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Abstract 23 

Harmful algal blooms (HABs) are an increasing threat to global fisheries and human health. The 24 

mitigation of HABs requires management strategies to successfully forecast the abundance and 25 

distribution of harmful algal taxa. In this study, we attempt to characterize the dynamics of 2 26 

phytoplankton genera (Pseudo-nitzschia spp. and Dinophysis spp.) in Narragansett Bay, Rhode 27 

Island, using empirical dynamic modeling. We utilize a high-resolution Imaging FlowCytobot 28 

dataset to generate a daily-resolution time series of phytoplankton images and then characterize 29 

the sub-monthly (1-30 days) timescales of univariate and multivariate prediction skill for each 30 

taxon. Our results suggest that univariate predictability is low overall, different for each taxon and 31 

does not significantly vary over sub-monthly timescales. For all univariate predictions, models can 32 

rely on the inherent autocorrelation within each time series. When we incorporated multivariate 33 

data based on quantifiable image features, we found that predictability increased for both taxa and 34 

that this increase was apparent on timescales >7 days. Pseudo-nitzschia spp. has distinctive 35 

predictive dynamics that occur on timescales of around 16 and 25 days. Similarly, Dinophysis spp. 36 

is most predictable on timescales of 25 days. The timescales of prediction for Pseudo-nitzschia 37 

spp. and Dinophysis spp. could be tied to environmental drivers such as tidal cycles, water 38 

temperature, wind speed, community biomass, salinity, and pH in Narragansett Bay. For most 39 

drivers, there were consistent effects between the environmental variables and the phytoplankton 40 

taxon. Our analysis displays the potential of utilizing data from automated cell imagers to forecast 41 

and monitor harmful algal blooms.  42 

 43 

Keywords: Imaging FlowCytobot (IFCB); empirical dynamic modeling (EDM); Narragansett 44 

Bay; phytoplankton population dynamics; ecological forecasting; Pseudo-nitzschia; Dinophysis 45 
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Introduction 46 

Harmful algal blooms (HABs) are anomalous increases in phytoplankton abundance, 47 

biomass, or distribution that can negatively affect marine ecosystems and public health (Fleming 48 

et al. 2011; Berdalet et al. 2016; Karlson et al. 2021). The rising frequency of such events in the 49 

past few decades is of increasing global concern (Xiao et al. 2019; Gobler 2020). Some estimates 50 

of economic damage due to HABs exceed hundreds of millions of dollars (Anderson et al. 2000), 51 

often due to fisheries closures (Brown et al. 2020; Sakamoto et al. 2021), disruption to tourism 52 

(Smith et al. 2019; Béchard 2020) and damage to human health (Grattan et al. 2016; Kouakou and 53 

Poder 2019). Consequently, the successful prediction and mitigation of HABs is a research priority 54 

for state and national governments worldwide (Park et al. 2013; Brooks et al. 2016).  55 

HAB predictions often require large amounts of data from various sources and 56 

sophisticated modeling techniques (Franks 2018; Ralston and Moore 2020), as well as detailed 57 

information on local and regional oceanographic features (Anderson et al. 2010; Dippner et al. 58 

2011; Lapucci et al. 2022). Due to the requirement of high resolution and consistent data, 59 

monitoring programs are implementing automated systems (Babin et al. 2005; Jochens et al. 2010) 60 

with extensively trained algorithms (Sosik and Olson 2007; Ellen et al. 2019; Orenstein et al. 2020) 61 

that can identify and alert local officials of the presence, abundance and risk of HAB development. 62 

The rapid deployment of such systems has greatly expanded the ability to detect HABs; however, 63 

less is known about the utility of imaging data for HAB prediction models.  64 

In this study, we explored the use of phytoplankton imaging data for HAB predictions in 65 

Narragansett Bay, Rhode Island (NBay). Narragansett Bay is a shallow coastal marine estuary of 66 

great cultural, historical, and economic importance to local communities (Herndon and Sekatau 67 

1997; Dalton et al. 2010; Nixon and Fulweiler 2012). Coastal marine estuaries are highly dynamic 68 



4 
 

environments that are subject to seasonality (Carstensen et al. 2015), the influence of both 69 

freshwater and seawater sources (Pilson 1985), large-scale climate phenomena (Scavia et al. 2002), 70 

and anthropogenic inputs of nutrients (Cundell 1973; Goldberg et al. 1977). Within the past 71 

decade, toxic harmful algal blooms have led to fisheries closures in Narragansett Bay (Bates et al. 72 

2018) and motivated extensive research into the potential environmental drivers and species 73 

composition (Sterling et al. 2022) of the relevant bloom-causing phytoplankton genera. Of 74 

particular importance in this area are Pseudo-nitzschia spp. and Dinophysis spp. due to their 75 

potential toxicity and relevance for local fishery disruption. 76 

Natural phytoplankton populations are variable from daily, seasonal to decadal timescales 77 

(Chavez et al. 2003; Barton et al. 2016; Blauw et al. 2018). High variability in natural 78 

phytoplankton populations is characteristic of non-linear and chaotic dynamics (Ascioti et al. 1993; 79 

Smayda 1998). In this paper, we used empirical dynamic modeling (EDM) to predict the 80 

abundance of Pseudo-nitzschia spp. and Dinophysis spp. in Narragansett Bay, Rhode Island. These 81 

genera were selected for a couple of reasons: their role in local harmful algal blooms and the 82 

availability of a dynamic, regular time series that would allow for the use of data-driven analyses. 83 

EDM is a non-parametric framework that can avoid the pitfalls of typical statistical modeling by 84 

relying on data-driven attractor reconstruction (Perretti et al. 2013; Chang et al. 2017).  85 

Our goal was to characterize the sub-monthly univariate and multivariate prediction 86 

timescales of Pseudo-nitzschia spp. and Dinophysis spp. utilizing a high temporal resolution 87 

dataset generated with an Imaging FlowCytobot (Olson and Sosik 2007). Automated instruments 88 

such as the Imaging FlowCytobot generate datasets of phytoplankton images and many associated 89 

features (i.e. image texture, contrast, object size etc.). Specifically, we aim to answer (1) How 90 

predictable are the harmful algal target species? (2) How does this predictability vary with time? 91 
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and (3) Which image features best describe the dynamics of the taxa? Once we identified the 92 

important timescales, we also linked specific environmental drivers to the dynamics of the 93 

phytoplankton populations. Our study did not attempt to offer detailed mechanistic explanations 94 

of observed phenomena, nor develop tools that might model the growth and termination of harmful 95 

algal blooms, but instead, it focused on identifying the potential of imaging data in prediction 96 

models. By identifying the relevant dynamical timescales of harmful algal blooms, we also hoped 97 

to provide local and regional management with a critical timeframe of action for the development 98 

of environmental policy. Our underlying assumption was that the predictability of Pseudo-99 

nitzschia spp. and Dinophysis spp. in Narragansett Bay had distinct timescales that varied in 100 

response to environmental drivers and intrinsic population dynamics. 101 

 102 

Materials and Methods  103 

Automated cell imaging 104 

All the time series used in this study were collected by deploying an Imaging FlowCytobot 105 

(IFCB) in Narragansett Bay, Rhode Island. The IFCB is an automated, flow-through imaging 106 

system that captures images of the extant phytoplankton community in seawater. The system has 107 

a maximum size limit of 150µm and works by drawing water at approximately 1m under the 108 

surface at low tide. As our IFCB was deployed at the end of a pier (41.492ºN, 71.419ºW), the 109 

actual sampling depth varied with the tidal cycle. Images can be observed in real-time using the 110 

IFCB dashboard (http://ifcb-dashboard.gso.uri.edu/). 111 

The IFCB samples approximately every 20 minutes depending on the number of cells 112 

within a given sample. We used daily aggregated IFCB data from 14th June 2017 to 20th October 113 
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2021, barring gaps in the time series due to equipment malfunction or maintenance. Our data span 114 

1590 days of observation with 518 days of missing data. For prediction tasks, all missing data 115 

points were approximated using 30-day exponential moving averages (EMA) computed by the R 116 

package “imputeTS” (Moritz and Bartz-Beielstein 2017). We used daily aggregated data, instead 117 

of other shorter timescales (such as 1-hr or 12-hr) for three broad reasons: the influence of high 118 

time series autocorrelation, irregular gaps in data collection, and, to strike a balance between 119 

computational costs and expected analytical benefit.  120 

 A machine-learning approach was used to identify and classify the phytoplankton taxa 121 

from a subset of annotated images (Sosik and Olson 2007). All obtained images classified as 122 

Pseudo-nitzschia spp. and Dinophysis spp. were counted and reported as a concentration based on 123 

the average sampling volume for each day (𝑖𝑚𝑎𝑔𝑒𝑠	𝑚𝐿!"). Higher concentrations of images act 124 

as a proxy of higher abundance in the natural environment and lower concentrations of images 125 

show that the taxon is rare/absent. To test the general ability to use image concentration as a proxy 126 

for phytoplankton abundance, we visually compared our image concentration time series to a long-127 

term weekly monitoring site located approximately 12km north of our IFCB location 128 

(https://web.uri.edu/gso/research/plankton/). Figure S1 highlights that our IFCB image 129 

concentration agreed with the general pattern of Pseudo-nitzschia spp. abundance in Narragansett 130 

Bay (as determined by microscopy counts) over the duration of our time series.  131 

We evaluated the classifier’s performance for sensitivity and precision with a manually 132 

annotated library of images. Table 1 reports the performance of the classifier for Pseudo-nitzschia 133 

spp. and Dinophysis spp. 134 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 135 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 136 

where TP, FP and FN were the number of true positive, false positive, and false negative images.  137 

 138 

Table 1: Sensitivity and precision of the automatic classifier for each of the phytoplankton classes. 139 

 Sensitivity Precision 

Pseudo-nitzschia spp. (N=626) 0.85 0.94 

Dinophysis spp. (N=412) 0.95 0.96 

 140 

 236 image features are automatically estimated for each IFCB image (Sosik and Olson 141 

2007, https://github.com/hsosik/ifcb-analysis/wiki). We selected 20 features for further analysis 142 

based on their relevance to phytoplankton morphology and ecology (Sonnet et al. 2022). The 143 

average daily values for the image features, scaled by the average sampling volume for each day, 144 

formed a multi-dimensional time series for each taxon. Table 2 lists all the features and their units. 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 
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Table 2: List of all image features used in this study and their units. 153 

Feature Units 

area 𝑝𝑖𝑥𝑒𝑙𝑠# 

biovolume 𝑝𝑖𝑥𝑒𝑙𝑠$ 

major axis 𝑝𝑖𝑥𝑒𝑙𝑠 

minor axis 𝑝𝑖𝑥𝑒𝑙𝑠 

perimeter 𝑝𝑖𝑥𝑒𝑙𝑠 

orientation 𝑑𝑒𝑔𝑟𝑒𝑒𝑠 

eccentricity - 

solidity - 

texture uniformity - 

texture smoothness - 

texture gray - 

texture entropy - 

texture contrast - 

h90 𝑝𝑖𝑥𝑒𝑙𝑠 

h180 𝑝𝑖𝑥𝑒𝑙𝑠 

hflip 𝑝𝑖𝑥𝑒𝑙𝑠 

extent 𝑝𝑖𝑥𝑒𝑙𝑠 

equivalent diameter 𝑝𝑖𝑥𝑒𝑙𝑠 

convex area 𝑝𝑖𝑥𝑒𝑙𝑠# 

convex perimeter 𝑝𝑖𝑥𝑒𝑙𝑠 

 154 

 155 

 156 

 157 

 158 
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 Environmental data 159 

We compiled data from various monitoring programs located in and around Narragansett 160 

Bay. Daily averages of water temperature (°𝐶), salinity (𝑝𝑝𝑡), chlorophyll (𝜇𝑔	𝐿!"), and pH were 161 

requested from the Narragansett Bay Fixed Site Monitoring Network (NBFSMN, personal 162 

communication: Heather Stoffel). These measurements were co-located with the Imaging 163 

FlowCytobot. Daily averages of wind speed (𝑚	𝑠!") were drawn from the Kingston weather 164 

station (41.49ºN 71.54ºW; U.S. Climate Reference Network; 165 

https://www1.ncdc.noaa.gov/pub/data/uscrn/products/subhourly01/).  Daily averages of tidal 166 

height (Mean Sea Level; 𝑚) were calculated from measurements at the NOAA Quonset Point 167 

Buoy (41° 35.2 N, 71° 24.6 W; #8454049; https://tidesandcurrents.noaa.gov/). Additional 168 

environmental data, such as ambient nutrient concentrations, were not available at the same 169 

temporal scale as the imaging data used in the study. 170 

 171 

Univariate predictions 172 

We used empirical dynamic modeling (EDM) to make univariate predictions for the time 173 

series of each harmful algae. Every time series was normalized (i.e. subtracting the mean value of 174 

the time series and dividing by the standard deviation of the time series) before the application of 175 

EDM. Specifically, we relied on simplex projection (Sugihara and May 1990) with a consistent 176 

embedding dimension of 4 and leave-one-out cross validation. This means that the univariate 177 

attractor of a time series was embedded in a 4-dimensional space using the original times series 178 

and successive lags of the same time series. Each point is described by (𝑥% , 𝑥%!", 𝑥%!#, 𝑥%!$) where 179 

𝑥% is the value of 𝑥 at time point 𝑡, 𝑥%!" is its value at time 𝑡 − 1, and so on.  The embedding 180 
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dimension was set at 4 to prevent overfitting and maximize the utilization of our daily-scale time 181 

series data. Figure S2 shows how varying the embedding dimension affects the predictability of 182 

each taxon with fixed prediction intervals of 1, 7, 14 and 28 days. An embedding dimension of 4 183 

allowed for reasonable descriptions across all timescales for both taxa, with a lower risk of 184 

overfitting our models to potentially noisy dynamics. The model creation and prediction sets were 185 

randomly selected from the entire time series in intervals of 250 days. After bootstrapping 200 186 

samples for each taxon, we generated a mean prediction and 95% confidence intervals 187 

(1.96 × 𝑆𝐸). By randomizing the selection of model and prediction libraries, we tried to account 188 

for the effects of imputed data into the time series, as well as avoid the effects of possible non-189 

stationarity over the 1590 days of data.  190 

We tested the predictability of each taxon for timescales of 1 to 30 days. Predictability was 191 

described by 𝜌&'()*, the Pearson correlation coefficient, between the observed and the predicted 192 

values after attractor reconstruction. To account for inherent autocorrelation within each time 193 

series, we subtracted the absolute value of the autocorrelation coefficient at each timescale of 194 

prediction. The effective value of predictability was reported as ∆𝜌, which is the arithmetic 195 

difference of the univariate predictability 𝜌&'()* and the autocorrelation coefficient 𝜌+,%'. 196 

Therefore, ∆𝜌 quantifies the ability of our model to predict dynamics beyond autocorrelation 197 

across a range of sub-monthly timescales. Due to the short timescales of prediction in this study 198 

(<30 days), our dataset of 1590 days provided reasonable coverage of all possible sub-monthly 199 

dynamics for these harmful algal taxa.  200 

  201 

 202 
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 Multiview Embeddings (MVE) 203 

 Multiview embeddings are an effective technique for increasing predictability and drawing 204 

out information from multiple related time series (Ye and Sugihara 2016). We used MVE to utilize 205 

the associated dataset of image features collected by the IFCB. Once more, the embedding 206 

dimension was set to 4 for all taxa and the entire time series was used for model and prediction 207 

libraries. We relied on leave-one-out cross-validation instead of separate model and prediction 208 

libraries. 209 

 Each multivariate attractor was created by randomly selecting 3 normalized time series of 210 

features and the original time series of image concentration (𝑖𝑚𝑎𝑔𝑒𝑠	𝑚𝐿!"). Our goal was to 211 

predict the proxy abundance of each taxon by leveraging information stored in the image features. 212 

Predictability was evaluated for timescales of 1-30 days and reported as ∆𝜌 (model predictability 213 

beyond autocorrelation), RMSE (root-mean-square error) and MAE (mean absolute error). We 214 

considered 500 trials of image feature combinations and reported predictability as the arithmetic 215 

mean with 95% confidence intervals (1.96 × 𝑆𝐸). 216 

 For the best multivariate models (top 5% in terms of 𝜌&'()*), we reported the frequency of 217 

appearance for each image feature as a proportion. A proportion of 0 implies that the feature did 218 

not show up in the best multivariate models while a proportion of 1 implies that it was always 219 

present. Based on the frequency of appearance, we could deduce the contribution of each feature 220 

in improving the overall predictability of the phytoplankton species. 221 

 222 

 223 

 224 



12 
 

 Convergent Cross Mapping (CCM) 225 

 Once we identified any relevant timescales of prediction, we wanted to understand whether 226 

there was a link between the abundance of harmful algal taxa and relevant environmental drivers. 227 

We used convergent cross mapping (CCM; Sugihara et al. 2012) to infer causation between the 228 

environmental dataset and image concentration (𝑖𝑚𝑎𝑔𝑒𝑠	𝑚𝐿!"). Embedding dimensions were 229 

optimized (i.e. selecting the embedding dimension that provides the highest prediction skill 𝜌) to 230 

each environmental variable (up to a maximum of 7 to prevent overfitting) and library sizes ranged 231 

from 100 - 1400 in intervals of 100 days. There were 20 samples each for every library size and 232 

the time to prediction ranged from 1-30 days. We tested whether we could infer causation by 233 

predicting the values of past environmental variables from the abundance of the harmful algal taxa. 234 

Predictability was quantified by the cross-map prediction skill (𝜌), where higher values indicate 235 

better predictions. Convergence was estimated using three tests – (1) Mann-Kendall trend test for 236 

𝜌 with increasing library size, (2) a Student’s t-test for the 𝜌 distributions at the maximum and 237 

minimum library size and (3) by validating that the prediction skill 𝜌 at the maximum library size 238 

was greater than the Pearson correlation coefficient between image concentration and the 239 

environmental time series. Only the predictions which satisfied all conditions and were significant 240 

for both the Mann-Kendall and the Student’s t-test (p-value < 0.05) were deemed convergent. If 241 

any of the tests failed, then the causal effect of the environmental variable on the phytoplankton 242 

taxa was deemed to be unresolved at those specific timescales. Cross-map prediction skill (𝜌) was 243 

normalized to the embedding dimension by averaging 𝜌 across prediction horizons (Saberski et al. 244 

2021). 245 

 246 
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 Software 247 

All the analyses were conducted in R (R Core Team 2021). For plotting and data 248 

visualization, we used the R packages “ggplot2” (Wickham 2016) and “cowplot” (Wilke 2020). 249 

EDM was applied using pre-built functions in the R package “rEDM” (Park et al. 2022). 250 

Additionally, the R package “Kendall” (McLeod 2022) was used to conduct some statistical tests.  251 

 252 

Results  253 

 Both Pseudo-nitzschia spp. and Dinophysis spp. in Narragansett Bay showed intermittent 254 

periods of high and low abundance in Narragansett Bay. The IFCB captured such bloom dynamics 255 

using the concentration of identified images of both taxa (Figure 1; left column). When evaluated 256 

for the autocorrelation inherent within each time series, both Pseudo-nitzschia spp. and Dinophysis 257 

spp. had decreasing autocorrelation with time (Figure 1; right column). The decrease was more 258 

rapid for Pseudo-nitzschia spp. (ACF < 0.25 within 7 days), whereas Dinophysis spp. showed a 259 

more gradual decrease over the entire 30 days.  260 

 261 

 262 

 263 
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 264 

Figure 1: Time series of 2 harmful algal bloom-forming taxa in Narragansett Bay, Rhode Island 265 
(left column) and their associated autocorrelation functions (ACF; right column). Relative 266 
abundance is estimated from the number of unique images taken by the IFCB and classified as (a) 267 
Pseudo-nitzschia spp.  and (c) Dinophysis spp. Autocorrelation decreases with time and varies 268 
depending on the dynamics of each specific taxon. 269 
 270 
 271 

 The univariate predictability of both time series (∆𝜌) was low overall and did not greatly 272 

change over a prediction horizon of 30 days. The univariate predictability of Dinophysis spp. 273 

indicated some promise of the model over autocorrelation on horizons of >28 days, whereas the 274 

results for Pseudo-nitzschia spp. indicated that there is little to no predictability inherent within 275 

the time series beyond autocorrelation across all sub-monthly timescales. 276 

 277 
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  278 

Figure 2: Univariate prediction skill (∆𝜌) of the time series of (a) Pseudo-nitzschia spp. and (b) 279 
Dinophysis spp. over a prediction horizon of 1-30 days. Model predictions (𝜌&'()*) were 280 
calculated from 200 random libraries of 250 days each and the results were reported as an 281 
arithmetic mean with 95% confidence intervals (±1.96 × 𝑆. 𝐸. ).  ∆𝜌 was calculated by subtracting 282 
the autocorrelation coefficient at each prediction horizon.  283 

 284 

Multivariate prediction skill (∆𝜌), calculated using the time series of image abundance and 285 

3 associated image features, was much higher than the univariate prediction skill for both Pseudo-286 

nitzschia spp. and Dinophysis spp. Using the original time series with only 3 image features at a 287 
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time (multivariate embedding dimension = 4) allowed for direct comparisons to the univariate 288 

prediction skill. The predictability of Pseudo-nitzschia spp. had distinctive cycles with peaks every 289 

16 and 25 days. An increase in model predictability over autocorrelation was most prominent after 290 

a 3-day prediction horizon. The predictability of Dinophysis spp. was also higher than inherent 291 

autocorrelation after a 6-day prediction horizon. Dinophysis spp. had multiple peaks in ∆𝜌 at 292 

prediction horizons of 10-20 days, with a distinct peak at 25 days. The RMSE of the predictions 293 

also showed a distinct drop around the 25-day mark.  294 
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 295 

Figure 3: Multivariate prediction skill of the time series of Pseudo-nitzschia spp. (left column) 296 
and Dinophysis spp. (right column) over a prediction horizon of 1-30 days. (a) and (c) report 297 
prediction skill (∆𝜌) calculated by subtracting the autocorrelation coefficient at each prediction 298 
horizon, (b) and (d) report prediction error as the root-mean-squared-error (RMSE), (e) and (f) 299 
report prediction error as the mean-absolute-error (MAE). Model results were calculated from 500 300 
embeddings of phytoplankton abundance and 3 unique image features. The results were reported 301 
as an arithmetic mean with 95% confidence intervals (±1.96 × 𝑆. 𝐸. ). 302 

 303 
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 Without accounting for autocorrelation, some multivariate models for both Pseudo-304 

nitzschia spp. and Dinophysis spp. reached prediction skills of 0.70 and greater (Figure 4&5; left). 305 

The top 5% of these multivariate models had a fairly uniform distribution of image features, with 306 

some clear exceptions. The time series of biovolume and orientation prominently appeared in the 307 

top multivariate models for Pseudo-nitzschia spp., whereas the time series of solidity and hflip 308 

were present but in a distinctly lower frequency compared to the other features. For Dinophysis 309 

spp., the time series of biovolume, texture gray and orientation were prominently present in the 310 

top multivariate models.  311 

 312 

 313 

 314 
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 315 

Figure 4: Multivariate prediction skill of the time series of Pseudo-nitzschia spp. (𝜌; left) over a 316 
prediction horizon of 1-30 days. Prediction skill (𝜌) refers to the Pearson correlation coefficient 317 
between model predictions and actual observations. Model results were calculated from 1000 318 
embeddings of phytoplankton abundance and 3 unique image features. Each point is the outcome 319 
of a single model run. Frequency of image features (right) summarizes the top 5% of model 320 
outcomes and the image features included in these models.   321 

 322 
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 323 

Figure 5: Multivariate prediction skill of the time series of Dinophysis spp. (𝜌; left) over a 324 
prediction horizon of 1-30 days. Prediction skill (𝜌) refers to the Pearson correlation coefficient 325 
between model predictions and actual observations. Model results were calculated from 1000 326 
embeddings of phytoplankton abundance and 3 unique image features. Each point is the outcome 327 
of a single model run. Frequency of image features (right) summarizes the top 5% of model 328 
outcomes and the image features included in these models.  329 

 330 

Environmental influence on the populations of Pseudo-nitzschia spp. and Dinophysis spp., 331 

as measured by the cross-map prediction skill (𝜌), showed variable effects across different 332 

prediction horizons. For Pseudo-nitzschia spp., the prediction skill of all the environmental 333 

parameters converged with increasing library size. The strength and timescales of inferred causal 334 

influence differed across the variables. The influence of chlorophyll on Pseudo-nitzschia spp. had 335 

a peak at timescales around 28 days, whereas the influence of tidal height was strongest around 2 336 
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weeks. The time series of water temperature, pH, wind speed, and salinity showed significant and 337 

consistent effects on the Pseudo-nitzschia spp. time series across most sub-monthly timescales.  338 

 339 

 340 
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 341 

Figure 6: Influence of environmental drivers on Pseudo-nitzschia spp. in Narragansett Bay 342 
quantified by the cross-map prediction skill (𝜌 based on convergent cross mapping; see Methods). 343 
The influence was measured over a prediction horizon of 1-30 days (black line). Red points 344 
indicate which models showed convergence. The dashed line refers to the Pearson correlation 345 
coefficient between the time series of Pseudo-nitzschia spp. abundance and the environmental 346 
variable.  347 
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For Dinophysis spp., there were more models that showed convergence across all 348 

prediction horizons. The time series of Dinophysis spp. was consistently affected by tide height, 349 

water temperature, and pH across all timescales. Total biomass (chlorophyll) appeared as a 350 

significant driver of Dinophysis spp. with peaks around 5, 14 and 27 days. The effects of salinity 351 

were consistent and stronger in the short-term (1-3 days). Predictability was higher than the 352 

Pearson correlation coefficient for most environmental variables and showed consistency, which 353 

might suggest specific mechanisms of causal influence. 354 
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 355 

Figure 7: Influence of environmental drivers on Dinophysis spp. in Narragansett Bay quantified 356 
by the cross-map prediction skill (𝜌 based on convergent cross mapping; see Methods). The 357 
influence was measured over a prediction horizon of 1-30 days (black line). Red points indicate 358 
which models showed convergence.  The dashed line refers to the Pearson correlation coefficient 359 
between the time series of Dinophysis spp. abundance and the environmental variable.  360 

 361 
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Discussion 362 

Predictability of Pseudo-nitzschia spp. and Dinophysis spp. 363 

Perturbations in phytoplankton population dynamics typically decorrelate within 364 

timescales of a month (Kuhn et al. 2019). When we tested for the inherent autocorrelation within 365 

the time series of both Pseudo-nitzschia spp. and Dinophysis spp., we found that the 366 

autocorrelation decreased significantly within the first 10 days for Pseudo-nitzschia spp., but 367 

Dinophysis spp. had higher autocorrelation for up to 30 days. After accounting for autocorrelation, 368 

the univariate predictability of both Pseudo-nitzschia spp. and Dinophysis spp. was low overall; 369 

however, the univariate predictability of Pseudo-nitzschia spp. showed some cyclical behavior. 370 

Our univariate models likely picked up on repetitive population-level mechanisms that increased 371 

or decreased abundance on sub-monthly timescales. Some examples of such mechanisms could 372 

include regular switching between periods of growth and sexual reproduction (D’Alelio et al. 373 

2009; Annunziata et al. 2022), density-dependent interactions with parasitic protists (Berdjeb et 374 

al. 2018), or the tidal transport of productive populations from nearby sites (Shanks et al. 2014). 375 

Part of the lack of univariate predictability could be due to the presence of measurement error and 376 

stochasticity in the time series of both taxa, as well as a general lack of natural predictability for 377 

larger diatoms and dinoflagellates (Agarwal et al. 2021).  378 

In the multivariate case, we found the predictability of both Pseudo-nitzschia spp. and 379 

Dinophysis spp. improved on timescales of greater than 1 week. Multiview embeddings have been 380 

previously shown to improve the univariate predictability of short time series (Ye and Sugihara 381 

2016). By leveraging information stored across multiple related image features, our approach of 382 

randomly creating non-lagged embeddings could have allowed us to create better and more reliable 383 

estimates of predictive dynamics (Ma et al. 2018). The cyclical predictability of Pseudo-nitzschia 384 
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spp. was more prominent in the multivariate models, implicating predictable behavior on 16-day 385 

and 25-day timescales. Dinophysis spp. was most predictable on timescales of 25 days.  Due to the 386 

presence of distinct timescales of predictability for both taxa, our results suggest that future 387 

development of HAB models would benefit by resolving dynamics on daily and weekly 388 

timescales. The identification of relevant ecological and environmental drivers of population 389 

dynamics on these timescales might also aid in the development of automated monitoring and 390 

early-warning systems.  391 

 392 

Relative contribution of IFCB image features 393 

 When we evaluated the relative proportions of image features among the top multivariate 394 

models, the time series of biovolume was prominently present for Pseudo-nitzschia spp. and 395 

Dinophysis spp. This implies that the time series of biovolume adds considerable information to 396 

the future predictability of harmful algal taxa. Biovolume estimates from IFCB images (Moberg 397 

and Sosik 2012) are often used as an important marker of phytoplankton community structure and 398 

function (Brosnahan et al. 2015; Oliver et al. 2021). Although image-derived biovolume estimates 399 

might differ from microscopy-derived estimates (Kraft et al. 2021), cell biovolume typically varies 400 

linearly with other phytoplankton functional traits (Edwards et al. 2012). Our results suggest that 401 

including biovolume estimates and other high-performing image descriptors into models for 402 

harmful algal taxa improves predictability beyond autocorrelation.  403 

 Image descriptors derived from flow cytometers have found utility in studies of 404 

phytoplankton morphology (Sonnet et al. 2022), as well as for the training of different image 405 

classifiers (Mosleh et al. 2012; Zheng et al. 2017).  In general, “features” from an IFCB image are 406 
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all calculated from the pixels of the image and the relationships between them (see Table 2). As 407 

most features share the fundamental quantity underlying their calculations (i.e. the image itself), 408 

we expect all time series to be nonlinear approximations of one another. The relatively consistent 409 

proportions of most features in the top multivariate models indicate that the use of features 410 

themselves, and not necessarily their “character”, increases the predictability of harmful algal taxa. 411 

Unless there is a particular reason to prefer one feature for another (such as biovolume for its 412 

relationship to other traits), prediction models relying on automated imaging systems would 413 

benefit from using any associated image data. Detailed information on the causal relationships 414 

between image features for Pseudo-nitzschia spp., as well as the partial correlations between each 415 

image feature and our time series of image concentration, can be found in the Supplemental 416 

material. 417 

 418 

Potential environmental drivers 419 

To further investigate the timescales of prediction for both Pseudo-nitzschia spp. and 420 

Dinophysis spp., we evaluated any inferred causal relationships between environmental drivers 421 

and the proxy abundance of each taxon. Consistent causal influence on either taxon would show 422 

variable but significant, effects across sub-monthly timescales. We found that both Pseudo-423 

nitzschia spp. and Dinophysis spp. are affected by water temperatures, wind speed, tidal height, 424 

salinity, pH, and total biomass (chlorophyll). Previous studies across various regions, have 425 

hypothesized correlative relationships between harmful algal blooms and these environmental 426 

drivers (Almandoz et al. 2007; Sildever et al. 2019; Zhang et al. 2020; Lima et al. 2022).  In our 427 

study, convergent model predictions with increasing library size and prediction skills that greatly 428 

exceeded the Pearson correlation coefficients between the individual time series indicate that there 429 
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are causal relationships beyond simple covariance. None of the environmental drivers we tested 430 

overlapped with the previously quantified multivariate timescales. This implies that the dynamics 431 

of both taxa in Narragansett Bay are subject to multiple context-dependent forces that interact with 432 

each other.  Successful prediction models for Pseudo-nitzschia spp. and Dinophysis spp. would 433 

need to incorporate the specific local conditions under which the harmful algal blooms develop. 434 

An ideal prediction model would attempt to combine data from relevant image properties and 435 

environmental drivers for particular timescales of prediction. Different model combinations could 436 

be optimized for forecasting at certain points during the 30-day prediction horizon. Table S3 437 

explores the outcomes of some illustrative combined models for both Pseudo-nitzschia spp. and 438 

Dinophysis spp. with a prediction horizon of 5, 10 and 15 days.  Our results also indicate that there 439 

can be lags between an environmental driver and the driven harmful algal taxa. Future studies that 440 

attempt to predict the dynamics of Pseudo-nitzschia spp. and Dinophysis spp. might need to 441 

characterize the causal timescales of their predictors. 442 

As there has been rapid deployment of automated imaging systems for the early detection 443 

of harmful algal bloom events (Campbell et al. 2010, 2013), our results suggest that there is 444 

potential to use such data sources in advanced prediction models. Monitoring programs that 445 

concurrently deploy other environmental and biogeochemical sensors might be able characterize 446 

the relevant timescales of dynamics, and consequently, predict the magnitude and spatial 447 

distribution of harmful algal events across broader regions. Although this study focuses on the 448 

population dynamics of the harmful algal bloom-causing taxa, our prediction models could also 449 

be coupled with other broad-scale ecosystem models to potentially include the impacts on higher 450 

trophic levels and human health. 451 

 452 
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Study limitations and future directions 453 

 Although we have demonstrated the potential of using automated cell imaging data in 454 

prediction models, there are several considerations involved that merit further discussion. First, as 455 

our sampling location is fixed, the influence of different water masses and a lack of spatial 456 

information can limit real-time projections of HAB abundance across entire regions. Future studies 457 

should consider the concurrent deployment of multiple different systems to accurately map and 458 

forecast spatial population patterns. Second, as Pseudo-nitzschia spp. is a chain-forming diatom, 459 

the use of image concentration is not a measure of the actual abundance of the taxon within the 460 

water column – there can be a variable number of cells within an image. Instead, image 461 

concentration is a measure of our ability to detect and identify the taxa. Although detection 462 

numbers are high when abundance is typically high (Figure S1), future studies might need to 463 

accurately quantify the relationship between the in-situ abundance of chain-forming organisms 464 

and their image detection. Third, the deployment and maintenance of IFCB systems may lead to 465 

some irregularities and gaps within a long-term time series. Despite multiple years of data 466 

collection, a large proportion of our daily-scale time series had to be approximated from existing 467 

observations. Our approach requires sufficient long-term coverage for the development of 468 

prediction models and future studies could evaluate alternative methods of data processing and 469 

interpolation of missing observations. Fourth, the development of harmful algal blooms likely 470 

depends on a suite of unknown environmental triggers (such as the nutrient regime, ambient light 471 

levels, etc.). The identification of specific causal mechanisms would depend on careful 472 

experimentation in laboratory studies, where confounding factors can be controlled, and additive 473 

influence can be disentangled.  474 

 475 
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 694 

Figure Captions 695 

 696 
Figure 1: Time series of 2 harmful algal bloom-forming taxa in Narragansett Bay, Rhode Island 697 

(left column) and their associated autocorrelation functions (ACF; right column). Relative 698 

abundance is estimated from the number of unique images taken by the IFCB and classified as (a) 699 

Pseudo-nitzschia spp. and (c) Dinophysis spp. Autocorrelation decreases with time and varies 700 

depending on the dynamics of each specific taxon. 701 

Figure 2: Univariate prediction skill (∆𝜌) of the time series of (a) Pseudo-nitzschia spp. and (b) 702 

Dinophysis spp. over a prediction horizon of 1-30 days. Model predictions (𝜌&'()*) were 703 

calculated from 200 random libraries of 250 days each and the results were reported as an 704 

arithmetic mean with 95% confidence intervals (±1.96 × 𝑆. 𝐸. ).  ∆𝜌 was calculated by subtracting 705 

the autocorrelation coefficient at each prediction horizon.  706 
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Figure 3: Multivariate prediction skill of the time series of Pseudo-nitzschia spp. (left column) 707 

and Dinophysis spp. (right column) over a prediction horizon of 1-30 days. (a) and (c) report 708 

prediction skill (∆𝜌) calculated by subtracting the autocorrelation coefficient at each prediction 709 

horizon, (b) and (d) report prediction error as the root-mean-squared-error (RMSE), (e) and (f) 710 

report prediction error as the mean-absolute-error (MAE). Model results were calculated from 500 711 

embeddings of phytoplankton abundance and 3 unique image features. The results were reported 712 

as an arithmetic mean with 95% confidence intervals (±1.96 × 𝑆. 𝐸. ). 713 

Figure 4: Multivariate prediction skill of the time series of Pseudo-nitzschia spp. (𝜌; left) over a 714 

prediction horizon of 1-30 days. Prediction skill (𝜌) refers to the Pearson correlation coefficient 715 

between model predictions and actual observations. Model results were calculated from 1000 716 

embeddings of phytoplankton abundance and 3 unique image features. Each point is the outcome 717 

of a single model run. Frequency of image features (right) summarizes the top 5% of model 718 

outcomes and the image features included in these models.  719 

Figure 5: Multivariate prediction skill of the time series of Dinophysis spp. (𝜌; left) over a 720 

prediction horizon of 1-30 days. Prediction skill (𝜌) refers to the Pearson correlation coefficient 721 

between model predictions and actual observations. Model results were calculated from 1000 722 

embeddings of phytoplankton abundance and 3 unique image features. Each point is the outcome 723 

of a single model run. Frequency of image features (right) summarizes the top 5% of model 724 

outcomes and the image features included in these models.  725 

Figure 6: Influence of environmental drivers on Pseudo-nitzschia spp. in Narragansett Bay 726 

quantified by the cross-map prediction skill (𝜌 based on convergent cross mapping; see Methods). 727 

The influence was measured over a prediction horizon of 1-30 days (black line). Red points 728 
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indicate which models showed convergence. The dashed line refers to the Pearson correlation 729 

coefficient between the time series of Pseudo-nitzschia spp. abundance and the environmental 730 

variable.  731 

Figure 7: Influence of environmental drivers on Dinophysis spp. in Narragansett Bay quantified 732 

by the cross-map prediction skill (𝜌 based on convergent cross mapping; see Methods). The 733 

influence was measured over a prediction horizon of 1-30 days (black line). Red points indicate 734 

which models showed convergence.  The dashed line refers to the Pearson correlation coefficient 735 

between the time series of Dinophysis spp. abundance and the environmental variable.  736 

 737 

 738 

 739 

 740 

 741 

 742 

 743 

 744 

 745 

 746 

 747 

 748 
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Supplementary material 749 

 750 

 751 

Figure S1: Time series of Pseudo-nitzschia spp. in Narragansett Bay, Rhode Island. Top panel: 752 
Relative abundance as estimated from the average number of unique images taken by the IFCB 753 
and reported as an image concentration. Bottom panel: Weekly cell counts of Pseudo-nitzschia 754 
spp. conducted at the Narragansett Bay Long-Term Plankton Time Series 755 
(https://web.uri.edu/gso/research/plankton/). 756 
 757 

 758 



44 
 

 759 

Figure S2: Univariate prediction skill (𝜌) varies with the choice of embedding dimension and the 760 
prediction horizon. Red points indicate the actual model and grey points indicate the 761 
autocorrelation coefficient (i.e. constant predictor). The left column shows the results for Pseudo-762 
nitzschia spp. models run with prediction horizons of (a) 1 day (b) 7 days (c) 14 days and (d) 28 763 
days. The right column similarly reports results for Dinophysis spp. models run with prediction 764 
horizons of (e) 1 day (f) 7 days (g) 14 days and (h) 28 days. 765 

 766 
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An advanced test for causality is given in [1], where they provide a generalized correlation 767 
coefficient, 𝐺𝑀𝐶(𝑌|𝑋), via the Nadaraya-Watson nonparametric Kernel regression 768 

𝑌 = 𝑔(𝑋) = E[𝑌|𝑋] + ϵ 769 

where 𝑔(𝑋) is a non-parametric, unspecified (non-linear) function. Some of the salient features of 770 
this methodology are  771 

• It allows us to measure how differences or changes in 𝑋 affect the differences or changes 772 
in 𝑌 in a non-linear way. Nonetheless, this measurement is normalized to be a number 773 
between −1 and 1, allowing us to make a comparison between the generalized correlation 774 
coefficients of two pairs of time series. Keeping the notation in the original paper, we will 775 
write that 𝑅⋆(𝑖, 𝑗) = 𝑟⋆Z𝑋.[𝑋/\ is the generalized correlation coefficient of the factor 𝑋. 776 
given the factor 𝑋/. 777 

• It is not a symmetric measurement. This is obvious from the definition as the conditional 778 
expectations satisfy that 𝐸[𝑌|𝑋] ≠ 𝐸[𝑋|𝑌]. Moreover, precisely because of this definition,  779 
𝐺𝑀𝐶 establishes a framework where causality can be analyzed. This becomes particularly 780 
important because it allow us to see whether any of the features of our dataset has a direct 781 
causality relation to the feature that we want to forecast, which is “number”. Furthermore, 782 
the author establishes a generalization of Granger-Causality where if |𝑅⋆(𝑖, 𝑗)| < |𝑅⋆(𝑗, 𝑖)| 783 
then the data suggests that 𝑋. → 𝑋/. In other words, the factor 𝑋. is the cause and the factor 784 
𝑋/ becomes the effect.  785 

• It is a nonlinear, nonparametric method. This means that, contrary to the common Pearson 786 
correlation coefficient, two quantities 𝑋, 𝑌 are independent if and only if 𝐺𝑀𝐶(𝑌|𝑋) =787 
𝐺𝑀𝐶(𝑋|𝑌) = 0. Also, as with any nonparametric method, we get the advantage of not 788 
biasing our estimates by stipulating the form of the relationship between the variables but 789 
this comes at a great computational expense, where even in a modest data set as ours it can 790 
take a lot of time to compute it. 791 

 792 

To compute the 𝐺𝑀𝐶, we used the library “generalCorr” in R for all the pairs of factors. The 793 
obtained results can be found in Table 1 in the Appendix. It is also important to point out that in 794 
this table, the row variable 𝑥. is the “effect” while the column variable 𝑥/ is the predictor or the 795 
“cause.” Thus, if we want to see if a variable is a good predictor or “cause” (individually) for the 796 
variable “number” then we need to look at the first row.  797 

 798 

Notice that all the factors have a generalized partial correlation between 0.26 and 0.39, in absolute 799 
value, with “number”, meaning that they are not good individual predictors for this variable and 800 
there is a very weak causal relationship. To make sure we also computed the (normal) linear partial 801 
correlation coefficients, described in Table 2. 802 

 803 
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This analysis shows that no individual factor can help us in increasing our predictability and, 804 
moreover, since uniformly across the table |𝑅⋆(𝑛𝑢𝑚𝑏𝑒𝑟|𝑓𝑎𝑐𝑡𝑜𝑟)| < |𝑅⋆(𝑓𝑎𝑐𝑡𝑜𝑟|𝑛𝑢𝑚𝑏𝑒𝑟)| for 805 
any factor, the data suggests that the variable we want to predict is the driver of the whole data set, 806 
as expected. However, based on the results of our methodology, we can conclude that there are 807 
different subsets of factors which, as a cluster, can actually help us understand better the behavior 808 
of the algae.  809 

Finally, let us point out that as expected, almost all of the features are considered to be a function 810 
of another factor. This make sense as all the features are measured through a transformation of the 811 
information provided from the same picture. The only feature where we do not have a clear 812 
dependance or causality is our main response variable “number”, making our methodology become 813 
more relevant as any improvement in the predictability of the algae becomes of critical importance. 814 

 815 

References: 816 
 817 
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 822 

Table 1: The matrix of Generalized correlation (for Pseudo-nitzschia spp.). 823 
 824 
 825 

  numbe
r 

area vol c.are
a 

c.per
im 

ecc eq.di
am 

exte
nt 

h180 h90 hflip maj.ax min.ax peri
m 

solid tx.co
ntras
t 

tx.gr
ay 

tx.en
tropy 

tx.sm
ooth 

tx.un
if 

orien
t 

numbe
r 

1 0.322 0.3 0.312 0.339 0.344 0.351 0.375 0.278 0.277 0.267 0.332 0.38 0.331 0.372 0.381 0.368 0.392 0.355 0.32 -0.33 

area 0.816 1 0.99 0.999 0.994 0.981 0.996 0.984 0.963 0.977 0.941 0.993 0.995 0.989 0.985 0.98 0.974 0.985 0.974 0.951 0.243 
vol 0.786 0.99 1 0.986 0.972 0.948 0.976 0.953 0.933 0.948 0.909 0.969 0.975 0.964 0.955 0.949 0.942 0.955 0.942 0.92 0.139 
c.area 0.817 0.999 0.985 1 0.996 0.982 0.996 0.984 0.967 0.977 0.949 0.994 0.995 0.993 0.985 0.983 0.976 0.986 0.977 0.954 0.283 
c.perim 0.833 0.995 0.975 0.996 1 0.995 0.999 0.993 0.974 0.986 0.956 0.999 0.997 0.997 0.995 0.993 0.988 0.996 0.988 0.973 0.345 
ecc 0.843 0.983 0.956 0.985 0.995 1 0.993 0.994 0.97 0.99 0.951 0.996 0.989 0.993 0.995 0.996 0.991 0.997 0.99 0.974 0.348 
eq.dia
m 

0.832 0.997 0.979 0.997 0.999 0.994 1 0.994 0.972 0.984 0.951 0.998 0.998 0.995 0.996 0.993 0.987 0.995 0.987 0.97 0.335 

extent 0.84 0.986 0.965 0.985 0.993 0.994 0.994 1 0.965 0.981 0.943 0.993 0.992 0.987 0.997 0.992 0.987 0.995 0.985 0.97 0.243 
h180 0.819 0.954 0.939 0.961 0.966 0.961 0.963 0.952 1 0.947 0.963 0.963 0.961 0.967 0.957 0.959 0.954 0.963 0.953 0.933 0.227 
h90 0.837 0.973 0.948 0.974 0.982 0.988 0.979 0.978 0.952 1 0.929 0.988 0.971 0.978 0.977 0.976 0.97 0.977 0.97 0.96 0.311 
hflip 0.769 0.933 0.914 0.942 0.945 0.94 0.94 0.93 0.961 0.922 1 0.941 0.939 0.949 0.93 0.945 0.937 0.944 0.942 0.929 0.347 
maj.ax 0.836 0.994 0.973 0.995 0.999 0.996 0.998 0.994 0.972 0.991 0.952 1 0.995 0.996 0.995 0.993 0.987 0.995 0.987 0.972 0.344 
min.ax 0.827 0.996 0.981 0.996 0.997 0.989 0.998 0.992 0.971 0.976 0.951 0.995 1 0.993 0.994 0.99 0.985 0.993 0.985 0.968 0.324 
perim 0.83 0.989 0.964 0.993 0.997 0.992 0.994 0.988 0.971 0.981 0.957 0.995 0.991 1 0.988 0.991 0.985 0.992 0.985 0.973 0.391 
solid 0.841 0.988 0.967 0.987 0.996 0.996 0.996 0.998 0.969 0.982 0.947 0.995 0.995 0.99 1 0.995 0.99 0.998 0.989 0.972 0.305 
tx.cont
rast 

0.835 0.982 0.956 0.984 0.993 0.995 0.992 0.991 0.967 0.98 0.953 0.992 0.99 0.991 0.993 1 0.989 0.997 0.998 0.968 0.364 

tx.gray 0.811 0.978 0.956 0.979 0.988 0.989 0.987 0.987 0.967 0.974 0.951 0.987 0.985 0.986 0.989 0.99 1 0.989 0.985 0.972 0.348 
tx.entr
opy 

0.841 0.986 0.961 0.987 0.996 0.997 0.995 0.995 0.971 0.981 0.951 0.995 0.993 0.992 0.997 0.997 0.989 1 0.993 0.964 0.333 

tx.smo
oth 

0.827 0.973 0.945 0.976 0.984 0.987 0.983 0.982 0.956 0.971 0.947 0.983 0.98 0.983 0.984 0.998 0.982 0.99 1 0.957 0.382 

tx.unif 0.77 0.96 0.944 0.961 0.969 0.97 0.969 0.969 0.951 0.963 0.94 0.968 0.967 0.968 0.97 0.964 0.971 0.963 0.955 1 0.175 
orient 0 0.726 0.109 0.74 0.739 0.36 0.753 0.754 0.11 0.31 0.73 0.75 0.55 0.429 0.172 0.753 0.732 0.326 0.721 0.105 1 

 826 
 827 
Table 2: The vector of (linear) partial correlation between all the predictors and the variable “number”. 828 
 829 
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number area vol c.are
a 

c.peri
m 

ecc eq.di
am 

exten
t 

h180 h90 hflip maj.ax min.ax peri
m 

solid tx.co
ntras
t 

tx.gra
y 

tx.en
tropy 

tx.sm
ooth 

tx.uni
f 

orien
t 

1 -0.05 0.09 0.09 0.04 -0.01 -0.22 0.03 0.07 0.07 -0.17 0.10 0.20 0.13 0.25 -0.33 0.08 0.07 0.33 0.05 0.22 
Table 3: Outcomes of multivariate models where both image features and environmental variables are combined (i.e. E = 4 with 2 image-based and 830 
2 environmental predictors). 100 random combinations were tested for each prediction horizon (5,10 and 15 days) and the models with the highest 831 
∆ρ are reported below.  832 

Taxa Time to 
prediction 
(days) 

Predictor 1 Predictor 2 Predictor 3 Predictor 4 𝝆 ∆𝝆 

Pseudo-
nitzschia spp. 

5 eq.diam ecc water 
temperature 

salinity 0.74 0.32 

Pseudo-
nitzschia spp. 

10 eq.diam extent chlorophyll water 
temperature 

0.80 0.67 

Pseudo-
nitzschia spp. 

15 solidity c.perim pH water 
temperature 

0.74 0.66 

Dinophysis 
spp. 

5 h90 tx.unif water 
temperature 

salinity 0.76 0.15 

Dinophysis 
spp. 

10 area tx.gray pH water 
temperature 

0.80 0.37 

Dinophysis 
spp. 

15 tx.unif extent pH water 
temperature 

0.79 0.42 

 833 
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