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Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with 
a wide range of behavioral and cognitive impairments. While genetic and environmental factors 
are known to contribute to its etiology, the underlying metabolic perturbations associated with 
ASD which can potentially connect genetic and environmental factors, remain poorly understood. 
Therefore, we conducted a metabolomic case-control study and performed a comprehensive 
analysis to identify significant alterations in metabolite profiles between children with ASD and 
typically developing (TD) controls. 

Objective: To elucidate potential metabolomic signatures associated with ASD in children and 
identify specific metabolites that may serve as biomarkers for the disorder. 

Methods: We conducted metabolomic profiling on plasma samples from participants in the 
second phase of Epidemiological Research on Autism in Jamaica (ERAJ-2), which was a 1:1 age 
(±6 months)-and sex-matched cohort of 200 children with ASD and 200 TD controls (2-8 years 
old). Using high-throughput liquid chromatography-mass spectrometry techniques, we performed 
a targeted metabolite analysis, encompassing amino acids, lipids, carbohydrates, and other key 
metabolic compounds. After quality control and imputation of missing values, we performed 
univariable and multivariable analysis using normalized metabolites while adjusting for covariates, 
age, sex, socioeconomic status, and child’s parish of birth. 

Results: Our findings revealed unique metabolic patterns in children with ASD for four 
metabolites compared to TD controls. Notably, three of these metabolites were fatty acids, 
including myristoleic acid, eicosatetraenoic acid, and octadecenoic acid. Additionally, the amino 
acid sarcosine exhibited a significant association with ASD.  

Conclusions: These findings highlight the role of metabolites in the etiology of ASD and suggest 
opportunities for the development of targeted interventions. 
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Introduction 

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with higher than 1% 
worldwide prevalence, and there has been an observable upward trend in this rate over the last 
decade1. The diagnosis of ASD is conducted by behavior assessment due to the limited 
knowledge of the biological mechanisms governing its etiology. Therefore, understanding the 
molecular underpinnings of ASD holds significant promise for the identification of novel diagnostic 
and treatment strategies2.  

Metabolomics is one emerging field of study that has become a valuable tool in understanding 
the intricate biochemical signatures associated with ASD. Detecting the metabolic alterations 
linked to ASD has the potential to enhance the accuracy of early diagnosis, but also offers 
valuable insights into the disrupted underlying biological pathways in ASD3. We conducted 
metabolomic profiling on plasma samples from participants in the second phase of 
Epidemiological Research on Autism in Jamaica (ERAJ-2) study, which was a 1:1 age (±6 
months)-and sex-matched cohort of 200 children with ASD and 200 TD controls (2-8 years old). 
Using high-throughput liquid chromatography-mass spectrometry techniques, we performed a 
targeted metabolite analysis, encompassing amino acids, lipids, carbohydrates, and other key 
metabolic compounds. We first conducted quality control and imputation of missing values, a step 
we previously discussed regarding its importance4. We then investigated the alteration of 
metabolites associated with ASD. We performed the analysis using both univariable and 
multivariable analyses. The latter is a regularized model for simultaneous analysis of 96 
metabolites, which was optimized using cross-validation techniques while considering the 
accuracy. All analyses in this study were adjusted for age, sex, socioeconomic status, and child’s 
parish of birth. 

This study aims to uncover potential metabolic signatures associated with ASD in Jamaican 
children, offering insights into its underlying biological mechanisms that may contribute to early 
diagnosis of ASD. 

Materials and Methods 

Subjects 

This study comprises data from 200 pairs of case-control individuals enrolled in phase 1 and 2 of 
The Epidemiological Research on Autism in Jamaica (ERAJ), a focused case-control study 
targeting children aged 2 to 8 years. Initiated in December 2009, the study invited children at risk 
for ASD identified based on Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) 
criteria5 and the Childhood Autism Rating Scale6. Confirmatory evaluations for ASD cases 
involved standardized tools, including the Autism Diagnostic Observation Schedule (ADOS)7, 
ADOS-28, and the Autism Diagnostic Interview-Revised (ADI-R)9. For each confirmed ASD case, 
a typically developing (TD) control was recruited from schools or well-child clinics whose age was 
within six months of age. TD status was verified using the Social Communication Questionnaire 
(SCQ)10, adhering to guidelines (SCQ score of 0–6). After completing the questionnaires, blood 
samples were collected from participants without requiring fasting. All parents provided written 
informed consent, and when applicable, an assent was collected from 7-8-year-old children before 
they participated in this ERAJ study. Detailed recruitment and assessment procedures for both 
ASD cases and controls can be found in prior references11. 



All procedures performed in studies involving human participants were in accordance with the 
ethical standards of the institutional and/or national research committee and with the 1964 
Helsinki Declaration and its later amendments or comparable ethical standards. The ERAJ study 
protocol has been approved by the Institutional Review Boards (IRBs) of both the University of 
Texas Health Science Center at Houston (UTHealth) (IRB Protocol number: HSC-SPH-09-0059) 
and The University of the West Indies (UWI), in Jamaica. 

Plasma samples collection and metabolite extraction 

For targeted metabolomics analysis, the human serum samples were thawed, including mouse 
liver pool as Quality Control (QC), and were mixed with 750 µL of internal standard (ISTD) mix in 
methanol-water (4:1). Metabolites were extracted using the liquid-liquid extraction method 
described previously12,13. Following partitioning with ice-cold chloroform and water, the organic 
and aqueous layers were meticulously transferred into new glass vials. Proteins and lipids were 
removed from extracted samples using a 3K Amicon-Ultra filter (Millipore Corporation, Billerica, 
MA). The extracted total metabolites samples were analyzed through high-throughput Liquid 
Chromatography-Mass Spectrometry (LC-MS/MS) techniques described previously13–15.  

The chromatographic separation of extracted metabolites was performed through Hydrophilic 
Interaction Chromatography (HILIC) techniques. The metabolites were separated through the 
XBridge Amide HPLC column (3.5 µm, 4.6 x 100 mm, Waters, Milford, MA) in both electrospray 
ionization (ESI) positive and negative mode. In positive ionization mode, the flow rate was set to 
0.3 mL/min and an injection volume of 5 µL was applied. In ESI negative mode, the analysis 
employed a solvent flow rate of 0.3 mL/min with an injection volume of 10 µL. 

For the analysis of fatty acids, a Luna 3 µm Phenyl-Hexyl column (150 × 2 mm; Phenomenex, 
Torrance, CA) was utilized. Mobile phases A and B consisted of 10 mM ammonium acetate (pH 
8) and methanol. The gradient flow was as follows:  0-8 min 40% B, 8-13 min 50% B, 13-23 min 
67%, 23-30 min 100%, and 30 min 40%, followed by re-equilibration until the end of the 37 min 
gradient to the initial starting condition of 40% B. The flow rate of the solvents used for analysis 
was 0.2 mL/min, with an injection volume of 20 µL. 

The above-mentioned volume of samples was injected and the data was acquired via multiple 
reaction monitoring (MRM) using a 6495 Triple Quadrupole mass spectrometry coupled to an 
HPLC system (Agilent Technologies, Santa Clara, CA) through Agilent Mass Hunter Software.  

Data preprocessing  

The serum metabolites data were extracted from two sets, each comprising 100 pairs. 
Metabolomics extraction was independently performed for each set, with samples randomly 
assigned to 4 batches. The acquired data were analyzed and integration of each peak was 
performed using Agilent Mass Hunter Quantitative Analysis software. The relative peak area 
normalized to the internal standard was log2 transformed and batch correction was carried out 
using the ComBat Package16. 

To combine the two sets of data, we performed batch effect correction using the first principal 
component (Figure S1A, B). Quality assessment included clustering metabolites for both cases 
and controls, revealing comparable cluster formations in both groups (Figure S2A-B) 

 



Statistical methods 

We performed a multivariable analysis to simultaneously analyze 96 metabolites while adjusting 
for covariates. The model incorporates a regularization term with two parameters, mixing and 
regularization17. The optimal mixing parameter was determined based on the highest accuracy 
achieved by models when the samples were divided into training and test sets (70% and 30%, 
respectively). For the regularization parameters, optimization was achieved through 10-fold cross-
validation, selecting the value that minimized the partial likelihood deviance from the model. 

To ascertain the robustness of our findings, we estimated empirical 95% confidence intervals 
(CIs) for the metabolomics coefficients using bootstrapping over 500 iterations18. If the 95% CI for 
any coefficient did not encompass the origin, we considered the perturbation of the corresponding 
metabolites to be empirically significant. 

We also conducted a univariate analysis using a generalized linear regression model, accounting 
for covariates (age, sex, socioeconomic status, and the child's parish of birth). The resulting p-
values underwent correction for multiple comparisons through the false discovery rate (FDR) 
method19. Significance was attributed to perturbations between cases and controls with an FDR 
< 0.05. 

Given that our samples were not collected under fasting conditions, paired sample analysis was 
not performed, as it could introduce bias and confound the interpretation of results. In addition, 
one of the samples was excluded from the analysis due to the absence of metabolomics data. 

Results  

We initially investigated the dietary habits of both cases and controls and assessed potential 
distinctions in their food consumption patterns. As described in detail in Table S1, this analysis 
revealed significant distinctions in certain categories of food consumption between the two 
groups. Therefore, we further explored the association between metabolites and food 
consumption through correlation analysis (Figure 1A). Since our study found either no or weak 
correlations between metabolites and food consumption (r2 < 0.06), we made the decision not to 
include any scores for food consumption in the subsequent analysis.  

We then applied a regularized multivariable model to simultaneously investigate perturbations of 
all metabolites, comparing the children with ASD to TD children. This model identified 44 
metabolites with non-zero coefficients while adjusting for covariates (age, sex, socioeconomic 
status, and the child's parish of birth). Among these metabolites, 4 were significant based on the 
estimated CI for the adjusted odds ratio (AOR) (Figure 1B); myristoleic acid (AOR 1.96, 95% CI 
1.62-3.49), eicosatetraenoic acid (AOR 0.52, 95% CI 0.96-0.72), octadecenoic acid (ODCA) 
(AOR 1.57, 95% CI 1.07-3.78), and sarcosine/alanine (AOR 1.79, 95% CI 1.34-3.35).  



 

Figure 1. A. Representing either no or weak correlations between metabolites and food 
consumption. B. Adjusted odds ratio of metabolites with nonzero coefficients based on 
a regularized multivariable model. The red dot represents the adjusted odds ratio of 
metabolites empirically significant using the estimated confidence interval. 

In addition, we conducted a univariable analysis while adjusting for covariates. Following 
correction for multiple testing (FDR < 0.05), myristoleic acid was significantly elevated among 
the children with ASD (AOR 1.41, 95% CI 1.18-1.67). Figure 2A illustrates -log10(p-values) 
of all metabolites derived from the univariable analysis, with the p-value of 0.0001 for 
myristoleic acid highlighted in red. Figure 2B presents a boxplot visually capturing the group-
specific distribution of normalized values for myristoleic acid, along with the associated 
Wilcoxon p-value of 0.00055.  

 

Figure 2: A. Representing the -log10(p-values) of all metabolites based on univariable 
analysis while adjusting for covariates. Myristoleic acid was found to be significant after 



correction for multiple testing (FDR < 0.05). B. Representing the group-specific boxplot 
of myristoleic normalized values, with the Wilcoxon p-value of 0.00055.  

 

Discussion  

A metabolomic study of participants in The Epidemiological Research on Autism in Jamaica 
(ERAJ) study measured targeted metabolites in plasma using high-throughput liquid 
chromatography-mass spectrometry techniques, encompassing targeted metabolomic profiling 
including amino acids, amino sugar, fatty acids, central carbon metabolites, one carbon 
metabolites, nucleotides, and other key metabolic compounds. This case-control study identified 
four metabolites associated with ASD through simultaneous analysis of all 96 metabolites that 
passed the quality controls. Three of the findings involved fatty acids (myristoleic acid, 
octadecenoic acid, and eicosatetraenoic acid) and one amino acid was identified 
(sarcosine/alanine). 

Myristoleic acid, classified as a monounsaturated omega-5 fatty acid, is not synthesized in 
sufficient quantities by the body and must be obtained through dietary sources. Potential anti-
inflammatory properties associated with myristoleic acid have been reported20. However, we 
observed significantly elevated levels of myristoleic acid in a group of children diagnosed with 
ASD compared to TD controls. This elevation has been observed in a study involving Japanese 
children diagnosed with ASD21. This finding prompts further investigation into the metabolic 
pathways and potential implications of heightened myristoleic acid in the context of ASD and 
neurodevelopmental conditions. 

Sarcosine/alanine is a nonproteinogenic amino acid that occurs as an intermediate product in the 
synthesis and degradation of the amino acid glycine. We observed an elevation of sarcosine 
associated with ASD, which has been previously reported in a study of Chinese children with 
ASD22.  

Eicosatetraenoic acid (ETA) belongs to the family of eicosanoids, signaling molecules derived 
from polyunsaturated fatty acids. These bioactive lipids play crucial roles in mediating cell-cell 
communication and may contribute to an anti-inflammatory response23, consistent with its inverse 
association with ASD in our study.  

Another fatty acid that we observed associated with ASD was octadecanoic acid which is 
essential for brain development. In a study investigating abnormalities of fatty acids and their 
impact on autism treatment, elevation of octadecanoic acid was linked to neurotoxicity in rats24. 

Increasing evidence supports the involvement of fatty acids in the etiology of ASD3, and several 
studies have highlighted abnormalities in the lipid panel among ASD patients. The degree of these 
alterations potentially influences the severity of clinical symptoms21,25.In addition, a link between 
lipid metabolism and oxidative stress in ASD, which is closely related to inflammation, has been 
reported21. Intervention studies focusing on fatty acids, such as omega-3 supplementation, have 
yielded promising results, demonstrating improvements in symptoms such as irritability, 
hyperactivity, and social function in children with ASD26–28. Research indicates that children 
diagnosed with ASD tend to exhibit an elevated omega-6 to omega-3 ratio in their blood, which is 
associated with increased inflammation. This elevation might be due to reduced dietary intake or 
differences in fatty acid metabolism and cellular membrane incorporation, unique to ASD 



populations27. Alterations in membrane lipid components can influence crucial intra- and 
intercellular signaling pathways in various ways. For instance, lipids participate in the regulation 
of membrane-bound proteins involved in various neuronal processes, including synaptic 
transmission, signal transduction, and cell adhesion. These can contribute to aberrant neuronal 
signaling and synaptic dysfunction observed in individuals with ASD21,29,30. 

Given that the identified metabolites in this study fall into the category of non-essential compounds 
influenced by dietary habits, the observed differences in dietary patterns, as determined through 
the analysis of food consumption, warrant further investigation and replication. It is important to 
note that our analysis did not reveal any significant correlations between the identified metabolites 
and the information obtained from food questionnaires. This lack of correlation may be attributed 
to diet's intricate and multifaceted impact on metabolites. Additionally, the reliability of the scores 
derived from the questionnaires could introduce uncertainty into the analysis. Therefore, further 
exploration is required to fully comprehend the complex relationship between dietary habits and 
metabolite levels.  In addition, given the heterogeneity among patients with ASD and variability 
within the ASD group, further investigation is warranted to understand individual-level differences. 
In future studies, investigating interactions among these metabolites could expand our 
understanding of the biological mechanisms underlying ASD31,32. Overall, these findings 
underscore the role of metabolites in the etiology of ASD and suggest potential avenues for the 
development of targeted interventions. 
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Figure S1. Batch effect correction.  

A. Data representation using first two principal components before the correction. 

 

 
 

 

 

 

 

 

 

 

 

 



 

B. Data representation using first two principal components after the correction. 

 

 
 

 

 

 

 

 

 

 

 

 



 

Figure S2. Quality assessment.  

A. Metabolite clustering for the TD children group (controls). 

 

 
 

 

 

 

 

 



 

 

B. Metabolite clustering for the ASD group (cases). 

 

 
 

 

 

 

 

 

 

 

 



 

Table S1. By performing the Chi-square test or Fisher's exact test (*), we investigated the 
potential distinctions in dietary patterns between ASD and TD control groups based on food 
consumption scores obtained from questionnaires. 

 TD control group 
 (N=200) 

ASD group 
(N=200) 

Total 
 (N=400) 

p-value 

Sea fish    0.004 
   Consumed 133 (66.5%) 105 (52.5%) 238 (59.5%)  
   Not Consumed 67 (33.5%) 95 (47.5%) 162 (40.5%)  
Fresh water    0.182 
   Consumed 49 (24.5%) 38 (19.0%) 87 (21.8%)  
   Not Consumed 151 (75.5%) 162 (81.0%) 313 (78.2%)  
Sardine    < 0.001 
   Consumed 170 (85.0%) 139 (69.5%) 309 (77.2%)  
   Not Consumed 30 (15.0%) 61 (30.5%) 91 (22.8%)  
Tuna    0.196 
   Consumed 69 (34.5%) 57 (28.5%) 126 (31.5%)  
   Not Consumed 131 (65.5%) 143 (71.5%) 274 (68.5%)  
Saltfish    < 0.001 
   Consumed 158 (79.0%) 113 (56.5%) 271 (67.8%)  
   Not Consumed 42 (21.0%) 87 (43.5%) 129 (32.2%)  
Shell fish lobster    < 0.001 
   Consumed 33 (16.5%) 6 (3.0%) 39 (9.8%)  
   Not Consumed 167 (83.5%) 194 (97.0%) 361 (90.2%)  
Shrimp    < 0.001 
   Consumed 33 (16.5%) 6 (3.0%) 39 (9.8%)  
   Not Consumed 167 (83.5%) 194 (97.0%) 361 (90.2%)  
Packaged fish    0.388 
   Consumed 38 (19.0%) 45 (22.5%) 83 (20.8%)  
   Not Consumed 162 (81.0%) 155 (77.5%) 317 (79.2%)  
Beef    0.085 
   Consumed 92 (46.0%) 75 (37.5%) 167 (41.8%)  
   Not Consumed 108 (54.0%) 125 (62.5%) 233 (58.2%)  
Lamb mutton    0.110 
   Consumed 33 (16.5%) 22 (11.0%) 55 (13.8%)  
   Not Consumed 167 (83.5%) 178 (89.0%) 345 (86.2%)  
Goat    < 0.001 
   Consumed 101 (50.5%) 68 (34.0%) 169 (42.2%)  



 TD control group 
 (N=200) 

ASD group 
(N=200) 

Total 
 (N=400) 

p-value 

   Not Consumed 99 (49.5%) 132 (66.0%) 231 (57.8%)  
Pork    < 0.001 
   Consumed 112 (56.0%) 79 (39.5%) 191 (47.8%)  
   Not Consumed 88 (44.0%) 121 (60.5%) 209 (52.2%)  
Liver    0.009 
   Consumed 117 (58.5%) 91 (45.5%) 208 (52.0%)  
   Not Consumed 83 (41.5%) 109 (54.5%) 192 (48.0%)  
Chicken    0.006* 
   Consumed 196 (98.0%) 184 (92.0%) 380 (95.0%)  
   Not Consumed 4 (2.0%) 16 (8.0%) 20 (5.0%)  
Milk    0.229 
   Consumed 98 (49.0%) 86 (43.0%) 184 (46.0%)  
   Not Consumed 102 (51.0%) 114 (57.0%) 216 (54.0%)  
Cheese    < 0.001 
   Consumed 165 (82.5%) 134 (67.0%) 299 (74.8%)  
   Not Consumed 35 (17.5%) 66 (33.0%) 101 (25.2%)  
Yogurt    0.004 
   Consumed 68 (34.0%) 42 (21.0%) 110 (27.5%)  
   Not Consumed 132 (66.0%) 158 (79.0%) 290 (72.5%)  
Eggs    < 0.001 
   Consumed 172 (86.0%) 144 (72.0%) 316 (79.0%)  
   Not Consumed 28 (14.0%) 56 (28.0%) 84 (21.0%)  
Rice    < 0.001* 
   Consumed 199 (99.5%) 178 (89.0%) 377 (94.2%)  
   Not Consumed 1 (0.5%) 22 (11.0%) 23 (5.8%)  
Fried dumpling    0.140 
   Consumed 154 (77.0%) 141 (70.5%) 295 (73.8%)  
   Not Consumed 46 (23.0%) 59 (29.5%) 105 (26.2%)  
Boiled dumpling    < 0.001 
   Consumed 184 (92.0%) 154 (77.0%) 338 (84.5%)  
   Not Consumed 16 (8.0%) 46 (23.0%) 62 (15.5%)  
White bread    < 0.001 
   Consumed 140 (70.0%) 103 (51.5%) 243 (60.8%)  
   Not Consumed 60 (30.0%) 97 (48.5%) 157 (39.2%)  
Whole wheat bread    0.760 
   Consumed 121 (60.5%) 118 (59.0%) 239 (59.8%)  
   Not Consumed 79 (39.5%) 82 (41.0%) 161 (40.2%)  



 TD control group 
 (N=200) 

ASD group 
(N=200) 

Total 
 (N=400) 

p-value 

Cakes bun    0.003 
   Consumed 164 (82.0%) 138 (69.0%) 302 (75.5%)  
   Not Consumed 36 (18.0%) 62 (31.0%) 98 (24.5%)  
Porridge    0.003 
   Consumed 184 (92.0%) 164 (82.0%) 348 (87.0%)  
   Not Consumed 16 (8.0%) 36 (18.0%) 52 (13.0%)  
Cold cereal    < 0.001 
   Consumed 157 (78.5%) 116 (58.0%) 273 (68.2%)  
   Not Consumed 43 (21.5%) 84 (42.0%) 127 (31.8%)  
Macaroni    < 0.001 
   Consumed 179 (89.5%) 150 (75.0%) 329 (82.2%)  
   Not Consumed 21 (10.5%) 50 (25.0%) 71 (17.8%)  
Peas    < 0.001 
   Consumed 146 (73.0%) 106 (53.0%) 252 (63.0%)  
   Not Consumed 54 (27.0%) 94 (47.0%) 148 (37.0%)  
Beans    0.011 
   Consumed 94 (47.0%) 69 (34.5%) 163 (40.8%)  
   Not Consumed 106 (53.0%) 131 (65.5%) 237 (59.2%)  
Nuts    < 0.001 
   Consumed 158 (79.0%) 95 (47.5%) 253 (63.2%)  
   Not Consumed 42 (21.0%) 105 (52.5%) 147 (36.8%)  
Yam    0.008 
   Consumed 147 (73.5%) 122 (61.0%) 269 (67.2%)  
   Not Consumed 53 (26.5%) 78 (39.0%) 131 (32.8%)  
Carrot    < 0.001 
   Consumed 174 (87.0%) 147 (73.5%) 321 (80.2%)  
   Not Consumed 26 (13.0%) 53 (26.5%) 79 (19.8%)  
Lettuce    < 0.001 
   Consumed 107 (53.5%) 57 (28.5%) 164 (41.0%)  
   Not Consumed 93 (46.5%) 143 (71.5%) 236 (59.0%)  
Callaloo    0.001 
   Consumed 153 (76.5%) 123 (61.5%) 276 (69.0%)  
   Not Consumed 47 (23.5%) 77 (38.5%) 124 (31.0%)  
Cabbage    < 0.001 
   Consumed 148 (74.0%) 109 (54.5%) 257 (64.2%)  
   Not Consumed 52 (26.0%) 91 (45.5%) 143 (35.8%)  
String beans    0.020 
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 (N=400) 

p-value 

   Consumed 59 (29.5%) 39 (19.5%) 98 (24.5%)  
   Not Consumed 141 (70.5%) 161 (80.5%) 302 (75.5%)  
Tomatoes    < 0.001 
   Consumed 142 (71.0%) 105 (52.5%) 247 (61.8%)  
   Not Consumed 58 (29.0%) 95 (47.5%) 153 (38.2%)  
Ackee    < 0.001 
   Consumed 155 (77.5%) 94 (47.0%) 249 (62.2%)  
   Not Consumed 45 (22.5%) 106 (53.0%) 151 (37.8%)  
Avocado    < 0.001 
   Consumed 106 (53.0%) 42 (21.0%) 148 (37.0%)  
   Not Consumed 94 (47.0%) 158 (79.0%) 252 (63.0%)  
Green banana    < 0.001 
   Consumed 155 (77.5%) 123 (61.5%) 278 (69.5%)  
   Not Consumed 45 (22.5%) 77 (38.5%) 122 (30.5%)  
Fried plantain    < 0.001 
   Consumed 173 (86.5%) 142 (71.0%) 315 (78.8%)  
   Not Consumed 27 (13.5%) 58 (29.0%) 85 (21.2%)  
Ripe banana    < 0.001 
   Consumed 189 (94.5%) 162 (81.0%) 351 (87.8%)  
   Not Consumed 11 (5.5%) 38 (19.0%) 49 (12.2%)  
Oranges    < 0.001 
   Consumed 181 (90.5%) 134 (67.0%) 315 (78.8%)  
   Not Consumed 19 (9.5%) 66 (33.0%) 85 (21.2%)  
Tangerine    < 0.001 
   Consumed 95 (47.5%) 52 (26.0%) 147 (36.8%)  
   Not Consumed 105 (52.5%) 148 (74.0%) 253 (63.2%)  
Grapes    < 0.001 
   Consumed 123 (61.5%) 79 (39.5%) 202 (50.5%)  
   Not Consumed 77 (38.5%) 121 (60.5%) 198 (49.5%)  
Otaheite apples    < 0.001 
   Consumed 169 (84.5%) 128 (64.0%) 297 (74.2%)  
   Not Consumed 31 (15.5%) 72 (36.0%) 103 (25.8%)  
Pineapples    < 0.001 
   Consumed 143 (71.5%) 90 (45.0%) 233 (58.2%)  
   Not Consumed 57 (28.5%) 110 (55.0%) 167 (41.8%)  
American apples    0.002 
   Consumed 78 (39.0%) 49 (24.5%) 127 (31.8%)  
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   Not Consumed 122 (61.0%) 151 (75.5%) 273 (68.2%)  
Guinep    0.041 
   Consumed 12 (6.0%) 4 (2.0%) 16 (4.0%)  
   Not Consumed 188 (94.0%) 196 (98.0%) 384 (96.0%)  
Peach    0.041* 
   Consumed 12 (6.0%) 4 (2.0%) 16 (4.0%)  
   Not Consumed 188 (94.0%) 196 (98.0%) 384 (96.0%)  
Plums    < 0.001 
   Consumed 98 (49.0%) 24 (12.0%) 122 (30.5%)  
   Not Consumed 102 (51.0%) 176 (88.0%) 278 (69.5%)  
Strawberry    0.388 
   Consumed 21 (10.5%) 16 (8.0%) 37 (9.2%)  
   Not Consumed 179 (89.5%) 184 (92.0%) 363 (90.8%)  
Naseberry    0.004 
   Consumed 70 (35.0%) 44 (22.0%) 114 (28.5%)  
   Not Consumed 130 (65.0%) 156 (78.0%) 286 (71.5%)  
Sweetsop    < 0.001 
   Consumed 69 (34.5%) 23 (11.5%) 92 (23.0%)  
   Not Consumed 131 (65.5%) 177 (88.5%) 308 (77.0%)  
Mango    < 0.001 
   Consumed 186 (93.0%) 148 (74.0%) 334 (83.5%)  
   Not Consumed 14 (7.0%) 52 (26.0%) 66 (16.5%)  
June plum    < 0.001 
   Consumed 142 (71.0%) 74 (37.0%) 216 (54.0%)  
   Not Consumed 58 (29.0%) 126 (63.0%) 184 (46.0%)  
Juices    < 0.001 
   Consumed 186 (93.0%) 161 (80.5%) 347 (86.8%)  
   Not Consumed 14 (7.0%) 39 (19.5%) 53 (13.2%)  
Beverages    0.514 
   Consumed 181 (90.5%) 177 (88.5%) 358 (89.5%)  
   Not Consumed 19 (9.5%) 23 (11.5%) 42 (10.5%)  
Soft drinks    0.057 
   Consumed 104 (52.0%) 85 (42.5%) 189 (47.2%)  
   Not Consumed 96 (48.0%) 115 (57.5%) 211 (52.8%)  
Tea substitutes    < 0.001 
   Consumed 185 (92.5%) 160 (80.0%) 345 (86.2%)  
   Not Consumed 15 (7.5%) 40 (20.0%) 55 (13.8%)  
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 (N=200) 

ASD group 
(N=200) 
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 (N=400) 

p-value 

Canned food    < 0.001 
   Consumed 162 (81.0%) 122 (61.0%) 284 (71.0%)  
   Not Consumed 38 (19.0%) 78 (39.0%) 116 (29.0%)  
Aluminum foil    0.303 
   Consumed 41 (20.5%) 33 (16.5%) 74 (18.5%)  
   Not Consumed 159 (79.5%) 167 (83.5%) 326 (81.5%)  
Unpeeled fruits    < 0.001 
   Consumed 179 (89.5%) 124 (62.0%) 303 (75.8%)  
   Not Consumed 21 (10.5%) 76 (38.0%) 97 (24.2%)  
Animal fat    0.003 
   Consumed 44 (22.0%) 22 (11.0%) 66 (16.5%)  
   Not Consumed 156 (78.0%) 178 (89.0%) 334 (83.5%) 0.004 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


