_{2}+\cdots+a_{n}\right| \leq M_{1} t^{1 / 2-k / 2}, \quad M_{1}>0 \tag{15}
\end{equation*}
$$

and the difference $b_{n}-b_{n+1}$ is estimated using the inequality (5). Get

$$
\begin{equation*}
\left\|b_{n}-b_{n+1}\right\| \leq M_{0}\left(\frac{1}{\left|\lambda_{n}\right|}+\frac{1}{\left|\lambda_{n+1}\right|}\right)\left\|A u_{1}\right\| \leq \frac{M_{2}\left\|A u_{1}\right\|}{n^{2}} \tag{16}
\end{equation*}
$$

The condition (14) is obviously satisfied, and taking into account (15), (16), we have

$$
\begin{equation*}
\left\|\sum_{n=1}^{\infty}\left(a_{1}+a_{2}+\cdots+a_{n}\right)\left(b_{n}-b_{n+1}\right)\right\| \leq M_{3} t^{1 / 2-k / 2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left\|A u_{1}\right\| \tag{17}
\end{equation*}
$$

It follows from the inequality (17) that the series (13) converges absolutely and uniformly in $t \in[0,1]$ and, consequently, also the series in the formulas (7), (9) also converge.

It is easy to see that the representation (9) implies the validity of the boundary conditions $u(0)=0$, $\alpha u(1)+\beta u^{\prime}(1)=u_{1}$ of problem (6).

Let us show that the series in the formula (9) can be term by term differentiated as $u_{1} \in D\left(A^{2}\right)$. Consider a series of derivatives

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right) Y_{2-k}^{\prime}\left(t ; \lambda_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} A\left(\lambda_{n} I-A\right)^{-1} u_{1} \tag{18}
\end{equation*}
$$

and transform it using the equality $Y_{2-k}^{\prime}\left(t ; \lambda_{n}\right)=\frac{\lambda_{n} t}{3-k} Y_{4-k}\left(t ; \lambda_{n}\right)$. and the shift formula with respect to the parameter (see [15]). As a result (up to a power factor) we will have the series

$$
\begin{gathered}
\frac{1}{3-k} \sum_{n=1}^{\infty} \frac{\lambda_{n} \mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right) Y_{4-k}\left(t ; \lambda_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} A\left(\lambda_{n} I-A\right)^{-1} u_{1} \\
=\sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} \\
\times \int_{0}^{1}\left(1-s^{2}\right) s^{2-k} Y_{2-k}\left(t s ; \lambda_{n}\right) d s \lambda_{n} A\left(\lambda_{n} I-A\right)^{-1} u_{1} d s \\
=\int_{0}^{1}\left(1-s^{2}\right) s^{2-k}\left(\sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right) Y_{2-k}\left(t s ; \lambda_{n}\right) \lambda_{n}\left(\lambda_{n} I-A\right)^{-1} A u_{1}}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}}\right) d s .
\end{gathered}
$$

Using the equality (8), we obtain the sum of two series whose uniform convergence has already been proven earlier and which can be integrated term by term by $s$. Thus, it is established that the series in the formula (18) converges, and the series (9) can be differentiated term by term as $u_{1} \in D(A)$.

Since by the condition $u_{1} \in D\left(A^{2}\right)$, the possibility of one more differentiation of the series in the formula (9) installed in the same way.

We verify by direct differentiation that the function $u(t)$ defined by the equality (9) satisfies task (6). To do this, we calculate its derivatives. We have

$$
\begin{gather*}
u^{\prime}(t)=\psi^{\prime}(t) u_{1}-\frac{2^{k / 2+1 / 2}}{(\alpha+\beta-\beta k) \Gamma(3 / 2-k / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right)\left((1-k) t^{-1} Y_{2-k}\left(t ; \lambda_{n}\right)+t^{1-k} Y_{2-k}^{\prime}\left(t ; \lambda_{n}\right)\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} A\left(\lambda_{n} I-A\right)^{-1} u_{1}  \tag{19}\\
\times \sum_{n=1}^{\infty} \frac{2^{\prime \prime}(t)=\psi^{\prime \prime}(t) u_{1}-\frac{2^{k / 2+1 / 2}}{(\alpha+\beta-\beta k) \Gamma(3 / 2-k / 2)}}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}}\left((1-k)(-k) t^{-k-1} Y_{2-k}\left(t ; \lambda_{n}\right)\right.
\end{gather*}
$$

$$
\begin{equation*}
\left.+(1-k) t^{-k} Y_{2-k}^{\prime}\left(t ; \lambda_{n}\right)+t^{1-k} Y_{2-k}^{\prime \prime}\left(t ; \lambda_{n}\right)\right) A\left(\lambda_{n} I-A\right)^{-1} u_{1} \tag{20}
\end{equation*}
$$

Substituting (19), (20) into the left side of the equation (1), we get

$$
\begin{gathered}
u^{\prime \prime}(t)+\frac{k}{t} u^{\prime}(t)=-\frac{2^{k / 2+1 / 2}}{(\alpha+\beta-\beta k) \Gamma(3 / 2-k / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} \\
\times\left(t^{1-k}\left(Y_{2-k}^{\prime \prime}\left(t ; \lambda_{n}\right)+(2-k) t^{-1} Y_{2-k}^{\prime}\left(t ; \lambda_{n}\right)\right)\right) A\left(\lambda_{n} I-A\right)^{-1} u_{1}=\frac{2^{k / 2+1 / 2} t^{1-k}}{(\alpha+\beta-\beta k) \Gamma(3 / 2-k / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right) Y_{2-k}\left(t ; \lambda_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} \lambda_{n} A\left(\lambda_{n} I-A\right)^{-1} u_{1}=A u(t) .
\end{gathered}
$$

Thus, the function $u(t)$ defined by the equality (7) is a solution to the problem (6), and thus the theorem is proved.

Example 1. In the particular case $E=\mathbb{C}, A \in \mathbb{R}, A<0, k=0$, formula (7) has the form

$$
\begin{gathered}
u(t)=\frac{2^{1 / 2} t}{(\alpha+\beta) \Gamma(3 / 2)} \sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2} J_{3 / 2}\left(\mu_{n}\right) Y_{2}\left(t ; \lambda_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2)^{2}\right) J_{1 / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} \lambda_{n}\left(\lambda_{n} I-A\right)^{-1} u_{1} \\
=\frac{4}{\alpha+\beta} \sum_{n=1}^{\infty} \frac{\mu_{n}\left(\sin \mu_{n}-\mu_{n} \cos \mu_{n}\right) \sin \mu_{n} t}{\left(\mu_{n}^{2}+A\right)\left(\mu_{n}-\cos \mu_{n} \sin \mu_{n}\right)} u_{1},
\end{gathered}
$$

where $\mu_{n}$ are function zeros

$$
\frac{(\alpha+\beta / 2) J_{1 / 2}(\mu)+\beta \mu J_{1 / 2}^{\prime}(\mu)}{\mu^{1 / 2}}
$$

It is easy to see that in this scalar case the solution is also the function

$$
\frac{\sin (t \sqrt{-A}) u_{1}}{\alpha \sin \sqrt{-A}+\beta \sqrt{-A} \cos \sqrt{-A}}
$$

Therefore, due to the uniqueness of Theorem 2, the sum of the used series can be found, which is equal to

$$
\sum_{n=1}^{\infty} \frac{\mu_{n}\left(\sin \mu_{n}-\mu_{n} \cos \mu_{n}\right) \sin \mu_{n} t}{\left(\mu_{n}^{2}+A\right)\left(\mu_{n}-\cos \mu_{n} \sin \mu_{n}\right)}=\frac{(\alpha+\beta) \sin (t \sqrt{-A})}{4(\alpha \sin \sqrt{-A}+\beta \sqrt{-A} \cos \sqrt{-A})}
$$

To conclude this section, we note that, in the language of control theory, Theorem 2 means controllability from the zero position of the system described by the conditions (6).

## 3. THE $k \geq 0$ CASE FOR THE EULER-POISSON-DARBOUX EQUATION. NEUMANN'S WEIGHT CONDITION AT $t=0$

For the Euler-Poisson-Darboux equation (1), consider a boundary value problem of the form

$$
\begin{equation*}
\lim _{t \rightarrow 0+} t^{k} u^{\prime}(t)=u_{0}, \quad \alpha u(1)+\beta u^{\prime}(1)=u_{1} \tag{21}
\end{equation*}
$$

where $k \geq 0, \alpha, \beta \in \mathbb{R}$.
In [1], the following criterion for the uniqueness of a solution was proved.

Theorem 3. Let $k \geq 0$ and $A$ be a linear closed operator in $E$. We assume that the boundary problem (1), (21) has a solution $u(t)$. For this solution to be unique, necessary and sufficient, that none of the $\widehat{\lambda}_{n}, n \in \mathbb{N}$ zeros of the function

$$
\begin{equation*}
\Upsilon_{k}^{\alpha, \beta}(\lambda)=\alpha Y_{k}(1 ; \lambda)+\beta Y_{k}^{\prime}(1 ; \lambda), \tag{22}
\end{equation*}
$$

where $Y_{k}(t ; \lambda)=\Gamma(k / 2+1 / 2)(t \sqrt{\lambda} / 2)^{1 / 2-k / 2} I_{k / 2-1 / 2}(t \sqrt{\lambda})$, would not be an eigenvalue of the operator $A$.

Theorem 4. Let $k \geq 0, \frac{\alpha}{\beta}>0$, A be a linear closed operator in $E$, $u_{1} \in D\left(A^{2}\right)$, and also for all $n \in \mathbb{N}$ the zeros of $\widehat{\lambda}_{n}$ defined by the equality (22) of the function $\Upsilon_{k}(\lambda)$, belong to the resolvent set $\rho(A)$, and the estimate

$$
\sup _{n \in \mathbb{N}}\left|\widehat{\lambda}_{n}\right|\left\|\left(\widehat{\lambda}_{n} I-A\right)^{-1}\right\|<M_{0}<\infty .
$$

Then, the problem

$$
\begin{equation*}
u^{\prime \prime}(t)+\frac{k}{t} u^{\prime}(t)=A u(t), \quad \lim _{t \rightarrow 0+} t^{k} u^{\prime}(t)=0, \quad \alpha u(1)+\beta u^{\prime}(1)=u_{1} \tag{23}
\end{equation*}
$$

is uniquely solvable and its solution has the form

$$
\begin{gather*}
u(t)=\frac{2^{3 / 2-k / 2}}{\alpha \Gamma(k / 2+1 / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\widehat{\mu}_{n}^{k / 2+1 / 2} J_{k / 2+1 / 2}\left(\widehat{\mu}_{n}\right) Y_{k}\left(t ; \widehat{\lambda}_{n}\right)}{\left(\widehat{\mu}_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{k / 2-1 / 2}^{2}\left(\widehat{\mu}_{n}\right)+\widehat{\mu}_{n}^{2}\left(J_{k / 2-1 / 2}^{\prime}\left(\widehat{\mu}_{n}\right)\right)^{2}} \widehat{\lambda}_{n}\left(\widehat{\lambda}_{n} I-A\right)^{-1} u_{1} . \tag{24}
\end{gather*}
$$

The proof of Theorem 4 on the solvability of the problem (23) is basically similar to the proof of Theorem 2.

Example 2. In the particular case $E=\mathbb{C}, A \in \mathbb{R}, A<0, k=2$, the formula (24) has the form

$$
\begin{gathered}
u(t)=\frac{2^{1 / 2}}{(\alpha) \Gamma(3 / 2)} \sum_{n=1}^{\infty} \frac{\widehat{\mu}_{n}^{3 / 2} J_{3 / 2}\left(\widehat{\mu}_{n}\right) Y_{2}\left(t ; \widehat{\lambda}_{n}\right)}{\left(\widehat{\mu}_{n}^{2}-(1 / 2)^{2}\right) J_{1 / 2}^{2}\left(\widehat{\mu}_{n}\right)+\widehat{\mu}_{n}^{2}\left(J_{1 / 2}^{\prime}\left(\widehat{\mu}_{n}\right)\right)^{2}} \widehat{\lambda}_{n}\left(\widehat{\lambda}_{n} I-A\right)^{-1} u_{1} \\
=\frac{4}{\alpha t} \sum_{n=1}^{\infty} \frac{\widehat{\mu}_{n}\left(\sin \widehat{\mu}_{n}-\widehat{\mu}_{n} \cos \widehat{\mu}_{n}\right) \sin \widehat{\mu}_{n} t}{\left(\widehat{\mu}_{n}^{2}+A\right)\left(\widehat{\mu}_{n}-\cos \widehat{\mu}_{n} \sin \widehat{\mu}_{n}\right)} u_{1},
\end{gathered}
$$

where $\widehat{\mu}_{n}$ are the zeros of the function

$$
\frac{(\alpha-\beta / 2) J_{1 / 2}(\mu)+\beta \mu J_{1 / 2}^{\prime}(\mu)}{\mu^{1 / 2}} .
$$

It is easy to see that in this scalar case the solution is also the function

$$
\frac{\sin (t \sqrt{-A}) u_{1}}{(\alpha-\beta) t \sin \sqrt{-A}+\beta t \sqrt{-A} \cos \sqrt{-A}} .
$$

Therefore, due to the uniqueness of Theorem 4, the sum of the used series can be found, which is equal to

$$
\sum_{n=1}^{\infty} \frac{\widehat{\mu}_{n}\left(\sin \widehat{\mu}_{n}-\widehat{\mu}_{n} \cos \widehat{\mu}_{n}\right) \sin \widehat{\mu}_{n} t}{\left(\widehat{\mu}_{n}^{2}+A\right)\left(\widehat{\mu}_{n}-\cos \widehat{\mu}_{n} \sin \widehat{\mu}_{n}\right)}=\frac{\alpha \sin (t \sqrt{-A})}{4((\alpha-\beta) \sin \sqrt{-A}+\beta \sqrt{-A} \cos \sqrt{-A})} .
$$

## 4. BOUNDARY VALUE PROBLEMS FOR DEGENERATE DIFFERENTIAL EQUATIONS WITH POWER DEGENERACY

As applications of Theorems 2 and 4 in the Banach space $E$, consider the equation that degenerates with respect to the variable $t$

$$
\begin{equation*}
t^{\gamma} v^{\prime \prime}(t)+b t^{\gamma-1} v^{\prime}(t)=A v(t), \quad 0<t<T \tag{25}
\end{equation*}
$$

Let $0<\gamma<2, b \in \mathbb{R}$. The value of the parameter $\gamma, 0<\gamma<2$ means a weak degeneration of the equation (25), in contrast to the case of strong degeneracy $\gamma>2$, which will also be considered further in the paper. For $\gamma=2$, the Euler equation is obtained, which, as is well known, reduces to a nondegenerate equation.

The setting of boundary conditions at the degeneracy point $t=0$ depends on the coefficients $b$ and $\gamma>0$ of the equation and these boundary conditions will be given below.

For $b<1$, consider the problem of determining the function $v(t) \in C([0, T], E) \bigcap C^{2}((0, T], E)$, belonging to $D(A)$ for $t \in(0, T)$, satisfying the equation (25) and the Dirichlet conditions

$$
\begin{equation*}
v(0)=0, \quad \alpha v(T)+\beta v^{\prime}(T)=v_{1} \tag{26}
\end{equation*}
$$

Change of independent variable and unknown function

$$
t=\left(\frac{\tau}{\delta}\right)^{\delta}, \quad \delta=\frac{2}{2-\gamma}, \quad v(t)=v\left(\left(\frac{\tau}{\delta}\right)^{\delta}\right)=w(\tau)
$$

taking into account the equalities

$$
v^{\prime}(t)=\left(\frac{\tau}{\delta}\right)^{1-\delta} w^{\prime}(\tau), \quad v^{\prime \prime}(t)=\left(\frac{\tau}{\delta}\right)^{2(1-\delta)}\left(w^{\prime \prime}(\tau)+\frac{1-\delta}{\tau} w^{\prime}(\tau)\right)
$$

reduces the weakly degenerate equation (25) to the Euler-Poisson-Darboux equation of the form

$$
\begin{equation*}
w^{\prime \prime}(\tau)+\frac{k}{\tau} w^{\prime}(\tau)=A w(\tau), \quad \tau \in[0, l] \tag{27}
\end{equation*}
$$

where $k=b \delta-\delta+1, \delta=\frac{2}{2-\gamma}, l=\delta T^{1 / \delta}$. To simplify the notation, we will further assume that $T$ is chosen so that $l=1$. At the same time, the conditions (26) are converted into conditions respectively

$$
\begin{equation*}
w(0)=0, \quad \alpha w(1)+\beta T^{-\gamma / 2} w^{\prime}(1)=v_{1} \tag{28}
\end{equation*}
$$

The resulting problem (27), (28) has already been studied by us in paragraph 2. Returning to the original Dirichlet problem (25), (26) for a weakly degenerate equation, using Theorem 2 , we formulate the following conditions unambiguous resolution.

Theorem 5. Let $0<\gamma<2, b<1, k=\frac{2(b-1)}{2-\gamma}+1, \delta=\frac{2}{2-\gamma}, T=\frac{1}{\delta^{\delta}}, A$ is a linear closed operator in $E, v_{1} \in D\left(A^{2}\right)$, and also for all $n \in \mathbb{N}$ the zeros of $\lambda_{n}$ defined by the equality (3) of the function $\Upsilon_{2-k}^{\alpha, \beta}(\lambda)$, belong to the resolvent set $\rho(A)$, and the estimate

$$
\sup _{n \in \mathbb{N}}\left|\lambda_{n}\right|\left\|\left(\lambda_{n} I-A\right)^{-1}\right\|<M_{0}<\infty
$$

Then, the Dirichlet problem (25), (26) for the weakly degenerate equation is uniquely solvable and its solution has the form

$$
\begin{gathered}
v(t)=\frac{2^{k / 2+1 / 2}\left(\delta t^{1 / \delta}\right)^{1-k}}{\left(\alpha+\beta T^{-\gamma / 2}(1-k)\right) \Gamma(3 / 2-k / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-k / 2} J_{3 / 2-k / 2}\left(\mu_{n}\right) Y_{2-k}\left(\left(\delta t^{1 / \delta}\right) ; \lambda_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{1 / 2-k / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-k / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} \lambda_{n}\left(\lambda_{n} I-A\right)^{-1} v_{1}
\end{gathered}
$$

As mentioned earlier, the setting of the boundary condition at the degeneracy point $t=0$ depends on the coefficient $b$. Let now the coefficient $b>\gamma / 2$ in the equation (27). In this case, instead of the Dirichlet conditions (26) the following conditions should be set

$$
\begin{equation*}
\lim _{t \rightarrow 0+} t^{b} v^{\prime}(t)=0, \quad \alpha v(T)+\beta v^{\prime}(T)=v_{1} \tag{29}
\end{equation*}
$$

Similar to Theorem 5, but using Theorem 4 instead of Theorem 2, and in this case we formulate the conditions for unique solvability corresponding boundary value problem.

Theorem 6. Let $0<\gamma<2, b>\gamma / 2, k=\frac{2(b-1)}{2-\gamma}+1, \delta=\frac{2}{2-\gamma} T=\frac{1}{\delta^{\gamma}}$, A is a linear closed operator in $E, v_{1} \in D\left(A^{2}\right)$, and also for all $n \in \mathbb{N}$ the zeros of $\widehat{\lambda}_{n}$ defined by the equality (22) of the function $\Upsilon_{k}^{\alpha, \beta}(\lambda)$, belong to the resolvent set $\rho(A)$, and the estimate

$$
\sup _{n \in \mathbb{N}}\left|\widehat{\lambda}_{n}\right|\left\|\left(\widehat{\lambda}_{n} I-A\right)^{-1}\right\|<M_{0}<\infty
$$

Then, the problem (25), (29) is uniquely solvable and its solution has the form

$$
\begin{gathered}
v(t)=\frac{2^{3 / 2-k / 2}}{\alpha \Gamma(k / 2+1 / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\widehat{\mu}_{n}^{k / 2+1 / 2} J_{k / 2+1 / 2}\left(\widehat{\mu}_{n}\right) Y_{k}\left(\delta t^{1 / \delta} ; \widehat{\lambda}_{n}\right)}{\left(\widehat{\mu}_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{k / 2-1 / 2}^{2}\left(\widehat{\mu}_{n}\right)+\widehat{\mu}_{n}^{2}\left(J_{k / 2-1 / 2}^{\prime}\left(\widehat{\mu}_{n}\right)\right)^{2}} \widehat{\lambda}_{n}\left(\widehat{\lambda}_{n} I-A\right)^{-1} v_{1}
\end{gathered}
$$

Let us further consider the equation (25) in the case of strong degeneracy, when the parameter $\gamma>2$. Change of independent variable and unknown function

$$
t=\left(-\frac{\tau}{\delta}\right)^{-\delta}, \quad \delta=\frac{2}{2-\gamma} v(t)=v\left(\left(-\frac{\tau}{\delta}\right)^{-\delta}\right)=\hat{w}(\tau)
$$

reduces the strongly degenerate equation (25) to the Euler-Poisson-Darboux equation of the form

$$
\begin{equation*}
\hat{w}^{\prime \prime}(\tau)+\frac{p}{\tau} \hat{w}^{\prime}(\tau)=A \hat{w}(\tau), \quad 0<\tau<l \tag{30}
\end{equation*}
$$

where $p=\frac{2(b-1)}{\gamma-2}+1, l=-\delta T^{-1 / \delta}$. To simplify notation, in what follows, as before, we will assume that $T$ is chosen so that $l=1$.

In the case of strong degeneracy, the setting of the boundary conditions at the degeneracy point $t=0$ also depends on the coefficient $b$. Sufficient conditions for the unique solvability of boundary value problems for the Euler-Poisson-Darboux equation (30), which reduce considered boundary value problems for strongly degenerate equations are contained in Theorems 2 and 4; therefore, similarly Theorems 5 and 6 establish the following assertions.

Theorem 7. Let $\gamma>2, b<1, p=\frac{2(b-1)}{2-\gamma}+1, \delta=\frac{2}{2-\gamma}, T=\left(\frac{1}{-\delta}\right)^{-\delta}$, A is a linear closed operator in $E, v_{1} \in D\left(A^{2}\right)$, and also for all $n \in \mathbb{N}$ the zeros of $\lambda_{n}$ defined by the equality (3) of the function $\Upsilon_{2-p}^{\alpha, \beta}(\lambda)$, belong to the resolvent set $\rho(A)$, and the estimate

$$
\sup _{n \in \mathbb{N}}\left|\lambda_{n}\right|\left\|\left(\lambda_{n} I-A\right)^{-1}\right\|<M_{0}<\infty
$$

Then, the Dirichlet problem (25), (26) for a strongly degenerate equation is uniquely solvable and its solution has the form

$$
\begin{gathered}
v(t)=\frac{2^{p / 2+1 / 2}\left(-\delta t^{-1 / \delta}\right)^{1-p}}{\left(\alpha+\beta(1-p) T^{-\gamma / 2}\right) \Gamma(3 / 2-p / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\mu_{n}^{3 / 2-p / 2} J_{3 / 2-p / 2}\left(\mu_{n}\right) Y_{2-p}\left(t ; \lambda_{n}\right)}{\left(\mu_{n}^{2}-(1 / 2-p / 2)^{2}\right) J_{1 / 2-p / 2}^{2}\left(\mu_{n}\right)+\mu_{n}^{2}\left(J_{1 / 2-p / 2}^{\prime}\left(\mu_{n}\right)\right)^{2}} \lambda_{n}\left(\lambda_{n} I-A\right)^{-1} v_{1} .
\end{gathered}
$$

Theorem 8. Let $\gamma>2, b>2-\gamma / 2, p=\frac{2(b-1)}{2-\gamma}+1, \delta=\frac{2}{2-\gamma}, T=\left(\frac{1}{-\delta}\right)^{-\delta}, A$ is a linear closed operator in $E, v_{1} \in D\left(A^{2}\right)$, and also for all $n \in \mathbb{N}$ the zeros of $\widehat{\lambda}_{n}$ defined by the equality (22) of the function $\Upsilon_{p}^{\alpha, \beta}(\lambda)$, belong to the resolvent set $\rho(A)$, and the estimate

$$
\sup _{n \in \mathbb{N}}\left|\widehat{\lambda}_{n}\right|\left\|\left(\widehat{\lambda}_{n} I-A\right)^{-1}\right\|<M_{0}<\infty .
$$

Then, the problem

$$
t^{\gamma} v^{\prime \prime}(t)+b t^{\gamma-1} v^{\prime}(t)=A v(t), \quad \lim _{t \rightarrow 0+} t^{2-b} v^{\prime}(t)=0, \quad \alpha v(T)+\beta v^{\prime}(T)=v_{1}
$$

is uniquely solvable and its solution has the form

$$
\begin{gathered}
v(t)=\frac{2^{3 / 2-p / 2}}{\alpha \Gamma(p / 2+1 / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\widehat{\mu}_{n}^{p / 2+1 / 2} J_{p / 2+1 / 2}\left(\widehat{\mu}_{n}\right) Y_{p}\left(-\delta t^{-1 / \delta} ; \widehat{\lambda}_{n}\right)}{\left(\widehat{\mu}_{n}^{2}-(1 / 2-p / 2)^{2}\right) J_{p / 2-1 / 2}^{2}\left(\widehat{\mu}_{n}\right)+\widehat{\mu}_{n}^{2}\left(J_{p / 2-1 / 2}^{\prime}\left(\widehat{\mu}_{n}\right)\right)^{2}} \widehat{\lambda}_{n}\left(\widehat{\lambda}_{n} I-A\right)^{-1} v_{1} .
\end{gathered}
$$

Finally, we formulate a theorem for the abstract analogue of the degenerate in space variable differential equation with a power character of degeneracy. For $\omega>0$, consider the equation

$$
\begin{equation*}
v^{\prime \prime}(t)=t^{\omega} A v(t), \quad 0<t<T \tag{31}
\end{equation*}
$$

and boundary conditions

$$
\begin{equation*}
v(0)=0, \quad \alpha v(T)+\beta v^{\prime}(T)=v_{1} . \tag{32}
\end{equation*}
$$

If $A$ is the differentiation operator with respect to the spatial variable $x$, for example, $A v(t, x)=$ $v_{x x}^{\prime \prime}(t, x)$, then the equation (31) is a degenerate hyperbolic generalization of the Tricomi equation, but has a different character degeneracy compared to the previous degenerate equations. Therefore, the abstract equation (31) is also natural call degenerate.

Change of variable and unknown function

$$
t=\left(\frac{\tau}{\sigma}\right)^{\sigma}, \quad \sigma=\frac{2}{\omega+2}, \quad v(t)=\left(\frac{\tau}{\sigma}\right)^{\sigma} \tilde{w}(\tau)
$$

for $T=\frac{1}{\sigma^{\sigma}}$ reduces the problem (31), (32) to a boundary value problem for Euler-Poisson-Darboux equations

$$
\begin{gathered}
\tilde{w}^{\prime \prime}(\tau)+\frac{\sigma+1}{\tau} \tilde{w}^{\prime}(\tau)=A \tilde{w}(\tau) \quad(0<\tau<1), \quad \lim _{\tau \rightarrow 0+} \tau^{\sigma+1} \tilde{w}^{\prime}(\tau)=0, \\
\left(\frac{\alpha}{\sigma^{\sigma}}+\beta\right) \tilde{w}(1)+\frac{\beta}{\sigma} \tilde{w}^{\prime}(1)=v_{1} .
\end{gathered}
$$

Since the parameter of the Euler-Poisson-Darboux equation(1) satisfies the inequality $k=\sigma+1>$ 1 , then by virtue of Theorem 4, the following assertion is true.

Theorem 9. Let $\omega>0, \sigma=\frac{2}{\omega+2}, k=\frac{\omega+4}{\omega+2}, T=\frac{1}{\sigma^{\sigma}}, A$ is a linear closed operator in $E, v_{1} \in$ $D\left(A^{2}\right)$, and also for all $n \in \mathbb{N}$ the zeros of $\widehat{\lambda}_{n}$ defined by the equality (22) of the function $\Upsilon_{k}^{\alpha, \beta}(\lambda)$, belong to the resolvent set $\rho(A)$, and the estimate

$$
\sup _{n \in \mathbb{N}}\left|\widehat{\lambda}_{n}\right|\left\|\left(\widehat{\lambda}_{n} I-A\right)^{-1}\right\|<M_{0}<\infty
$$

Then, the problem (31), (32) is uniquely solvable and its solution has the form

$$
\begin{gathered}
v(t)=\frac{2^{3 / 2-k / 2} \sigma^{\sigma} t}{\left(\alpha+\beta \sigma^{\sigma}\right) \Gamma(k / 2+1 / 2)} \\
\times \sum_{n=1}^{\infty} \frac{\widehat{\mu}_{n}^{k / 2+1 / 2} J_{k / 2+1 / 2}\left(\widehat{\mu}_{n}\right) Y_{k}\left(\sigma t^{1 / \sigma} ; \widehat{\lambda}_{n}\right)}{\left(\widehat{\mu}_{n}^{2}-(1 / 2-k / 2)^{2}\right) J_{k / 2-1 / 2}^{2}\left(\widehat{\mu}_{n}\right)+\widehat{\mu}_{n}^{2}\left(J_{k / 2-1 / 2}^{\prime}\left(\widehat{\mu}_{n}\right)\right)^{2}} \widehat{\lambda}_{n}\left(\widehat{\lambda}_{n} I-A\right)^{-1} v_{1}
\end{gathered}
$$

## REFERENCES

1. A. V. Glushak, "Uniqueness criterion for the solution of boundary-value problems for the abstract Euler-Poisson-Darboux equation on a finite interval," Math. Notes 109, 867-875 (2021).
2. A. V. Glushak, "Uniqueness criterion for solutions of nonlocal problems on a finite interval for abstract singular equations," Math. Notes 111, 20-32 (2022).
3. S. G. Krein, Linear Differential Equations in Banach Space (Nauka, Moscow, 1967) [in Russian].
4. A. V. Knyazyuk, "The Dirichlet problem for differential equations of the second order with operator coefficient," Ukr. Mat. J. 37, 256-260 (1985).
5. V. K. Ivanov, I. V. Melnikova, and A. I. Filinkov, Differential Operator Equations and Ill-Posed Problems (Fizmatlit, Moscow, 1995)[in Russian].
6. I. Cioranescu and C. Lizama, "Some applications of Fejer's theorem to operator cosine functions in banach spaces," Proc. Am. Mat. Soc. 125, 2353-2362 (1997).
7. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (CRC, Boca Raton, FL, 1993).
8. A. V. Glushak, "Stabilization of a solution of the Dirichlet problem for an elliptic equation in a banach spaces," Differ. Equat. 33, 513-517 (1997).
9. A. V. Glushak, "On the solvability of boundary value problems for an abstract Bessel-Struve equation," Differ. Equat. 55, 1069-1076 (2019).
10. I. A. Kipriyanov, Singular Elliptic Boundary Value Problems (Nauka, Moscow, 1997) [in Russian].
11. S. M. Sitnik and E. L. Shishkina, Method of Transformation Operators for Differential Equations with Bessel Operator (Nauka, Moscow, 2019) [in Russian].
12. G. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, 1945), Vol. 1.
13. A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series, Vol. 2: Special Functions) (Nauka, Moscow, 1983; Taylor Francis, London, 2002).
14. G. M. Fikhtengolts, Course of Differential and Integral Calculus (Nauka, Moscow, 2015), Vol. 2 [in Russian].
15. A. V. Glushak and O. A. Pokruchin, "Criterion for the solvability of the Cauchy problem for an abstract Euler-Poisson-Darboux equation," Differ. Equat. 52, 39-57 (2016).

[^0]:    *E-mail: aleglu@mail.ru

