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Background. Neutralizing monoclonal antibodies (nmAbs) failed to show clear benefit for hospitalized patients with 
coronavirus disease 2019 (COVID-19). Dynamics of virologic and immunologic biomarkers remain poorly understood.

Methods. Participants enrolled in the Therapeutics for Inpatients with COVID-19 trials were randomized to nmAb versus 
placebo. Longitudinal differences between treatment and placebo groups in levels of plasma nucleocapsid antigen (N-Ag), anti- 
nucleocapsid antibody, C-reactive protein, interleukin-6, and D-dimer at enrollment, day 1, 3, and 5 were estimated using linear 
mixed models. A 7-point pulmonary ordinal scale assessed at day 5 was compared using proportional odds models.

Results. Analysis included 2149 participants enrolled between August 2020 and September 2021. Treatment resulted in 20% 
lower levels of plasma N-Ag compared with placebo (95% confidence interval, 12%–27%; P < .001), and a steeper rate of decline 
through the first 5 days (P < .001). The treatment difference did not vary between subgroups, and no difference was observed in 
trajectories of other biomarkers or the day 5 pulmonary ordinal scale.

Conclusions. Our study suggests that nmAb has an antiviral effect assessed by plasma N-Ag among hospitalized patients with 
COVID-19, with no blunting of the endogenous anti-nucleocapsid antibody response. No effect on systemic inflammation or day 5 
clinical status was observed.
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Coronavirus disease 2019 (COVID-19) led to tremendous mor
bidity and mortality as well as remarkable scientific gains, pro
viding critical antiviral and immunomodulatory treatments 
[1–11]. While neutralizing monoclonal antibody (nmAb) treat
ments benefitted outpatients with mild, early COVID-19, their 
impact in hospitalized patients have not shown consistently sig
nificant advantages over standard of care including remdesivir 
[1, 8, 12, 13].

Clinical data have suggested a correlation between ongoing 
viral replication, inflammation, and disease severity in hospi
talized patients with COVID-19 [14–17], and several random
ized controlled trials have indicated that there are subgroups 
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of hospitalized patients who may benefit from treatment with 
nmAb. This includes patients with low baseline titer of anti- 
spike antibodies (anti-S Ab) [7, 8], patients with high baseline 
concentration of plasma SARS-CoV-2 nucleocapsid antigen 
(plasma N-Ag) [7], and patients who require a high level of 
respiratory support (high-flow nasal oxygen [HFNO] or non
invasive ventilation [NIV]) [1]. The dynamics of virological 
and immunological biomarkers over time have not been de
scribed and may further the understanding of trial results. 
Ultimately, this information could inform treatment strate
gies for managing COVID-19 at the point of hospital admis
sion, aid in the design of future antiviral treatment and 
algorithms, and allow prognostic enrichment strategies in fu
ture clinical trials.

The Therapeutics for Inpatients with COVID-19 (TICO) 
trial platform, sponsored by the US National Institutes of 
Health within the Accelerating COVID-19 Therapeutic 
Interventions and Vaccines (ACTIV) program, conducted 4 
international, blinded, randomized, placebo-controlled trials 
of nmAbs in hospitalized patients with COVID-19 receiving 
standard of care [1, 12, 13, 18]. This study reports measure
ment of plasma N-Ag at baseline and on days 1, 3, and 5 of 
follow-up, together with anti-nucleocapsid antibodies 
(anti-N Ab), anti-S Ab neutralizing activity, C-reactive pro
tein (CRP), interleukin 6 (IL-6), and D-dimer. We describe 
the impact of nmAb on early trajectories of these measure
ments compared with placebo.

METHODS

Study Population

Between 5 August 2020 and 30 September 2021, TICO/ 
ACTIV-3 trials enrolled 2254 hospitalized adult patients 
with laboratory-confirmed severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection, symptoms for ≤12 
days, and no organ failure or major extrapulmonary manifes
tations of COVID-19. These trials evaluated the nmAbs bam
lanivimab (Eli Lilly and Company) between August and 
October 2020 [13], sotrovimab (Vir Biotechnology and 
GlaxoSmithKline) between December 2020 and March 2021 
[12], amubarvimab-romlusevimab (Brii Biosciences) between 
December 2020 and March 2021 [12], and tixagevimab- 
cilgavimab (AstraZeneca) between February and September 
2021 [1]. Only the tixagevimab-cilgavimab trial passed the 
early futility assessment, and a higher number of patients 
were therefore enrolled in this trial. Participants were ran
domized to the specific nmAb or placebo, and remdesivir 
was provided as part of standard of care to all participants un
less contraindicated. In some cases, a placebo participant was 
used as a control for multiple trials. Participants were enrolled 
at 108 sites in Denmark, Greece, Poland, Uganda, Singapore, 
Spain, Switzerland, the United Kingdom, and the United 

States. The trials are registered with ClinicalTrials.gov, 
NCT04501978.

Patients not requiring oxygen or receiving oxygen supplemen
tation via conventional nasal cannula were eligible for enrollment 
in all trials, and the bamlanivimab and tixagevimab-cilgavimab 
trials also enrolled patients receiving HFNO or NIV. Patients re
quiring invasive mechanical ventilation were excluded in all trials. 
For our study, we included all participants who had a baseline 
sample (day 0) taken at the time of enrollment and at least 1 
follow-up sample from days 1, 3, or 5 analyzed with the laboratory 
measurement of interest. Written informed consent for trial par
ticipation was obtained from each enrolled patient or a legally au
thorized representative, as applicable.

Laboratory Measurements

Samples were stored at −70°C at a central repository, Advanced 
BioMedical Laboratories (Cinnaminson, NJ). Levels of plasma 
N-Ag, anti-N Ab, anti-S Ab neutralizing activity, CRP, IL-6, 
and D-dimer were determined centrally by the Frederick 
National Laboratory (Frederick, MD), blinded to treatment 
group.

The concentration of plasma N-Ag was determined using the 
Quanterix SARS-CoV-2 N Protein Antigen assay (Quanterix); 
the lower level of detection was 3 ng/L.

The level of anti-N Ab was measured using the BioRad 
Platelia SARS-CoV-2 Total Ab assay (BioRad). Results of the 
assay were reported as signal to cutoff ratio (S/C ratio) defined 
as the specimen optical density divided by that of the control. 
An S/C ratio above 1 was considered positive.

The level of anti-S Ab neutralizing activity was evaluated us
ing the GenScript SARS-CoV-2 cPass Surrogate Virus 
Neutralization assay (GenScript). Levels were expressed as per
cent binding inhibition, and a positive result was defined as 
30% binding inhibition or more [19].

Serum levels of CRP and plasma levels of IL-6 were measured 
using electrochemiluminescence (Meso Scale Discovery). 
Plasma D-dimer was measured by an enzyme-linked fluores
cent assay on a VIDAS instrument (BioMerieux). Upper limits 
of normal for CRP, IL-6, and D-dimer were 10 mg/L, 2 ng/L, 
and 0.5 mg/L, respectively.

For Delta variant analysis, SARS-CoV-2 viral RNA was ex
tracted from a midturbinate nasal swab collected at baseline. 
All participants enrolled after 1 May 2021 were tested for the 
presence of the Delta variant using a reverse transcription po
lymerase chain reaction (RT-PCR) assay specifically designed 
to detect the N-terminal domain region of the spike gene 
with the N gene serving as a positive control, as described in 
the original trial publication [1]. Participants enrolled prior 
to this date were considered infected with a non-Delta 
SARS-CoV-2 variant. Confirmation of the RT-PCR was done 
using whole genome sequencing as described previously [7]. 
Concordance was 99.9% (n = 811).
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Statistical Analysis

In the bamlanivimab trial, participants were randomized 1:1 to 
bamlanivimab versus placebo, and enrollment completed be
fore the next nmAb trial started. For the majority of the second 
trial, participants were randomized 1:1:1 to sotrovimab, 
amubarvimab-romlusevimab, or placebo; the last month of en
rolment also included tixagevimab-cilgavimab as a third active 
arm. Almost all participants in the tixagevimab-cilgavimab trial 
were randomized 1:1 to nmAb versus placebo. Because some 
placebo participants were used for multiple trials, more partic
ipants overall were randomized to nmAb than to placebo. To 
avoid bias in the treatment comparisons due the changes in 
randomization proportions over time, we defined 5 strata, 1 
for each combination of nmAbs that were available to partici
pants at the time of randomization. Each participant was as
signed to 1 of the 5 strata. All comparisons of pooled nmAb 
versus placebo were stratified by this variable. For the compar
isons of each individual nmAb versus placebo, we included all 
participants into the placebo group who were randomized con
temporaneously to placebo, resulting in approximately equal 
numbers of participants in the active and matched placebo 
groups.

Levels of plasma N-Ag, CRP, IL-6, and D-dimer were log- 
transformed for analyses, and results were back-transformed 
to the original scale; thus, these biomarker levels were summa
rized by geometric means, and treatment differences were pre
sented as geometric mean ratios. Anti-N and anti-S Ab 
neutralizing activity were analyzed on the original scale, and 
summarized as means and differences of means.

For each laboratory measurement, longitudinal plots of 
means with 95% confidence intervals (CIs) at days 0, 1, 3, 
and 5 were presented by nmAb versus placebo groups. 
Longitudinal differences between groups were estimated using 
linear mixed models for each laboratory measurement, model
ing the biomarker levels on days 1, 3, and 5 as repeated mea
sures over the 3 visits, with fixed effects for treatment group, 
visit (categorical variable), baseline oxygen requirement (pul
monary ordinal scale), baseline value of the laboratory mea
surement being analyzed, and random intercepts by subject. 
Comparisons of the pooled nmAb group versus placebo also 
included the study stratum as covariate. The longitudinal 
treatment effect was estimated with 95% CIs as the coefficient 
for treatment group indicator, which reflects an average treat
ment effect across days 1, 3, and 5. A treatment by day (cate
gorical variable) interaction term was added to the above 
models to test whether the treatment effect varied across the 
3 follow-up days.

Similar longitudinal models were used to compare bio
marker trajectories between the nmAb and placebo groups 
within subgroups defined by baseline factors: age, sex, comor
bidities (Supplementary Table 1), viral variant, symptom dura
tion, pulmonary ordinal scale, plasma N-Ag concentration, Ta
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anti-N Ab serostatus, anti-S Ab serostatus, and COVID-19 vac
cination status. The treatment effect with 95% CI was estimated 
for each subgroup, and an interaction term (treatment group by 
subgroup indicator) was added to test whether the nmAb treat
ment effect differed across subgroups.

Because the biomarker changes we examined occurred over 
the first 5 days, we chose an outcome reflective of changes over 
5 days. Thus, association between nmAb treatment and the day 
5 pulmonary ordinal scale, collected as a secondary early out
come in TICO/ACTIV-3 (Supplementary Table 2), was used 
to correlate the effect of nmAb on biomarkers with clinical out
come. This association was estimated as the common odds ra
tio, using proportional odds models, reflecting the odds of 
being in a better category for participants in the nmAb group 
compared with placebo.

Nominal P values ≤.05 were considered significant, and the 
cutoff was lowered to ≤.01 in the subgroup analysis due to the 
high number of comparisons. Statistical analyses were conduct
ed using SAS (version 9.4) and R (version 4.1).

RESULTS

Baseline Clinical Characteristics

In total, 2149 participants had laboratory measurements at 
baseline and 1 or more follow-up time points (days 1, 3, or 
5). Baseline characteristics are summarized in Table 1, overall, 
and by nmAb trial. Overall, the median age was 57 years (inter
quartile range [IQR], 46–68; total range, 19–100), 58% were 

male, 83.4% had a history of at least 1 chronic illness, and 
only 8.8% were fully vaccinated.

The median duration from symptom onset to enrollment 
was 8 days (IQR, 6–10), and 74.3% of participants required ox
ygen supplementation at the time of enrollment with only a 
small proportion (9.2%) needing HFNO or NIV. Use of system
ic corticosteroids was common (68.2%), and a small proportion 
received therapeutic heparin dosing (4.0%). Most participants 
(60.3%) were treated with remdesivir prior to enrollment, 
and because the trial provided remdesivir, post-randomization 
use increased to 92.6%. Of the participants, 30.9% were infected 
with the Delta variant.

At enrollment, plasma N-Ag was detected in almost all par
ticipants (94.6%), while 61.9% had a positive baseline test for 
anti-N Ab (median S/C ratio 2.4), and 49.6% had a positive 
test for anti-S Ab (mean 38.1% binding inhibition). The base
line median values of CRP, IL-6, and D-dimer were 31 mg/L, 
6 ng/L, and 0.9 mg/L, respectively.

Effect of nmAbs on Biomarker Trajectories Compared With Placebo

In the combined cohort of all 4 nmAb trials, plasma N-Ag levels 
decreased steadily from baseline through day 5 in both nmAb 
and placebo groups with the nmAb group having a small but 
significantly greater decline by day 3 (Figure 1A and Table 2). 
The geometric mean plasma N-Ag levels at baseline, day 1, 
day 3, and day 5 in the nmAb group were 847 ng/L, 442 ng/L, 
43 ng/L, and 12 ng/L, respectively; corresponding values in the 
placebo group were 844 ng/L, 474 ng/L, 62 ng/L, and 15 ng/L 

A Nucleocapsid antigen
nmAb nmAb nmAb

nmAb nmAb nmAb

C-reactive protein Interleukin-6 D-dimer

Anti-nucleocapsid antibody Anti-spike antibodyB C

D E F

n
n

n
n

n
n

n
n

n
n

n
n

Figure 1. Line plots of mean biomarker levels (with 95% confidence intervals) over time by neutralizing monoclonal antibody treatment and placebo groups. A, D, E, and F, 
Levels as geometric means; these biomarkers were analyzed on the log scale and back transformed. B and C, Levels as means analyzed on the original scale.
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(Supplementary Table 3). After adjustment for baseline levels, 
the treatment group had 20% (95% CI, 12%–27%) lower plasma 
N-Ag levels, averaged over days 1, 3, and 5, than the placebo 
group (P < .001). The rate of decline in plasma N-Ag from base
line through day 5 was steeper in the nmAb group compared 
with placebo (P < .001 for treatment by day interaction) 
(Figure 1A). Of the 4 nmAb treatments, bamlanivimab had the 
smallest effect on plasma N-Ag levels; however, there was no 
statistically significant difference between agents (P = .64) 
(Table 2 and Supplementary Figures 1–6).

Anti-N Ab levels increased from baseline in both nmAb and 
placebo groups (Figure 1B and Table 2). There was no signifi
cant difference between the nmAb and placebo groups at any of 
the individual follow-up days 1, 3, or 5, or averaged across 
follow-up, in the combined cohort or in the individual trials. 
No interaction with the time variable was observed.

There was an expected marked increase from baseline to day 
1 in anti-S Ab neutralization activity among participants re
ceiving nmAb compared with a smaller linear increase over 
time in the placebo group, reflecting that all investigated 
nmAbs were anti-S antibodies (Figure 1C). The increase of 
anti-S Ab neutralization among participants receiving sotrovi
mab was lower than the increase for the other nmAbs 
(Supplementary Figure 3), consistent with the specific target 
of sotrovimab on the outside of the receptor-binding domain 
leading to lower detection in the assay [20].

CRP declined steadily from baseline through day 5 in both 
the nmAb and placebo groups, and much less pronounced de
clines were seen for IL-6 and D-dimer (Figure 1D–F and 
Table 2). There was no statistically significant difference in 
these biomarker levels between nmAb and placebo groups, 
and no evidence for interaction between treatment group 
and time.

The longitudinal differences of laboratory measurements 
in the nmAb groups compared with placebo were homoge
neous across subgroups defined by baseline factors 
(Figure 2 and Supplementary Table 4). Almost all subgroups 
demonstrated the same pattern of a statistically significant 
decrease in plasma N-Ag with nmAb compared to placebo, 
but no corresponding difference in other biomarker trajecto
ries. There was no significant interaction between treatment 
groups and subgroup indicator for any of the outcomes 
(Supplementary Table 4). No impact of nmAb treatment 
on day 5 pulmonary ordinal scale was seen in the total co
hort (common odds ratio, 1.01; 95% CI, .87–1.18), or any 
of the subgroups (Figure 2).

DISCUSSION

After treatment with nmAb we observed a decline in viral bur
den, as measured by plasma N-Ag, with a steeper decrease from 
baseline through day 5 compared to placebo. These results Ta
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confirm an antiviral effect of nmAb among hospitalized pa
tients receiving remdesivir as part of the background standard 
of care regimen. Importantly, administration of nmAb did not 
mitigate the endogenous immune response reflected by anti-N 
Ab levels over time, a concern that has previously been raised 

about nmAbs directed towards the SARS-CoV-2 spike protein 
[21]. Interestingly, the size of the effect of nmAb on different tra
jectories did not vary significantly between subgroups, including 
participants who were anti-S Ab negative or receiving HFNO or 
NIV at baseline, which are subgroups where a clinical benefit 

(95% CI)

(.87–1.18)

(.77–1.30)
(.87–1.25)

(.72–1.09)
(.97–1.54)

(.86–1.33)
(.78–1.20)
(.68–1.78)
(.86–1.18)
(.79–1.72)
(.84–1.17)
(.82–1.44)
(.84–1.20)
(.61–6.19)
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(.78–1.22)

(.86–1.48)
(.76–1.32)
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Figure 2. Subgroup analysis of baseline factors affected by neutralizing monoclonal antibody treatment on nucleocapsid antigen, C-reactive protein, and pulmonary ordinal 
outcome on day 5. Black circles represent the geometric mean ratio (plasma N-Ag, C-reactive protein) and odds ratio (pulmonary ordinal outcome) between nmAb and placebo 
groups with 95% CIs. Abbreviations: Anti-N, anti-nucleocapsid; Anti-S, anti-spike; CI, confidence interval; HFNO, high-flow nasal oxygen; HIV, human immunodeficiency virus; 
N-Ag, nucleocapsid antigen; NIV, non-invasive ventilation; nmAb, neutralizing monoclonal antibody; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2. aFully 
vaccinated indicates full course completed, symptoms started at least 14 days after the last dose.
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of nmAb treatment has previously been reported [1, 7, 8]. 
Differences in plasma N-Ag trajectories between individual 
nmAb agents likely reflects differences in design and binding af
finity as well as changes in binding sites of the virus over time.

The numerical magnitude of the change in plasma N-Ag for 
nmAb compared to placebo was small and there was no effect 
on markers of inflammation, D-dimer, or clinical improvement 
assessed by the pulmonary ordinal scale on day 5. This brings 
into question whether it has clinical or biological relevance.

Clinical progression in hospitalized patients is driven by a 
complex interplay between viral burden and inflammation 
[14–17], and our findings raise 2 possible explanations: (1) 
the antiviral effect of nmAbs is not sufficiently potent to add 
to the effect of remdesivir alone, or (2) nmAb treatment is in
effective because inflammation is the primary driver of disease 
progression in COVID-19 patients in need of hospitalization. 
To the second point, it is possible that administration of 
nmAb earlier in the disease course would result in decrease 
of inflammatory markers and improved outcome correlating 
with the decrease in plasma N-Ag. Future studies of treatment 
strategies in hospitalized patients with COVID-19 should focus 
on addressing these hypotheses. Perhaps an antiviral that is 
more potent or has a different mechanism of action than 
nmAbs will have more convincing clinical effects. On the other 
hand, more effective immunomodulatory strategies may lead to 
less deleterious effects of uncontrolled inflammatory responses.

Our analysis has both strengths and limitations. The analysis 
of trajectories over well-defined time points adds dynamic 
granularity to previous evidence based mostly on baseline mea
surements. The randomized comparison versus a placebo 
group minimized confounding and provides causal evidence. 
The large number of international sites provided comprehen
sive representation of different populations. An important lim
itation is that using plasma N-Ag concentrations may not be a 
specific proxy for actual ongoing viral replication. However, 
previously published data from the same cohort showed clear 
correlation between baseline plasma N-Ag and both baseline 
disease severity and clinical outcomes, which strongly supports 
the use of this biomarker as a measure of viral burden in this 
population of hospitalized patients [22]. Pooling of data from 
4 different nmAb agents is also a limitation because this as
sumes similar properties, and it is plausible that there were rel
evant differences in trajectories among the different agents. The 
universal use of the antiviral remdesivir could also have influ
enced the estimate of the nmAb treatment effect. It is not clear 
whether our findings are generalizable to contemporary pa
tients with high prevalence of vaccination and infected with 
Omicron sublineages. Finally, analyses are exploratory because 
we considered many outcomes without adjustment for infla
tion of type 1 error.

In summary, this study represents a placebo-matched com
parison of virologic and immunologic response to nmAb in 

over 2000 hospitalized patients. Despite confirming an expect
ed virological response to nmAb, we did not demonstrate any 
corresponding improvement of early pulmonary status sug
gesting meaningful clinical benefit of this drug class in hospital
ized patients with COVID-19. Importantly, we did not observe 
blunting of the endogenous humoral response or difference in 
the inflammatory response, which is reassuring when nmAbs 
are considered for emerging SARS-CoV-2 variants of concerns 
or future epidemics with novel pathogens. Important questions 
on the roles of additional antiviral and immunomodulatory 
treatments remain and should be addressed by clinical trials 
in patients hospitalized with COVID-19.
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