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ORIGINAL ARTICLE

Artificial Intelligence Model Predicts Sudden 
Cardiac Arrest Manifesting With Pulseless 
Electric Activity Versus Ventricular Fibrillation
Lauri Holmstrom , MD*; Bryan Bednarski , MS*; Harpriya Chugh , BE; Habiba Aziz , BS, MA; Hoang Nhat Pham, MD; 
Arayik Sargsyan, MD; Audrey Uy-Evanado , MD; Damini Dey , PhD; Angelo Salvucci , MD; Jonathan Jui , MD;  
Kyndaron Reinier , PhD; Piotr J. Slomka , PhD; Sumeet S. Chugh , MD

BACKGROUND: There is no specific treatment for sudden cardiac arrest (SCA) manifesting as pulseless electric activity 
(PEA) and survival rates are low; unlike ventricular fibrillation (VF), which is treatable by defibrillation. Development of novel 
treatments requires fundamental clinical studies, but access to the true initial rhythm has been a limiting factor.

METHODS: Using demographics and detailed clinical variables, we trained and tested an AI model (extreme gradient boosting) 
to differentiate PEA-SCA versus VF-SCA in a novel setting that provided the true initial rhythm. A subgroup of SCAs are 
witnessed by emergency medical services personnel, and because the response time is zero, the true SCA initial rhythm is 
recorded. The internal cohort consisted of 421 emergency medical services-witnessed out-of-hospital SCAs with PEA or VF 
as the initial rhythm in the Portland, Oregon metropolitan area. External validation was performed in 220 emergency medical 
services-witnessed SCAs from Ventura, CA.

RESULTS: In the internal cohort, the artificial intelligence model achieved an area under the receiver operating characteristic 
curve of 0.68 (95% CI, 0.61–0.76). Model performance was similar in the external cohort, achieving an area under the 
receiver operating characteristic curve of 0.72 (95% CI, 0.59–0.84). Anemia, older age, increased weight, and dyspnea as 
a warning symptom were the most important features of PEA-SCA; younger age, chest pain as a warning symptom and 
established coronary artery disease were important features associated with VF.

CONCLUSIONS: The artificial intelligence model identified novel features of PEA-SCA, differentiated from VF-SCA and was 
successfully replicated in an external cohort. These findings enhance the mechanistic understanding of PEA-SCA with 
potential implications for developing novel management strategies.

GRAPHIC ABSTRACT: A graphic abstract is available for this article.

Key Words: artificial Intelligence ◼ cardiovascular diseases ◼ emergency medical services ◼ stroke ◼ ventricular fibrillation

See Editorial by Tereshchenko

Despite significant advances in the prevention and 
treatment of cardiovascular disease, sudden car- 
diac arrest (SCA) is an important mode of death 

worldwide, accounting for more years of potential life 
lost than any individual cancer.1,2 Improvements in emer-
gency medical services (EMS) response and acute 
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management have had a positive impact on survival out-
comes, but average rates of survival to hospital discharge 
in the United States remain in the range of 10%.3,4

Forty years ago, shockable rhythms (ventricular fibril-
lation, VF) dominated, accounting for 70% to 80% of 
SCAs.5 However, the proportions have shifted over time, 

and nonshockable rhythms (pulseless electric activ-
ity, PEA/asystole) now account for 70% to 80% of the 
cases.6–9 This phenomenon has implications for overall 
survival from SCA because VF and PEA have divergent 
survival outcomes: VF is potentially treatable with defibril-
lation and displays significantly better outcomes follow-
ing resuscitation compared with PEA for which there are 
no specific therapeutic measures and survival remains 
poor (≈30% versus 5% survival to discharge from hospi-
tal).3 Given these profound differences in the treatment 
and prognosis of PEA and VF, an understanding of the 
clinical profile of each group could provide new mecha-
nistic insights leading to the development of novel PEA 
management and therapeutics.

Previous studies have attempted to distinguish clini-
cal profiles of individuals presenting with PEA versus 
VF, but these utilized the presenting rhythm recorded by 
EMS personnel after a response delay.10,11 Following a 
911 call, it can take 6 to 10 minutes for EMS to arrive, 
and during this time delay, the initial rhythm may change 
to a different rhythm. It is conceivable, for example, that 
an initial rhythm of VF could spontaneously convert to 
PEA or asystole.12,13 The inability to study the true initial 
rhythm has long been a barrier to studies in this field.

A small but distinct subgroup of individuals suffers 
their SCA event in the presence of EMS personnel. 
because there is virtually no time delay in this setting, 
the true SCA initial rhythm has been recorded.14 We 
hypothesized that evaluation of the initial rhythm from 
EMS-witnessed SCA cases will provide a more relevant 
and accurate model for distinguishing PEA from VF. 
Therefore, we investigated EMS-witnessed SCA cases 
from 2 prospective community-based SCA cohorts to 
train and test an artificial intelligence (AI) model that 
would distinguish between SCA victims presenting with 
PEA versus VF.

METHODS
All analytical methods are included in this article. The data are 
not publicly available but deidentified data and code will be 
made available upon reasonable request.

Study Population
The study samples are drawn from the Oregon SUDS (Oregon 
Sudden Unexpected Death Study) and the Ventura PRESTO 
study (Ventura Prediction of Sudden Death in Multi-ethnic 
Communities). Study protocols have been described earlier in 
more detail.15,16 Briefly, both studies are ongoing, prospective, 
community-based studies of out-of-hospital SCA and use an 
identical design. Oregon SUDS has prospectively enrolled out-
of-hospital SCA since 2002 in the Portland, Oregon metropolitan 
area (population ≈1 million) and Ventura PRESTO since 2015  
in Ventura County, California (population ≈850 000). Potential 
out-of-hospital SCA cases are identified in collaboration with 
the region’s 2-tiered EMS system, regional hospitals, and the 

WHAT IS KNOWN?
• Treatment of sudden cardiac arrest (SCA) has 

long been based on the defibrillation of shockable 
rhythm (ventricular fibrillation, VF), but there is no 
specific treatment for SCA manifesting as pulsel-
ess electric activity (PEA) for which survival rates 
are much lower than in VF.

• A small subset of PEA-SCA can be successfully 
resuscitated and ultimately survive. Further incre-
ments in survival await the ability to predict which 
SCAs will manifest as PEA versus VF with the goal 
of improving mechanistic understanding of PEA.

• Toward this purpose, published studies are limited 
by the inability to access the initial SCA presenting 
rhythm; due to the time elapsed in responding to a 
911 call, the first recorded rhythm in most SCAs 
may not be the actual initial rhythm.

WHAT THE STUDY ADDS
• We obtained the initial rhythms using a novel 

approach of analyzing recordings and data from the 
subset of SCAs that were witnessed by emergency 
medical services providers.

• We trained and tested an AI model that identified 
novel determinants of initial rhythms, including ane-
mia, older age, higher weight, and prearrest dys-
pnea for PEA; and previously diagnosed coronary 
artery disease, prearrest chest pain, and young age 
for VF.

• These findings have contributed to the mechanis-
tic understanding of PEA and may help to predict 
which individuals at increased risk of SCA will pres-
ent with PEA versus VF.

Nonstandard Abbreviations and Acronyms

AI artificial intelligence
AUC  area under the receiver operating char-

acteristic curve
CAD coronary artery disease
EMS emergency medical services
PEA pulseless electric activity
SCA sudden cardiac arrest
SHAP Shapley Additive Explanations
VF ventricular fibrillation
XGBoost  extreme gradient boosting decision tree 

model
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state Medical Examiner’s office. Using an established adjudica-
tion methods to identify SCA of likely cardiac cause, all avail-
able EMS reports, medical records, medical examiner’s reports, 
death certificates, and autopsy reports are obtained and 
reviewed. SCA cases with likely noncardiac etiology (eg, trauma, 
overdose, stroke) or chronic terminal illness are excluded.

Study Subjects
In the present study, we included cases of patients aged 18 
and older from the Oregon SUDS and the Ventura PRESTO 
studies whose SCA was witnessed by EMS personnel and who 
had either PEA or VF as the initial rhythm. Because pulseless 
ventricular tachycardia cases were a minority of the shockable 
rhythms (VF/ventricular tachycardia; 26%) and are also treated 
by defibrillation, these were included in the VF subgroup. For 
the Oregon SUDS, SCA cases were prospectively ascertained 
between 2002 and 2022, whereas for the Ventura PRESTO 
study, SCA cases were prospectively ascertained between 
2015 and 2022. Information on demographics and prearrest 
clinical characteristics was obtained by evaluation of lifetime 
medical records, which were obtained from regional health care 
systems and used to characterize the detailed clinical profile. 
We included information on prearrest clinical characteristics if 
the patient provided written consent or was deceased, in which 
case consent was waived. Information on prearrest warning 
symptoms was obtained from EMS reports.

Institutional review boards of Ventura County Medical 
Center, Oregon Health and Science University, Cedars-Sinai 
Health System, and all other health systems and participating 
hospitals approved the study protocol.

Supervised Machine Learning
Extreme gradient boosting decision tree models (XGBoost, 
Version 1.3.3)17 were built for the binary classification of either 
PEA or VF. The Microsoft Fast and Lightweight AutoML Library 
(Version 1.0.14)18 was used to automate and optimize hyper-
parameter search and selection. XG boost provides Ensemble 
boosting, tunable regularization parameters, and model explain-
ability. XGBoost is demonstrated to be a strong baseline model 
in predictive health care machine learning applications such as 
breast cancer survival19 and mortality from myocardial infarc-
tion.20 All validations were also repeated using logistic regres-
sion models and are available in the Supplemental File for 
direct comparison to a more traditional, nonboosted approach.

10-fold cross-validation was performed within the Oregon 
SUDS data set to validate the automated hyperparameter 
selection criteria and model performance in the internal cohort. 
In each fold, unique splits (80% training, 10% validation, 10% 
test) were utilized such that across all folds, all internal patients 
were utilized in the test set exactly once. A final model was built 
using a split (90% training, 10% validation) from the Oregon 
SUDS data to maximize the final training sample size.

For external validation, the final model developed exclusively 
in the Oregon SUDS cohort, as described above, was applied 
directly to the previously unseen Ventura PRESTO dataset.

Feature importance analysis was performed using 2 meth-
ods. First, the built-in XGBoost feature importance function was 
used to compare the absolute information gain from all input 
variables to the trained model. Additionally, SHapley Additive 
exPlanations (SHAP)21 were used to analyze test-wise feature 

influences during model inference using a game-theoretical 
approach. Both of these approaches allow group analysis and 
derivation of key features driving the prediction of individual 
cases. Individual patient feature importance plots were created 
as described in our previous work.22

Data Preprocessing
All variables with >20% missingness in the internal cohort 
were dropped from the analysis to avoid missing-data bias. 
Final input data included 56 variables which were categorized 
into 4 groups: demographics (5), medical history (37), medica-
tions (4), and prearrest symptoms (10). All included variables 
are presented in Supplemental Table 1. The remaining missing 
values were imputed using the median for continuous variables 
and the mode for categorical variables. There were no missing 
values for PEA/VF, so no imputation was performed for these 
variables. Data normalization before model training and valida-
tion is not required for XGBoost. The AI model was evaluated 
with 2 sets of input data: (1) demographic variables only and 
2) all variables.

Statistical Methods
The area under the receiver operating characteristic curve 
(AUC) was used to evaluate model predictive performance 
across all possible sensitivity-specificity thresholds. 95% CIs 
for AUC curves were generated using bootstrapping with 1000 
iterations. The DeLong test was used to determine the P value 
significance between AUC curves. Youden J statistic was used 
to identify an optimal cutoff threshold for the probabilistic pre-
dictions of trained models. Brier score was used to evaluate 
the accuracy of probabilistic predictions and to compare model 
calibration. All models and AI analyses were generated using 
Python Version 3.7.11. Further analysis was performed using 
R Version 4.1.1, for which statistical significance was assessed 
using Mann-Whitney U test Wilcoxon, Kruskal-Wallis rank sum, 
or Pearson’s χ2 test. Continuous variables are presented as 
mean (SD).

RESULTS
Subject Characteristics
The internal cohort included 421 EMS-witnessed SCA 
cases from Oregon SUDS, of which 249 had PEA and 
172 had VF as the initial rhythm. The external SCA cohort 
(Ventura PRESTO) included 220 EMS-witnessed SCA 
cases, of which 170 had PEA and 50 had VF as the initial 
rhythm. The study sample constituted 8.2% of all SCA 
cases from Oregon SUDS and Ventura PRESTO. Cases 
in Ventura PRESTO were older in comparison to Ore-
gon SUDS cases (72.3 [14.4] versus 67.5 [15.0] years; 
P<0.001), but there was no difference in sex distribu-
tion (65.0% and 61.5% males, respectively; P=0.44). 
The proportion of White Non-Hispanic individuals was 
higher in Oregon SUDS (78.6% versus 63.6%), whereas 
the proportion of Hispanic individuals was higher in Ven-
tura PRESTO (25.9% versus 1.4%) (P<0.001). Median 
height was similar in Ventura PRESTO and Oregon 
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SUDS (170.3 [9.2] versus 170.7 [12.7] cm, respectively; 
P=0.24), but cases in Oregon SUDS had higher median 
weight (92.1 [31.2] versus 85.9 [25.9] kg; P=0.008). 
Demographics, clinical characteristics and initial rhythms 
are presented in Table 1.

There was no significant difference in the prevalence 
of previously diagnosed coronary artery disease (CAD; 
overall prevalence 53.4%), anemia (40.1%), chronic kid-
ney disease; 41.7%), diabetes (38.4%), asthma (8.1%), 
chronic obstructive pulmonary disease; 18.2%), heart 
failure (30.3%), atrial fibrillation/flutter (28.4%), can-
cer (14.8%), prior implantable cardioverter defibrillator 
implantation (4.8%), sleep apnea (12.3%), peripheral 
vascular disease (12.6%), cardiomyopathy (11.8%), sei-
zure disorder (4.6%), prior SCA (0.5%), or schizophrenia 
(0.6%) between Ventura PRESTO and Oregon SUDS 
cases, respectively. The prevalence of mood disorder 
(25.6% versus 14.5%; P=0.002), and prearrest chest 
pain (34.7% versus 20.0%; P<0.001) was higher in Ore-
gon SUDS, while cases in Ventura PRESTO were more 
likely to have prearrest weakness (17.4% versus 9.0%; 
P=0.005) and a prior pacemaker (14.6% versus 8.3%; 
P=0.03).

Model Performance
In the internal dataset (Oregon SUDS), the AI model 
achieved an AUC of 0.52 (95% CI, 0.44–0.60) with 
only demographic variables. The model performance 
increased to an AUC value of 0.68 (0.61–0.76; 
P<0.001; Delong test) when clinical variables were 
added. The model performance was similar in the exter-
nal cohort (Ventura PRESTO), achieving an AUC of 0.56 
(0.44–0.68) with demographics and an AUC of 0.72 
(0.590.84) when clinical variables were added to demo-
graphics (P=0.003; Delong test). Model performance 
metrics and AUC curves in the internal and external 
cohorts are presented in Table 2; Figure 1. Brier score 
calibration of All Data models and Demographics Data 
models in the internal cross-validation (Oregon SUDS) 
and external validation (Ventura PRESTO) cohorts are 
presented in Table S2. Lower brier scores for the All 
Data models in both internal and external validation 
compared with the Demographics Data models indi-
cate improved calibration of probabilistic performance 
for the All Data models. Logistic regression models had 
similar performance to the AI model in both internal and 
external cohorts (Table 3).

Table 1. Characteristics of Individuals With Sudden Cardiac Arrest (SCA) According to Study Site and Initial Rhythm

Characteristic 

Oregon SUDS Ventura PRESTO

PEA (n=249) VF (n=172) p-value PEA (n=170) VF (n=50) P value 

Age, y; median (IQR) 68 (59–79) 67 (56–76) 0.044 76 (65–84) 68 (56, 76) 0.001

Male sex, n (%) 147/249 (59%) 112/172 (65%) 0.2 103/170 (61%) 40/50 (80%) 0.018

Height, cm; median (IQR) 173 (163–177) 175 (165–178) 0.11 170 (163–177) 172 (167–178) 0.15

Weight, kg; median (IQR) 90 (70, 108) 86 (70–102) 0.8 82 (68–100) 84 (74–104) 0.10

Prior CAD, n (%) 104/249 (42%) 126/172 (73%) <0.001 77/170 (45%) 35/50 (70%) 0.004

Anemia, n (%) 110/243 (45%) 53/171 (31%) 0.005 77/164 (47%) 12/50 (24%) 0.007

Chest pain, n (%) 50/222 (23%) 81/156 (52%) <0.001 21/149 (14%) 18/46 (39%) <0.001

Dyspnea, n (%) 109/213 (51%) 62/154 (40%) 0.050 68/145 (47%) 18/45 (40%) 0.5

Diaphoresis, n (%) 16/213 (7.5%) 27/154 (18%) 0.005 22/145 (15%) 7/45 (16%) >0.9

Anti-depressants, n (%) 74/196 (38%) 36/148 (24%) 0.011 36/141 (26%) 7/38 (18%) 0.5

CKD, n (%) 107/243 (44%) 58/171 (34%) 0.049 81/164 (49%) 16/50 (32%) 0.045

Cardiomyopathy, n (%) 18/223 (8.1%) 26/163 (16%) 0.025 17/147 (12%) 7/45 (16%) 0.7

β-Blockers, n (%) 91/196 (46%) 67/148 (45%) >0.9 69/141 (49%) 16/38 (42%) 0.6

Mood disorder, n (%) 68/243 (28%) 38/171 (22%) 0.2 28/164 (17%) 3/50 (6.0%) 0.086

PVD, n (%) 38/243 (16%) 18/171 (11%) 0.2 19/164 (12%) 4/50 (8.0%) 0.6

Congestive heart failure, n (%) 72/249 (29%) 61/172 (35%) 0.2 50/170 (29%) 11/50 (22%) 0.4

Cancer, n (%) 32/243 (13%) 29/171 (17%) 0.4 26/164 (16%) 6/50 (12%) 0.7

Sleep apnea, n (%) 29/243 (12%) 24/171 (14%) 0.6 22/164 (13%) 2/50 (4.0%) 0.11

Nausea/vomiting, n (%) 24/222 (11%) 27/156 (17%) 0.10 13/149 (8.7%) 9/46 (20%) 0.078

Afib/Aflutter, n (%) 59/220 (27%) 50/162 (31%) 0.5 35/145 (24%) 18/43 (42%) 0.038

Prior ICD, n (%) 6/223 (2.7%) 12/163 (7.4%) 0.057 9/147 (6.1%) 1/45 (2.2%) 0.5

Afib indicates atrial fibrillation; Aflutter, atrial flutter; CAD, coronary artery disease; CKD, chronic kidney disease; ICD, implantable cardioverter defibrillator; IQR, 
interquartile range; Oregon SUDS, Oregon Sudden Unexpected Death Study PEA, pulseless electric activity; PVD, peripheral vascular disease; Ventura PRESTO, 
Prediction of Sudden death in Multi-ethnic Communities; and VF, ventricular fibrillation.
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Key Predictors
To understand the key variables in the AI model that dis-
tinguish PEA from VF, feature importance is shown in 
Figure 2 (all features with importance >0 in the external 
cohort) and Figure S1 (all features in the internal and 
external cohorts). Based on the built-in XGBoost feature 
importance, the most important variables were chest pain, 
previously diagnosed CAD, pre-arrest diaphoresis, his-
tory of anemia, pre-arrest dyspnea, and age (both in the 
internal and external cohort). Other less important clinical 
variables were, for example, antidepressant medications, 
weight, height, chronic kidney disease, cardiomyopathy, 
mood disorder, and β-blocker medication, while sex, dia-
betes, antipsychotic medications, chronic obstructive pul-
monary disease, asthma, or prior SCA had no importance 
in the external cohort.

By the SHAP analysis, the presence of anemia and older 
age were the most important determinants of PEA, while 

CAD, chest pain, and young age were the most important 
determinants of VF. The magnitude and direction of the 
4 most important features (CAD, chest pain, anemia, and 
age) were similar in men and women. Moreover, increased 
weight predicted PEA, whereas increased height pre-
dicted VF. SHAP values are presented in Figures 3 and 
4. SHAP plots of the demographics-only model are pre-
sented in Supplemental Figures S2 and S3. Examples of 
waterfall plots for a PEA and a VF case are also presented 
in Figure 5. The prevalence of key predictors according to 
study site and initial rhythm are presented in Table 1. The 
prevalence of less important features according to study 
site and initial rhythm are shown in Table S4.

DISCUSSION
To our knowledge, this is the first report of an algorithm 
that has identified clinical determinants of PEA versus VF 

Table 2. Model Performance in the Internal and External Data Sets

Model AUC (95% CI) Youden J statistic threshold Sensitivity (95% CI) Specificity (95% CI) 

Internal cohort

  Demographics 0.521 (0.442–0.600) 0.415 0.564 (0.477–0.652) 0.467 (0.376–0.558)

  All variables 0.684 (0.610–0.758) 0.381 0.634 (0.552–0.715) 0.634 (0.549–0.718)

External cohort

  Demographics 0.562 (0.440–0.684) 0.409 0.740 (0.599–0.882) 0.366 (0.263–0.470)

  All variables 0.717 (0.591–0.843) 0.384 0.743 (0.605–0.880) 0.653 (0.554–0.752)

AUC indicates area under the receiver operating characteristics curve..

Figure 1. Receiver operating curves distinguishing pulseless electric activity (PEA) from ventricular fibrillation (VF) in the 
internal and external cohorts.
ML indicates machine learning.

https://www.ahajournals.org/doi/suppl/10.1161/CIRCEP.123.012338
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in EMS-witnessed SCA cases, a novel setting that makes 
evaluation of the initial rhythm feasible. Although only a 
small proportion of out-of-hospital SCA cases are wit-
nessed by EMS personnel, this subgroup is unique due to 
the absence of delay in the first ECG recording. The use of 
this novel approach provided reliable information regard-
ing initial SCA rhythms, generally not feasible to obtain for 
the majority of SCA victims. Prospective ascertainment 
of all out-of-hospital SCA cases from 2 US communities 
conducted over 20 years allowed for the collection of a 
feasible number of EMS-witnessed SCA cases. The AI 
model was successfully validated in the external cohort. 
The most important features separating PEA and VF 
were CAD, chest pain, anemia, and age, for both sexes. 
These results improve the understanding of mechanistic 
differences between PEA and VF, representing a first 
step to work toward novel PEA therapies. These findings 
also have the potential to better identify which individuals 
at high risk of SCA will present with PEA versus VF, but 
due to the moderate performance of the model, further 
investigation is required before clinical utilization.

A major advantage of using AI techniques in compari-
son to conventional statistical tools is that these require 
fewer assumptions about data structure, and hence AI 

can be especially useful for the analysis of complex non-
linear relationships. In comparison to conventional meth-
ods, AI models can potentially identify novel patterns of 
variables that may contribute to PEA-SCA versus VF-
SCA. We have previously reported differences between 
overall PEA and VF cases in the Oregon SUDS,11 but we 
did not have access to the initial presenting rhythm, only 
the first rhythm recorded by EMS personnel when they 
arrived at the scene. In the present study, we focused 
on the analysis of EMS-witnessed cases with access to 
information on the initial SCA rhythm.

Importantly, we were able to replicate our findings in 
a geographically distinct SCA cohort from Ventura, CA, 
which mitigates the possibility of overfitting or systematic 
biases. Given the significant differences in demographics 
and clinical characteristics between Oregon SUDS and 
Ventura PRESTO, our findings suggest that the AI model 
may generalize well in external data sets with distinct 
patient profiles. Moreover, the AI model retained similar 
performance in the external dataset despite a signifi-
cantly different distribution of PEA and VF in comparison 
to the training data set.

In comparison to previously used conventional statisti-
cal methods, the AI model identified novel determinants 

Figure 2. Feature importance in the external cohort according to the in-built XGBoost function.
Afib indicates atrial fibrillation; Aflutter, atrial flutter; CAD, coronary artery disease; and ICD, implantable cardioverter defibrillator.
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of initial rhythms, that is, anemia, weight, height, and 
chronic kidney disease. Our results are consistent with 
findings from the Fingesture study, in which underlying 
CAD and ischemic cardiomyopathy were important deter-
minants of VF.23 A higher prevalence of preexisting CAD 
likely explains the importance of chest pain in predicting 
VF. Prior reports on EMS-witnessed out-of-hospital SCA 
cases from the OPALS study and the VACAR registry 
have also demonstrated that prearrest chest pain pre-
dicts VF while prearrest dyspnea predicts nonshockable 
rhythm.24,25 However, these studies did not use AI tech-
niques to identify key determinants of initial SCA rhythm.

Although the relationship between CAD/chest pain 
and VF has been previously recognized, other SCA 
rhythm determinants in our study represent novel find-
ings. Notably, anemia had a strong association with 
PEA. One possible reason is that anemia predisposes 
to hypoxemia—a common precipitator of PEA. On the 
contrary, PEA is a more common presenting rhythm in 
elderly and sick patients,11 and anemia is often related to 

a high comorbidity burden and may thus represent a sign 
of poor overall health. This contention is supported by the 
finding that older age and chronic kidney disease were 
also determinants of PEA in our study.

Another PEA determinant identified in our study was 
higher body weight, which in SCA cases is likely related 
to obesity.26,27 While this is a novel finding, prior studies 
have indirectly associated obesity-related SCA and non-
shockable rhythms because both are more likely to occur 
at night.28–30 One possible explanation is obesity-related 
obstructive sleep apnea, which predisposes to nighttime 
bradyarrhythmias which in turn are a potential trigger for 
PEA.31,32 In contrast to body weight, higher height was a 
determinant of VF. In this context, it is interesting to note 
the previously established association between greater 
height and increased risk of atrial fibrillation.33

The progressively declining rate of SCA presenting 
as VF in recent decades has been reported from sev-
eral international registries.6–8 The progressively aging 
population, decreasing age-adjusted CAD mortality, and 

Figure 3. Shapley additive explanations (SHAP) values for all patients.
SHAP values show the importance of each feature for the artificial intelligence model in the identification of pulseless electric activity (PEA) 
and ventricular fibrillation (VF). SHAP values are calculated for each patient, and 1 data point represents 1 sudden cardiac arrest (SCA) case. 
In this figure, data points are mixed from the internal and external cohort SCA cases. Afib indicates atrial fibrillation; Aflutter, atrial flutter; CAD, 
coronary artery disease; and ICD, implantable cardioverter defibrillator.
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improvements in cardiovascular disease management 
(especially increasing usage of β-blockers and implant-
able cardioverter defibrillator) have been thought to 
contribute to this shift. β-Blockers have negative chro-
notropic and inotropic effects, and could suppress VF, 
resulting in an increased proportion of nonshockable 
SCA.10 While our findings reinforce the role of increas-
ing age and decreasing CAD mortality, these results do 
not support the contribution of β-blockers as an explana-
tion for increased SCA presentation with PEA. Instead, 
use of β-blockers was a determinant of VF, while the 

use of antidepressants predicted PEA over VF, which 
is consistent with the prior literature.34,35 Antipsychotics 
also have negative inotropic effects, and they have been 
associated with PEA,34,35 but antipsychotic use was not 
an important feature in this analysis. Similarly, female 
sex and pulmonary diseases have been associated with 
PEA,11 but in our study, these factors were not important 
for the model. Such differences between conventional 
and AI approaches may stem from the limitations of 
conventional methods to identify complex and nonlinear 
relationships.

Figure 5. Representative examples of clinical features in two individual patients, one presenting with ventricular fibrillation and 
the other with pulseless electrical activity.
Examples of waterfall plots for a ventricular fibrillation (VF) case (A) and a pulseless electric activity (PEA) case (B) from the external cohort. 
The expected value is the average score for all patients in the internal cohort, where an optimal threshold is determined. The waterfall plot starts 
from the expected value and each row represents how the importance of each feature affects the model’s prediction. For example, the VF 
case (A) had a history of CAD, pre-sudden cardiac arrest (SCA) chest pain, no history of anemia, and young age (55 y), which had the biggest 
impact on the model’s prediction. The pulseless electric activity (PEA) case (B) had no history of coronary artery disease (CAD), older age (92 
y), and a history of anemia which had the biggest impact on the model’s prediction. Afib indicates atrial fibrillation; and Aflutter, atrial flutter.

Figure 4. Shapley additive Explanations (SHAP) values for female and male patients.
SHAP values show the importance of each feature for the artificial intelligence model in the identification of pulseless electric activity (PEA) 
and ventricular fibrillation (VF). SHAP values are calculated for each patient, and 1 data point represents 1 sudden cardiac arrest (SCA) case. 
In this figure, data points are mixed from the internal and external cohort SCA cases. Afib indicates atrial fibrillation; Aflutter, atrial flutter; CAD, 
coronary artery disease; and ICD, implantable cardioverter defibrillator.
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Although the machine learning model achieved moder-
ate accuracy, the AUC was comparable to common pre-
diction models utilized regularly in current clinical practice, 
such as left ventricle ejection fraction in SCD prediction 
(AUC, 0.59–0.68)36 or CHA2DS2VASc score in stroke 
prediction (AUC, 0.63–0.69).37 Potential reasons for the 
moderate performance of the AI model may include our 
inability to capture input data regarding prearrest dynamic 
alterations in the cardiovascular system, as well as random 
events that may have an important contribution to SCA 
presentation (eg, acute MI, bradyarrhythmia). Although 
long-term SCA risk assessment has long been based on 
the measurements of moment statistics (eg, left ventricle 
ejection fraction), SCA is not, however, a fully deterministic 
event. Instead, the development of SCA may require trig-
gering events that can induce life-threatening arrhythmias 
in vulnerable patients.38 A variety of triggers and preceding 
dynamic cardiovascular alterations are likely to contribute 
to the presentation of SCA. Given that there are currently 
no specific treatment options for PEA, these novel findings 
have the potential to improve the current understanding of 
mechanistic differences between PEA and VF36 (Figure 6).

Limitations
Although Oregon SUDS and Ventura PRESTO are 
designed to collect all out-of-hospital SCA cases pro-
spectively, the data on prearrest clinical characteristics 

were obtained retrospectively. Hence, we were not able 
to collect comprehensive data for all variables (eg, ECG, 
echocardiography), leading to missing values and poten-
tially unidentified rhythm determinants. By removing 
variables with >20% missingness in the internal cohort 
from the set of parameters to be used and imputed, we 
avoided most missing-data bias. However, we recognize 
that we cannot exclude bias from use of simple imputa-
tion methods and smaller extent of missingness in the 
remaining variables. Some dynamic risk factors preced-
ing the SCA event may have an important contribution 
to the initial rhythm. However, given the unpredicted 
and sudden nature of SCA, collection of such data is 
extremely difficult.

Conclusions
An AI model could distinguish EMS-witnessed SCA 
cases presenting with PEA versus VF and was success-
fully validated in an external cohort. The model identified 
novel determinants of PEA and VF: previously diagnosed 
anemia, older age, high weight, and prearrest dyspnea 
were the most important determinants of PEA, while pre-
viously diagnosed CAD, prearrest chest pain, and young 
age were the most important determinants of VF. These 
findings could improve the mechanistic understanding of 
PEA and VF and may help to predict which individuals at 
increased risk of SCA will present with PEA versus VF.

Figure 6. Schematic illustration of the key determinants of pulseless electric activity (PEA)-sudden cardiac arrest (SCA) and 
ventricular fibrillation (VF)-SCA.
CAD indicates coronary artery disease; CKD, chronic kidney disease; and ICD, implantable cardioverter defibrillator.
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