
Behavioral/Cognitive

Causal Influence of Linguistic Learning on Perceptual and
Conceptual Processing: A Brain-Constrained Deep Neural
Network Study of Proper Names and Category Terms

Phuc T. U. Nguyen,1 Malte R. Henningsen-Schomers,1,2 and Friedemann Pulvermüller1,2,3,4
1Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin 14195, Germany, 2Cluster of Excellence “Matters
of Activity Image Space Material”, Humboldt-Universität zu Berlin, Berlin 10099, Germany, 3Berlin School of Mind and Brain, Berlin 10099, Germany,
and 4Einstein Center for Neurosciences, Berlin D-10117, Germany

Language influences cognitive and conceptual processing, but the mechanisms through which such causal effects are realized in the
human brain remain unknown. Here, we use a brain-constrained deep neural network model of category formation and symbol
learning and analyze the emergent model’s internal mechanisms at the neural circuit level. In one set of simulations, the network
was presented with similar patterns of neural activity indexing instances of objects and actions belonging to the same categories.
Biologically realistic Hebbian learning led to the formation of instance-specific neurons distributed across multiple areas of the net-
work, and, in addition, to cell assembly circuits of “shared” neurons responding to all category instances—the network correlates of
conceptual categories. In two separate sets of simulations, the network learned the same patterns together with symbols for
individual instances [“proper names” (PN)] or symbols related to classes of instances sharing common features [“category terms”
(CT)]. Learning CT remarkably increased the number of shared neurons in the network, thereby making category representations
more robust while reducing the number of neurons of instance-specific ones. In contrast, proper name learning prevented a sub-
stantial reduction of instance-specific neurons and blocked the overgrowth of category general cells. Representational similarity
analysis further confirmed that the neural activity patterns of category instances became more similar to each other after cate-
gory-term learning, relative to both learning with PN and without any symbols. These network-based mechanisms for concepts,
PN, and CT explain why and how symbol learning changes object perception and memory, as revealed by experimental studies.
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Significance Statement

How do verbal symbols for specific individuals (Micky Mouse) and object categories (house mouse) causally influence concep-
tual representation and processing? Category terms and proper names (PN) have been shown to promote category formation
and instance learning, potentially by directing attention to category critical and object-specific features, respectively. Yet the
mechanisms underlying these observations at the neural circuit level remained unknown. Using a mathematically precise
deep neural network model constrained by properties of the human brain, we show category-term learning strengthens
and solidifies conceptual representations, whereas PN support object-specific mechanisms. Based on network internal mech-
anisms and unsupervised correlation-based learning, this work offers neurobiological explanations for the causal effects of
symbol learning on concept formation, category building, and instance representation in the human brain.
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Introduction
Most signs and symbols are used to speak about objects and
actions. This led philosophers and logicians to propose that the
referential link between symbol and world is essential for mean-
ing and semantics (Wittgenstein, 1922; Frege, 1948). Yet there
are quite different relationships between symbols and their
related real-world entities. One most essential difference exists
between “proper names” (PN) used to speak about a single object
or individual (e.g., “Mickey Mouse”) and “category terms” (CT),
which can refer to members of an entire class or conceptual cat-
egory (e.g., “house mouse”). Such differences between referential
symbols are well-described at the semantic level, but not under-
stood in terms of their underlying mechanisms in the mind and
brain.

The need for mechanistic neurobiological models of symbols
and their meaning comes from reports about the causal
influences of language on perception, attention, and memory.
It had long been speculated and recently been confirmed that,
when human subjects learn words for objects, language may
help humans to attend to and distinguish between them (Majid
et al., 2004; Whorf and Carroll, 2007; Miller et al., 2018; Vanek
et al., 2021). Experimental research in infants showed that learn-
ing “labels” for objects increases their attention to these objects
(Baldwin and Markman, 1989), which further establishes an
attention-catching function of language. However, this general
insight requires further specification to capture the different
effects of CT and PN. In particular, learning a new symbol for
a category of objects makes infants attend to the shared features
of these objects and facilitates their learning of the conceptual
category (Gelman and Markman, 1986, 1987; Plunkett et al.,
2008); the latter even holds if the objects show little perceptual
similarity (Graham et al., 2013). On the other hand, the category
building function of language is absent when object-specific PN
are learned. In this case, the infant's attention is directed not
toward the common category features of objects but to idiosyn-
cratic and object-specific features instead (Scott and Monesson,
2009; LaTourrette and Waxman, 2020). In summary, category-
term learning directs attention to shared features of objects
(Waxman and Booth, 2001; Dewar and Xu, 2007; Althaus and
Mareschal, 2014; Althaus and Plunkett, 2016), whereas unique
proper name learning highlights idiosyncratic and object-specific
features (Best et al., 2010; Barnhart et al., 2018; Pickron et al.,
2018; LaTourrette and Waxman, 2020). These specific and repli-
cable effects of PN and CT on perception and attention have been
explained in terms of different “strategies” applied by the learner.
A neurobiological explanation of why these specific effects occur
is still missing.

Why and how can PN and CT direct attention to specific ver-
sus shared features of category members? To develop a mecha-
nistic explanation, we used a brain-constrained deep neural
network designed according to the area structure and connectiv-
ity of major areas relevant to language and conceptual processing
(Garagnani et al., 2007; Tomasello et al., 2018; Pulvermüller et al.,
2021). Six “areas” of the model simulated processes in superior
temporal and inferior frontal perisylvian language areas and six
extrasylvian model areas simulated inferior temporo-occipital
visual “where” processing stream and dorsolateral prefrontal
and motor cortices (Fig. 1A). In the no-symbol (NoS) condition,
the model learned activity patterns each representing 1 of 60
instances of objects or actions belonging to 10 different catego-
ries. In learning-with-symbols conditions, the model learned
additional activity patterns representing word forms of PN or

CT (Figs. 1B,C, 2A). After learning, the model was tested by
activating previously trained instance patterns of each category
and, in addition, new patterns for novel instances belonging to
the same categories (Fig. 2B). We documented the neural and
cognitive effects of PN and CT on instance and category learn-
ing in the model. In-depth analyses of the emerging activation
patterns and representations were provided by using represen-
tational similarity analysis (RSA; Kriegeskorte et al., 2008) and
by classifying neurons into instance-specific and category general
ones.

Materials and Methods
Participants
The current work does not contain experiments with human participants
or animal subjects.

Neurobiological constraints
In contrast to many neural networkmodels, the brain-constrained model
aimed at biological plausibility by applying a range of structural and
functional constraints (used in these studies Pulvermüller and
Garagnani, 2014; Tomasello et al., 2018; Henningsen-Schomers and
Pulvermüller, 2022; for review, see Pulvermüller et al., 2021) realizing:

1. neurophysiological dynamics of spiking pyramidal cells (Connors et
al., 1982; Matthews, 2001),

2. synaptic weights under the modification of unsupervised Hebbian-
type learning (i.e., synaptic plasticity and learning were modified
according to the biologically plausible unsupervised Hebbian princi-
ples that incorporated both long-term potentiation and long-term
depression; Artola and Singer, 1993),

3. local and global activity regulation (Braitenberg, 1978; Yuille and
Geiger, 1995) based on local and area-specific inhibition mecha-
nisms (Knoblauch and Palm, 2002),

4. excitatory and inhibitory within-area local connectivity (including
sparse, random, and initially weak excitatory links whose probability
falls off with distance; Kaas, 1997; Braitenberg and Schüz, 1998),

5. between-area global connectivity built on neuroanatomical evi-
dence, and

6. built-in uncorrelated white noise in neurons of (1) all areas during
training and testing mimicked spontaneous baseline neuronal
firing and (2) additional noise in neurons of areas not stimulated
by patterns during training, which simulated uncorrelated sensory
or motor activity unrelated to instances or symbols (Rolls and
Deco, 2010).

Table 2 supplies the model specifications and parameters chosen in
this current work.

Model description
We applied a brain-constrained deep neural network model including
spiking model neurons and 12 model areas to model sensorimotor, con-
ceptual, and linguistic mechanisms in the left-hemispheric language-
dominant fronto-temporo-occipital regions of the human brain, as
described in previous studies by Tomasello et al. (2018) and
Henningsen-Schomers and Pulvermüller (2022).

Anatomical architecture and connectivity
To distinguish between subparts of neural networks from their target
cortical structures of the real human brain, all model areas are marked
by an asterisk before (e.g., *A1, *V1). The architecture modeled three
areas representing the ventral visual system [i.e., primary visual cortex
(*V1), temporo-occipital area (*TO), anterior–temporal area (*AT)]
and three areas representing the dorsolateral action system [i.e., dorsolat-
eral fronto-central motor (*M1L), premotor cortex (*PML), prefrontal
cortex (*PFL)]. These formed the extrasylvian region for sensorimotor
processing where semantic information was stored. Another six areas
of the perisylvian region for word form processing housed
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Figure 1. A, Area structure and between-area connectivity of the neural network model. Left: The network model's 12 cortical areas in the left fronto-temporo-occipital lobes—inferior frontal artic-
ulatory (red) and superior temporal auditory systems (blue) of the perisylvian areas and the lateral frontal hand motor system (yellow/orange/brown) and visual “what” stream (green) in the extrasylvian
cortex. Right: Connections among the 12 modeled brain areas—direct connections between adjacent areas (black arrows), second nearest-neighbor areas (blue arrows), and long-distant links (purple
arrows). Figure modified from Tomasello et al. (2018). B, Schematic illustrations of activity patterns for instances of two categories. The categories are illustrated with images of robots and cat faces but note
that this is for illustrative purposes. The actual input to the model was not images, but grounding patterns consisting of sets of activated neurons (see main text for details). Active neurons of given activity
patterns were either shared among instances of the same category (black) or unique to each instance (color). Each model area included 25× 25 excitatory neurons, i.e., 625 cells. Left: In grounding patterns
(i) presented to *V1/*M1L, six shared active neurons (black) code for the common perceptual–semantic features of the category “a,” and six unique neurons (color) represent instance-specific percep-
tuomotor features from each of the category members. Member instances of one category activated the same six shared neurons while the instance from another category activated a different set of six
shared neurons; each instance also activated six unique neurons. Middle: 12 neurons (black) make up word form pattern for the category term; in the category term condition, member instances coactivated
with the same word form pattern (ii) in *A1/*M1i. Right: 12 unique neurons (color) represent each proper name of an individual instance, which are activated 1-to-1 with these instances in the proper name
condition. Instances were coactivated with distinct different word form patterns (iii) in *A1/*M1i regardless of category. C, Simulating no-symbol learning (top), category term learning (bottom-left), and
proper name learning (bottom-right) where no word form pattern, word form patterns (ii), and word form pattern (iii) were presented to *A1/*M1i, respectively.
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articulatory–phonological and acoustic–phonological information.
These areas involved the three areas of the auditory system [i.e., primary
auditory cortex (*A1), auditory belt (*AB), parabelt areas (*PB)] and
three inferior frontal articulatory and prefrontal areas [i.e., inferior pri-
mary motor cortex (*M1i), premotor cortex (*PMi), prefrontal cortex
(*PFi)], respectively. Between-area connections were reciprocal and con-
nected next-neighbor areas, second next neighbors (Schomers et al.,
2017), and long-distance corticocortical links supported by neuroana-
tomical evidence in the literature (Table 1).

In the current neural network model, the fundamental information
processing units are artificial neuron-like elements or cells. Each mod-
eled area comprised two layers of 625 e-cells and 625 i-cells that mim-
icked an (excitatory) pyramidal spiking neuron and a cluster of
(inhibitory) interneurons hosted within the same cortical column in
the cortical area. A more elaborate description of the firing behavior of
such neurons can be found in the studies of Garagnani et al. (2017),
Tomasello et al. (2018), and Henningsen-Schomers and Pulvermüller
(2022).

Figure 2. Experimental design used for instance learning and conceptual grounding. A, Training phase with 30 object instances from ten categories. The categories are illustrated with images
of robots and cat faces, but note that this is for illustrative purposes. The actual input to the model was not images, but grounding patterns consisting of sets of activated neurons (see main text
for details). For each trained instance, the grounding pattern (i) was either presented to the network on its own (no symbol) or combined with a “word form pattern” of type (ii, category term) or
type (iii, proper name). B, Testing phase with a collection of the initially trained 30 instances and 30 novel instances from the 10 original categories, resulting in 60 testing instances (i.e., 6 per
category). C, Training conditions in the main simulations (top) and control simulations (bottom) differ in the number of training trials (tt) to match the number of instance representations and
the number of word form representations, respectively.
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Activity patterns applied to the networks
A total of 60 “grounding patterns” were defined as sensorimotor activa-
tion patterns thought to represent specific sensory-motor experiences of
60 different objects or “instances.” Groups of six instances overlapped in
their neuronal grounding patterns and were taken as representations of
different instances of the same concept (e.g., different robots). Note that
the images of robots and cat faces for category members are to be taken
purely for illustrative purposes here—the actual training patterns of the
models consisted of sets of activated neurons with no systematic relation-
ship to images of robots or cat faces. A category comprised three trained
instances and three novel instances not presented during training; all six
instance patterns were used for network testing (Fig. 2A,B). Each cate-
gory instance was neuronally coded as a set of perceptual and motor neu-
ron activations in the primary visual and hand motor areas of the
brain-constrained network. These instance-related grounding patterns
were activated either on their own or together with additional patterns
of neuronal activation in the network's articulatory and auditory cortices,
which were thought to implement symbol forms, that is, verbal labels or
spoken word forms. These “word form patterns” were used either as PN
and therefore specifically with only one grounding pattern or as CT, and
therefore the same word form pattern co-occurred with all three trained
grounding patterns of one category. To control the effect of nonlinguistic
factors, a third class of trained grounding patterns was learned without
concordant auditory–articulatory activation. Thus, we generated three
classes of simulated stimulation patterns: (i) instance-related grounding
patterns applied to *V1/*M1L (Fig. 1B, left), (ii) category term patterns to
*A1/*M1i (Fig. 1B, middle), and (iii) proper name patterns to *A1/*M1i
(Fig. 1B, right). Sensorimotor experiences of instances were simulated
with conceptual grounding patterns (i), and symbol-related auditory–
articulatory activity was simulated using word form patterns (ii and iii).

For visualization and a better conceptual understanding of the use of
activity patterns, see Figure 1B,C. Instances belonging to the same
category were simulated by similar grounding patterns, following
Henningsen-Schomers and Pulvermüller (2022): within-category
instances had grounding patterns that shared 50% of their feature neu-
rons and differed from each other in the other half; grounding patterns
simulating instances from different categories had no neuronal overlap.
For each grounding pattern (i), a subset of 12 out of 625 potential cells
per area was randomly chosen, consisting of 6 unique neurons and 6
shared neurons. Shared neurons simulated features characterizing all
instances patterns of a category; they simulated shared conceptual fea-
tures of all category members (category-critical feature, e.g., members
of the first category are robots in the same height and are equipped
with one camera, one speaker, two antennae, a power button, two metal
legs, and a pair of shoes; members of the second category are cats and
have round-shaped head, eyes, nose, mouth, ears, and whiskers;
Fig. 1B, left). Unique neurons simulated the “idiosyncratic”, fully
instance-specific visuomotor features; each of the corresponding feature
neurons was only available in one instance pattern (e.g., robots vary in
the body shape and color, the orientation of antennas, leg forms, the posi-
tion of the power button, and shoe color). In sum, each category pos-
sessed 36 unique neurons from its 6 exemplars and 6 shared neurons.
For word form patterns, category term patterns (ii) of within-category
instances consisted of the same twelve neurons, which were coactivated
with each of the three learnt grounding patterns of a category (e.g., to
simulate the artificial words fos for all instances of the robot category,
and coxt for all instances of the cat category; Fig. 1B, middle); each proper
name pattern (iii) comprised twelve neurons, which were coactivated
with one specific grounding pattern (e.g., xub, vit, and hek for the three
instances of the robot category, respectively; Fig. 1B, right). The choice of

Table 1. Connectivity structure of the modeled cortical areas with neuroanatomical evidence

Modeled areas References

Between-area connectivity (black arrows)
Perisylvian system
A1, AB, PB Pandya and Yeterian, 1985; Pandya, 1995; Rauschecker and Tian, 2000
PFi, PMi, M1i Pandya and Yeterian, 1985; Young et al., 1995a,b

Extrasylvian system
V1, TO, AT Bressler et al., 1993; Distler et al., 1993
PFL, PML, M1L Pandya and Yeterian, 1985; Arikuni et al., 1988; Lu et al., 1994; Rizzolatti and Luppino, 2001; Dum and Strick, 2002, 2005

Between system
AT, PB Gierhan, 2013
PFi, PFL Yeterian et al., 2012

Long-distance corticocortical connections (purple arrows)
Perisylvian system
PFi, PB Meyer et al., 1999; Romanski et al., 1999a,b; Paus et al., 2001; Catani et al., 2005; Parker et al., 2005; Rilling et al., 2008; Makris and Pandya, 2009
PB, PMi Rilling et al., 2008; Saur et al., 2008
AB, PFi Romanski et al., 1999a,b; Kaas and Hackett, 2000; Petrides and Pandya, 2009; Rauschecker and Scott, 2009

Extrasylvian system
AT, PFL Bauer and Jones, 1976; Fuster et al., 1985; Ungerleider et al., 1989; Eacott and Gaffan, 1992; Webster et al., 1994; Parker and Gaffan, 1998;

Chafee and Goldman-Rakic, 2000
AT, PML Bauer and Fuster, 1978; Fuster et al., 1985; Pandya and Barnes, 1987; Seltzer and Pandya, 1989; Chafee and Goldman-Rakic, 2000
TO, PFL Bauer and Jones, 1976; Fuster and Jervey, 1981; Fuster et al., 1985; Seltzer and Pandya, 1989; Makris and Pandya, 2009

Between systems
PB, PFL Pandya and Barnes, 1987; Romanski et al., 1999a,b
AT, PFi Pandya and Barnes, 1987; Ungerleider et al., 1989; Webster et al., 1994; Romanski, 2007; Petrides and Pandya, 2009; Rilling, 2014

Second next-neighbor “jumping” links (blue arrows)
Perisylvian system (Rilling et al., 2008, 2012; Thiebaut de Schotten et al., 2012; Rilling and van den Heuvel, 2018)
A1, PB Pandya and Yeterian, 1985; Young et al., 1994
PFi, M1i Deacon, 1992; Young et al., 1995b; Guye et al., 2003

Extrasylvian system (Thiebaut de Schotten et al., 2012)
V1, AT Catani et al., 2003; Wakana et al., 2004
PFL, M1L Deacon, 1992; Young et al., 1995a; Guye et al., 2003

Table taken from Tomasello et al. (2018).
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cells for pattern generation was pseudorandomized and constrained by
the following criteria. First, within-category neurons had to be nonadja-
cent to each other. This prevented coactivation merely due to close dis-
tance. Second, no grounding patterns from two different categories
shared any neuron. Last, for each instance, the grounding patterns in
*V1 and *M1L followed the same principles but were not identical.
The same rules applied to the grounding patterns in *A1 and *M1i.

Experimental design
The current simulations involved three phases, model initialization, training
phase, and testing phase, which were carried out on the high-performance
computing system of Freie Universität Berlin (Bennett et al., 2020). During
training, there were three different stimulation conditions, (1) where
grounding patterns were learnt without symbol (no-symbol or control con-
dition), (2) where all grounding patterns of each category were presented
together with the same word form pattern (category term condition), and
(3) where each grounding pattern was copresented with its own specific
word form pattern (proper name condition). Thus, during learning, a stim-
ulation pattern included two activation patterns (to *V1 and *PFL) when it
was learned outside symbol context (Fig. 1C, top) or a quadruplet including
the two instance-related patterns plus two-word form-related ones (to A1
and PFi) when learned in symbol context (Fig. 1C, bottom). Each test trial
beganwith the presentation of a grounding pattern of an instance (projected
to the two sensorimotor model areas V1 and M1L).

Model initialization
One crucial step prior to training was model initialization, which ran-
domized all synaptic links (and their corresponding weights) between
within-area cells and between cells from connected areas. Twelve sets
of such synaptic links and weights (i.e., 12 different instantiations of
the randomly initialized neural network) were chosen, each set was
then triplicated (cf. Schomers et al., 2017), and each of these three copies
entered one of the three training conditions—either no symbol, category
term, or proper name. The use of distinct model instantiations can be
seen as analogous to a within-subject study design with 12 subjects.
We chose to implement three separate sets of simulations for the three
conditions to avoid any possible interference effects between concepts
and symbols that may emerge during training. Note, for example, that
the relatively large representations that formed for CT might have inter-
fered with further learning or may even have suppressed the activation of
conceptual representations without symbols. This configuration yielded
a controlled “within-subject” design with the training condition being a
three-level repeated measure factor (no symbol, category term, and proper
name). For the additional simulations performed to balance the number
of word form presentations, there were four levels.

Training phase
The neural network model was repeatedly presented with 30 instances
from ten categories. To mimic visuomotor percepts associated with an
instance, the extrasylvian primary sensorimotor areas, *V1 and *M1L,

were each presented with their grounding pattern (i) for 16 time steps.
Following the experiment by LaTourrette and Waxman (2020) where
instances were called either by a consistent label or by distinct labels
each, our within-category trained instances were either paired with the
same category term, by their distinct PN, or they were not labeled at
all. To mimic symbols in the category term and proper name conditions,
we presented to the primary perisylvian areas *A1 and *M1i word form
pattern (ii and iii), respectively, for 16 time steps (Fig. 1C, bottom, 2A).
Hence, in different “learning trials,” the word form patterns of CT were
copresented with one of three different grounding patterns from one cat-
egory, whereas those of PN co-occurred with only one specific grounding
pattern. There were no word form patterns presented in the baseline
no-symbol condition to control for the effect of either type of linguistic
label compared with learning without one (Fig. 1C, top, 2A).

Because activity at the end of a trial might affect learning in the next
trial, the network was allowed to deactivate after each stimulated learning
trial. To this end, we separated every two consecutive pattern stimula-
tions by a waiting interval during which only the uncorrelated white
noise mimicking spontaneous baseline neuronal firing was supplied to
all areas (see Principle 6 in Model description—Neurobiological con-
straints). The goal was to reset the global network (i.e., all excitatory
and inhibitory cells displayed a membrane potential of zero) before a
new grounding pattern was inputted into the neural network model.
This interstimulus interval was terminated only after the network activity
had returned to its baseline value (thresh = 0.18, Table 2). As a result, the
training order was not influential in this experiment.

To balance learning conditions (NoS, CT, PN), each experiential
grounding pattern representing an instance was presented 2,000 times
in one set of simulations. However, because each category term pattern
was copresented with three different instance patterns, whereas proper
name patterns co-occurred with only one, this design leads to an imbal-
ance of the number of learning trials during which individual word form
patterns were presented (three times higher for category term than for
proper name presentations; Fig. 2C, top). Therefore, a second evaluation
of learning trials was performed and analyzed for which the number of
word form pattern activations was balanced. In this case, there were
1,000 learning trials in the category term condition (CL_1x; each
instance was presented together with a category term in 1,000 training
trials, resulting in a total of 3,000 training trials per CT) and 3,000 trials
in the proper name condition (PN_3x; each instance was presented
together with a proper name in 3,000 training trials, resulting in a total
of 3,000 training trials per proper name). For the control no-symbol con-
ditions, two comparison values were calculated, after 1,000 (NoS_1x) and
3,000 (NoS_3x) trials (i.e., each instance was presented without symbol
in 1,000 and 3,000 training trials, respectively; Fig. 2C, bottom). These
different subdesigns are summarized graphically in Figure 2C.

Testing phase
In the current experiment, we implemented a version of an old-new rec-
ognition task with the use of new instances. For each of the ten categories,

Table 2. Parameter values used in the simulations

Equation 1 Time constant (excitatory cells) t = 2.5 (time steps)
Time constant (inhibitory cells) t = 5 (time steps)
Total input rescaling factor k1 = 0.01
Noise amplitude k2 = 7

��������
(24/Dt)

√
(Dt = 0.5 ms)

Global inhibition strength kG = 0.80 (time steps)
Equation 3 Spiking threshold thresh = 0.18

Adaptation strength a = 8.0
Equation 4 Adaption time constant tADAPT = 10 (time steps)
Equation 5 Rate estimate time constant tFavg = 30 (time steps, training)

tFavg = 5 (time steps, testing)
Equation 6 Global inhibition time constant tFGLOB = 12 (time steps)
Equation 7 Postsynaptic potential thresholds q+ = 0.15 (LTP)

q− = 0.14 (LTD)
Presynaptic output activity required for any synaptic change q pre = 0.05 (LTP)
Learning rate Dw = 0.0008

For details and a more elaborate discussion of the corresponding equations as well as their mathematical implementations, please see Henningsen-Schomers et al. (2022).
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we presented to the neural network six testing instances: three trained
instances and three novel instances (Fig. 2B). In total, we used 30 previ-
ously learnt instances and 30 new instances. However, no actual old-new
pairing took place because we presented trained and novel instances to
the neural network in separate test trials.

Memory performance of the network model was assessed in the
absence of linguistic cues, i.e., without stimulating the perisylvian pri-
mary areas *A1 or *M1i. To stimulate the experience of individual
instances, the extrasylvian primary areas *V1 and *M1L were activated
for two time steps with pure (i.e., free of any white noise) grounding pat-
terns (i) and subsequentially deactivated toward the baseline for 28 time
steps. We recorded network responses 30 time steps from the onset of
this stimulation. Global resetting between two consecutive trials was con-
ducted in the same manner as the training phase. Hence, the test order
was not of interest.

Data analysis
Grounding pattern production, data processing, and data analysis were
performed using Python 3.9.7, matplotlib 3.4.3 (Hunter, 2007),
NumPy 1.20.3 (Harris et al., 2020), pandas 1.3.4 (Reback et al., 2022),
SciPy 1.7.1 (Virtanen et al., 2020), and seaborn 0.11.2 (Waskom,
2021). In the current work, statistical significances were based on a con-
servative p value threshold of 0.005 suggested by Di Leo and Sardanelli
(2020). We used rstatix 0.7.0 (Kassambara, 2021) in the R software envi-
ronment (R Core Team, 2021) for statistical analyses.

When testing stimuli were presented to the primary sensorimotor
areas, some of the 625 excitatory neurons per area fired in response to
their conceptual grounding patterns. As described in the procedure, we
recorded all their responses during 30 time steps from stimulation. Let
f(e t) denote the output of an excitatory cell e at time t, such that f
only takes up the value 0 or 1 and t only allows discrete values up to
30 (corresponding to thirty possible simulation time steps); let tFavg =
5 be a time constant, and the estimated instantaneous firing rate
vE(e t) of cell e at time t can be calculated based on the following
equation:

tFavg · dvE(e t)
dt

= −vE(e t)+ f(e t) (1)

Solving Equation 1 for vE(e t) returns the cell's latest spiking activity
(firing rate). We estimated the mean firing rate based on t = t30 and
used this value for the subsequent RSAs. For details about relevant calcu-
lation steps, see the Appendix in the study of Henningsen-Schomers and
Pulvermüller (2022).

Previous research found that several of the extrasylvian areas targeted
by the deep neural model (including, for example, *V1 and *AT) are
important for processing instance- and concept-related information
(Binder et al., 2005; Martin, 2007; Ralph et al., 2017; Henningsen-
Schomers et al., 2022). Therefore, the current data analyses and statistical
testing focused on the extrasylvian region of the deep neural network.
This decision was motivated by the main aim of addressing possible
causal influences of symbol learning on the perceptual processing of
instances of concepts and on conceptual processing itself.

RSA
The estimated mean firing rate of 625 neurons in response to a testing
instance reflected how this instance was represented in a neural network.
To understand how differently the neural network represented within-
and between-category instances, we calculated the dissimilarity in
firing patterns for every pair of the 60 instances. Pairwise dissimilarities
computed in terms of Euclidean distance were organized in a 60× 60
representational dissimilarity matrix (RDM; Fig. 3A). Each cell in the
matrix reflected the dissimilarity between the firing patterns of two
instances. In total, there were 36 RDMs across 3 training conditions
and 12 areas.

We defined two classes of pairwise dissimilarities, including between-
category dissimilarity (DissimB) and within-category dissimilarity
(DissimW). A second way to define similarity types is based on the
type of instances under study, that is, the dissimilarity between two

trained instances (DissimTT ), between two novel instances (DissimNN ),
and between a trained and a novel instance (DissimTN ). For example,
within-category dissimilarity could be classified as either dissimilarity
among trained instances 1–3 (DissimW−TT ), among novel instances 4–6
(DissimW−NN ), or between trained and novel instances (DissimW−TN )
(Fig. 3A).

Category learning. Category learning was evaluated through the abil-
ity to (1) distinguish differences between categories and (2) group
together category members. We assessed how different types of symbols
impacted upon category learning performance based on (1) the dissim-
ilarity between two between-category trained instances (DissimB−TT )
and (2) the dissimilarity between two within-category trained instances
(DissimW−TT ) (Fig. 3A). Successful category learning occurred when
two instances from two distinct categories were considered as dissimilar
(high DissimB−TT ) and/or when two within-category instances were con-
sidered as similar (low DissimW−TT ). If, as previously claimed, applying
CT invites one to encode the commonalities among instances and
thereby facilitates categorization, the deep neural network should repre-
sent within-category instances similarly while highlighting the dissimi-
larities between instances of different categories. In the category term
condition, we expected between-category dissimilarities to be greater
than within-category dissimilarities DissimB−TTCT. DissimW−TTCT . In
contrast, we proposed two scenarios for the proper name condition. In
the first scenario, if PN focus the neural network models on encoding
only unique features and inhibit the encoding of category-critical fea-
tures, no traces of category learning will be observable, and the represen-
tations of individual instances will be highly dissimilar regardless of their
categorical membership (DissimB−TTPN ≈ DissimW−TTPN ). However,
because within-category instances shared 50% of their activated neurons
in the extrasylvian primary areas *V1 and *M1L, the neural network
could base on such similarities to form category representation. In this
second scenario, PN are not sufficient to override category learning;
the neural network would house not only the unique representations
of the instances but also the commonalities of those belonging to the
same category. Like the category term condition, the test data would
also show signs of category learning (DissimB−TTPN. DissimW−TTPN ).
Taking into account such intrinsic perceptuomotor similarities among
instances from the same category, category learning was evaluated not
only across symbol (i.e., category term or proper name) learning condi-
tions but also in control conditions (i.e., training without symbols). For
example, a superior causal influence of CT on category learning perfor-
mance would be expressed through a significantly higher DissimB−TTCT

and lower DissimW−TTCT relative to training with PN and also relative
to training without symbols.

Generalization. Assuming the neural network had encoded the
commonalities between within-category trained instances and formed
category knowledge with the help of these shared features, they might
have as well represented novel instances as members of that category
when exposed to the category-critical features in these novel instances.
Generalization performance would then be reflected by how similarly
within-category trained instances and within-category novel instances
stimulated the deep neural network. To evaluate the generalization per-
formance of the neural network on novel instances, pairwise dissimilar-
ities between two trained instances (DissimW−TT ) as well as between a
trained and a novel instance (DissimW−TN ) were extracted. In the test-
ing phase, the chance was low that the neural network readily applied
category knowledge earned from thousands of training trials onto a
novel instance in the first and only exposure. In the case of poor gen-
eralization performance, the activation pattern of within-category
novel instances would be dissimilar from that of the within-category
trained instances (i.e., increasing DissimW−TN ). Our criterion for a suc-
cessful generalization after learning with symbols was that DissimW−TN

should be as low as DissimW−TT (DissimW−TN ≈ DissimW−TT ). In
other words, their absolute dissimilarity difference DissimDiff =
|DissimW−TN − DissimW−TT | must remain lower than when the deep
neural network was trained without symbols.
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Figure 3. A, Schematic extraction of a 60× 60 RDM, which represents 12 instances from two different categories and the similarities between any instance pair. For illustration, we once
again use the categories of robots and cat faces. The schematic dissimilarity matrix illustrates how between-category (cells outside the red boundaries) and within-category dissimilarities (cells
within the red boundaries) were calculated. Of interest are the (1) within-category dissimilarity among trained instances (DissimW−TT , lightest blue shade), (2) within-category dissimilarity
between a trained and a novel instance (DissimW−TN , intermediate blue shade), and (3) between-category dissimilarity of two trained instances (DissimB−TT , darkest blue shade). The RDM is
symmetric about its diagonal (gray) of zeros (representing the nondissimilarity of each of the instances to itself). Only the upper half of the RDM is used for analysis, and the lower half could be
abandoned (black). B, RDMs for each of the twelve model areas in three main simulations: no symbol (top row), category term (middle row), and proper name (bottom row). The squares indicate
the degrees to which network activity in the 12 network areas elicited by (12 out of 60) grounding patterns in the three learning conditions differed between each other within and between
categories and are color-coded from turquoise (no dissimilarity, Dissim = 0), blue, pink, and to dark red (high dissimilarity, Dissim . 3).
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Cell assembly analysis
Motivated by the notion of cell assemblies (CAs; Hebb, 1949;
Braitenberg, 1978; Fuster, 2005), that is, strongly interlinked sets of neu-
rons forming as a consequence of correlated neuronal activity and poten-
tially carrying a main role in cognitive brain processing, we conducted
cell assembly analyses to discover possible neuronal correlates of ground-
ing instances, concepts and symbols along with instance-specific and
category-critical neurons after repeated exposure to instances and their
CT or PN. We extracted CAs activated by each of the 60 grounding pat-
terns used as testing instances based on the criterion described in previ-
ous work (Garagnani and Pulvermüller, 2016; Henningsen-Schomers
and Pulvermüller, 2022). Grounding patterns in the testing phase tended
to coactivate several excitatory neurons (e-cells) in an area, with at least
one being maximally responsive (nonresponse was under the threshold
of 0.01). To be part of a CA, the firing rate of a given e-cell had to exceed
75% of the firing rate of the maximally responsive cell of the same area.
We then computed the number of unique, instance-specific and overlap-
ping, and conceptual neurons among CAs for trained instances of the
same category: neurons were classified according to whether they were
activated by just one grounding pattern or whether they responded to
two or three instances (thus being pair or triple-shared between the
learnt instances of a concept). Unique neurons were conceptualized as
neurons that encoded specific, “idiosyncratic” features of an instance;
shared neurons could be understood as those that encoded common fea-
tures shared by at least two instances and thus characteristic of their cat-
egory. The specialized encoding of category-critical features could be
indicated by a higher proportion of shared neurons per area, while traces
of instance-specific features would be reflected by a larger proportion of
unique neurons.

Representations are transformed through different levels of process-
ing, i.e., from the primary areas to secondary areas, and the central “con-
nector hub” areas of themodel.We quantified such transformation as the
change (i.e., gain/loss) in the number of unique and shared CA cells in
the extrasylvian central areas (AT, PFL) comparative to the extrasylvian
primary areas (V1, M1L). Gains in a type of neuron, for example, shared
neurons, are indicative of intensive encoding of concept-related com-
monalities on the course of processing, while loss of shared neurons in
the central areas implies reduced encoding of idiosyncratic features
and hence instance-related information. Percentage gain was calculated
as the difference between the number of neurons in the central and pri-
mary areas, as a percentage with respect to the number of neurons in the
primary areas:

Gain = ncentral − nprimary

nprimary
× 100

Representations of category-critical features. A range of previous
neurocomputational studies show that, when brain-like networks learn
concepts and word meanings, they form CAs that are spread out across
sensorimotor and more central areas of the network. The density of
shared semantic neurons in the most central connector hubs is greatest
due to their high connectivity degree and thus ample convergence of
activity in these areas, resulting in especially strong activation, in partic-
ular for shared semantic neurons (for discussion, see Garagnani et al.,
2017; Tomasello et al., 2018). Relative to instance-specific neurons,
shared semantic neurons are activated more frequently during semantic
learning, which predicts that these will recruit the largest number of
additional cell assembly; these would therefore be semantic, too, and pri-
marily located in the central hub regions. If a labeling condition specifi-
cally invites the neural network to encode category-relevant features, we
expect (1) more shared neurons than unique neurons in the extrasylvian
areas and (2) a greater gain in shared neurons in the central semantic
areas compared with the primary areas. Category learning might still
occur even in the presence of PN because within-category similarities
also characterize sensorimotor experiences. If such information is
sufficient, there should be traces of shared neurons in the central, multi-
modal areas as well. Additionally, CT should activate shared neurons
more than PN.

Representations of instance-specific features. When a neural network
represents instances as unique entities, it shall reveal specific traces of
each instance in the extrasylvian areas, especially in the semantic hubs.
In an extreme case where category learning is hindered and the neural
network only encodes the uniqueness of instances, there should be (1)
more unique than shared neurons in the extrasylvian areas and (2) a
gain only in unique neurons in the central areas with respect to the pri-
mary areas. Importantly, instances with PN are expected to activate sign-
ificantly more unique neurons than categorically labeled instances.

We gather from all 12 model instantiations the CAs in response to all
30 trained instances of 10 categories and classify CA cells by their
uniqueness to each instance (vs sharedness). To facilitate readers’ under-
standing about the results, we offer an interactive illustration of these
CAs on our web application at (https://phucthuun.shinyapps.io/CL_
PN/). This web application enables one to compare the differential effects
of CT versus PN in representing category-critical and instance-specific
features of within-category and across-category instances.

Results
RSA
Figure 3B gives a first impression of the instance and category
learning performance after 2,000 training trials. In the category
term condition, instances from the same category activated the
neural network similarly, whereas instances from different cate-
gories led to substantially more dissimilar activation patterns
across the different areas of the network (i.e., firing patterns
were highly dissimilar, as color-coded by dark blue and pink).
Category knowledge was reflected in a relatively reduced dissim-
ilarity (light blues), which appears as homogenous within each
category, contrasting with those between categories, especially
in the central areas (semantic hubs). Training the deep neural
network without the aid of symbols or with PN reduced the net-
works’ ability to distinguish instances between categories: activity
pattern dissimilarities between instances from different catego-
ries were much more substantial in the category term condition
than in the proper name condition (color-coded with shades of
intermediate blue). In contrast, within-category similarities and
generalization performance in the category term condition
were superior, as indicated by the more homogeneous (light)
blue shade across all six instances (trained and not trained)
from the same category, relative to the other two conditions,
where different shades of light blue are visible.

Category learning
To evaluate category learning performance after 2,000 learning
trials, within-category dissimilarity (DissimW−TT) and between-
category dissimilarity between activity patterns elicited by ground-
ing patterns of trained instances (DissimB−TT) were used.
Figure 4A describes a global tendency of the deep neural network,
across its twelve areas and three training conditions, to identify
within-category instances as more similar and between-category
instances as more dissimilar to each other. This feature is
explained by the grounding patterns presented, which were similar
across category instances, but not between. However, between-
category dissimilarity is relatively enhanced in central areas, a
feature not explained by the stimulations. In the next step,
dissimilarity values were averaged for the six extrasylvian areas.
The two-factorial repeated measure (3× 2) –ANOVAwith train-
ing condition (no symbol/category term/proper name) and dis-
similarity type (DissimW−TT/DissimB−TT) confirmed the main
effect of both factors (F(2 22) = 2777.647, p , 0.001 h2 =
0.982 and F(1 11) = 11155.611 p , 0.001 h2 = 0.996, respec-
tively) as well as their interaction effect (F(2 22) = 6113.987,
p , 0.001 h2 = 0.986) on the dissimilarity between instances
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within these extrasylvian areas. Figure 4B illustrates category-
related activation performance of the deep neural network in the
extrasylvian areas of the three learning conditions: the neural net-
work successfully grouped together instances from the same cate-
gory while distinguishing between instances from the same versus
from two different categories. Pairwise comparisons with
Bonferroni’s correction were computed to observe the effect of
training conditions on each level of dissimilarity type and vice

versa. The results showed that DissimW−TT was significantly lower
than DissimB−TT in all three conditions ( ps , 0.001); same cate-
gory membership was thus manifest as relatively enhanced activa-
tion similarity in all conditions and across areas. The
(DissimW−TT) in the category term condition (M=0.229, SD=
0.005) and the proper name condition (M=0.264, SD=0.004)
was significantly smaller (i.e., greater similarity) than that in the
control no-symbol condition (M= 0.29, SD= 0.006), and they

Figure 4. Bar charts depicting dissimilarities between network activity elicited by trained grounding patterns after learning for each of the three training conditions. A, Main simulation:
within-category (W-TT) and between-category (B-TT) dissimilarity values across all 30 trained activity patterns were averaged for each of the twelve model areas. B,C, Within-category (W-TT)
and between-category (B-TT) dissimilarities across the 30 trained items were averaged for extrasylvian model areas. The three training conditions of the main simulations (B) were no symbol
(NoS, gray), category term (CT, blue), and proper name (PN, pink). The four training conditions of the control simulation (C) were no symbol with each instance presented over 1,000 (NoS_1x,
blue-striped gray) or 3,000 trials (NoS_3x, pink-striped gray), Category term where each instance presented over 1,000 trials (CT_1x, blue) and proper name where each instance presented over
3,000 trials (PN_3x, pink). The error bars represent 95% confidence intervals of the mean. The circles above the bars represent post hoc pairwise comparisons between a reference (circles with
filled colors) and a corresponding mean (unfilled circles) after Bonferroni’s correction (critical p value = 0.005). Ten comparisons relevant to the main effects of training condition and dissimilarity
type and their interaction are illustrated. The asterisks represent two-tailed p values: **p< 0.005, and ***p< 0.001, ns, not significant. The results were replicated in the whole model archi-
tecture (six extrasylvian and six perisylvian model areas); see Extended Data Figure 4-1 and Extended Data Table 4-1.
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were also significantly different from each other, with greatest sim-
ilarities after category term labeling ( ps , 0.001). Relative to the
control no-symbol condition, the deep neural network responded
similarly to trained instances coming from the same category
when it was trainedwith symbols and such performancewas above
baseline. Importantly, the benefit of CTwas superior to both train-
ing without symbols and with PN. Likewise, the deep neural net-
work returned the highest DissimB−TT (M= 1.48, SD=0.018) for
the category term condition ( ps , 0.001), while DissimB−TT in
the proper name condition (M=0.706, SD=0.01) was not signifi-
cantly different from that in the no-symbol condition (M= 0.749,
SD= 0.045) ( p = 0.01), after application of the Bonferroni’s-cor-
rected significance threshold of 0.005. Compared to the no-symbol
condition, training with PN only gradually hindered the discrimi-
nation of between-category instances but left the separation of
within-category instances unaffected. In contrast, both aspects of
category learning were present with the aid of CT, reduced within-
and enhanced between-category similarities.

The simulations performed to control for the number of
word form presentations during learning were evaluated using
a two-factorial repeated measure (4× 2) ANOVA with training
condition (now four levels, NoS_1x/NoS_3x/CT_1x/PN_3x) and
dissimilarity type (DissimW−TT/DissimB−TT ). This confirmed
the main effect of both factors (F(1.67 18.35) = 1113.758,
p , 0.001, h2 = 0.964 and F(1 11) = 7485.295, p , 0.001,
h2 = 0.993, respectively) as well as their interaction effect
(F(1.65 18.10) = 1961.497, p , 0.001 h2 = 0.973) on the dissim-
ilarity between instances within extrasylvian areas. Pairwise com-
parisons with Bonferroni’s correction were computed to observe
the effect of training conditions on each level of dissimilarity type
and vice versa. In essence, DissimB−TT in the category term con-
dition was significantly higher than that in the proper name and
both no-symbol control conditions ( ps , 0.001) (Fig. 4C); cate-
gory term learning increased the dissimilarity across conceptual
categories relative to no-symbol learning and proper name learn-
ing. The reverse effect, greater dissimilarity values for PN than
CT, was found within categories. These observations were there-
fore valid even when PN were “shown” to the model three times
more than CT during learning.

Generalization
To evaluate the generalization performance of the deep neural
network on novel instances, pairwise dissimilarities between
two trained instances (DissimW−TT ) as well as between a trained
and a novel instance (DissimW−TN ) were used. Figure 5A illus-
trates the tendency of the deep neural network to represent
two trained instances of the same category as more dissimilar,
whereas the representations of a novel and a trained instance
from the same category were less dissimilar (lighter-shaded col-
umns were mostly higher than darker-shaded columns). In the
six extrasylvian areas, a 3× 2 ANOVAwas computed with train-
ing condition (no symbol/category term/proper name) and type
of within-category dissimilarity (DissimW−TT/DissimW−TN ) as
repeated measure factors. Both the main effects of training
condition (F(2 22) = 465.217 p , 0.001 h2 = 0.956) and
dissimilarity type (F(1 11) = 7711.618 p , 0.001 h2 = 0.939)
were significant. For these two factors, there was also a significant
interaction (F2 22 = 635.788 p , 0.001 h2 = 0.707) (Fig. 5B).
The Greenhouse–Geisser sphericity correction to the violated
sphericity assumption ( p = 0.024) for training conditions
( pGG = 2.38× 10−11) confirmed this result. Two-sided pair-
wise comparisons with Bonferroni’s correction showed that
DissimW−TN in the category term (M = 0.214 SD = 0.004)

and in the proper name conditions (M = 0.220 SD = 0.003)
were significantly lower than that in the control no-symbol con-
dition (M = 0.249 SD = 0.004) ( ps , 0.001), but they did not
differ significantly from each other ( p = 0.01) (Fig. 5B).
DissimW−TN was significantly lower than DissimW−TT in all
three conditions ( ps , 0.001) (Fig. 5B), which means that
within-category trained instances were represented as less similar
to each other than when each of them was compared with a novel
instance from the same category. In other words, trained
instances resulted in neuronal response patterns that were
more similar to those caused by novel instances than those
caused by trained instances from the same category, a finding
easily explained by the lack of learning of the idiosyncratic fea-
tures of novel instances. A further set of pairwise comparisons
using Bonferroni’s correction revealed that the absolute
DissimDiff in the no-symbol condition (M = 0.041,
SD = 0.016) was significantly higher than DissimDiff in the cat-
egory term condition (M = 0.016 SD = 0.012) ( p , 0.001)
but not significantly different from that in the proper name con-
dition (M = 0.044 SD = 0.02) ( p = 0.009). In other words,
category term learning resulted in the most similar processing
of learnt and not-learnt instances and thus to the greatest degree
of generalization.

The results from the additional simulations controlling for the
number of word form presentations during learning (i.e., four
training conditions NoS_1x, NoS_3x, CT_1x, PN_3x, see
Materials and Methods) also confirmed that generalization was
maximal for novel members of categories for which category
term had been learned (Fig. 5C). The mere exposure to instances
or learning PN showed little generalization relative to category
learning.

These results investigating brain-constrained neural network
correlates of conceptual generalization sit well with well-known
observations that language-learning children often generalize—
or even overcategorize—CT to novel items. In case of overgener-
alization of an item, subsequent learning may establish a novel
category to which the item belongs. While our results offer a
mechanistic perspective on generalization, a detailed simulation
of overgeneralization and reclassification learning is left for
future study.

Cell assembly analysis
Figure 6A illustrates the tendency of the deep neural network to
encode fewer unique neurons (U-shaped function across areas)
and more shared neurons (inverted U-shaped function) in the
extrasylvian central areas than in the extrasylvian primary areas.
In the first step, the number of unique neurons and shared neu-
rons activated by each instance were calculated and averaged
across two training conditions. The repeated measure 3× 2
ANOVA with training condition (no symbol/category term/
proper name) and neuron type (unique/shared) confirmed the
significant main effects (F(2 22) = 902.098, p , 0.001 h2 =
0.926 and F(1 11) = 13966.410 p , 0.001 h2 = 0.998, respec-
tively) and a significant interaction involving both factors
(F2 22 = 5027.907 p , 0.001 h2 = 0.985). The supplementary
2× 2 ANOVA with training condition with symbols (category
term/proper name) and neuron type (unique/shared) returned
comparable results with two significant main effects
(F(1 11) = 1009.255, p , 0.001 h2 = 0.951 and F(1 11) =
23994.328, p , 0.001 h2 = 0.998, respectively) and a signifi-
cant interaction involving both factors (F(1 11) =
4593.789 p , 0.001 h2 = 0.986). Pairwise comparisons with
Bonferroni’s correction revealed that CT made the neural
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network reactivate more shared neurons (M = 11.242,
SD = 0.127) than unique neurons (M = 2.861 SD = 0.051)
( p , 0.001). This also applied for training with PN (shared neu-
rons, M = 7.963 SD = 0.222; unique neurons, M = 3.89,
SD = 0.064) and training without symbols (shared neurons,
M = 8.029, SD = 0.194; unique neurons, M = 4.493,
SD = 0.08) ( ps , 0.001) (Fig. 6B). Compared to this control
condition, the number of unique instance-specific neurons was
moderately reduced by PN but radically so by CT ( p , 0.001),
whereas the number of shared, conceptual category neurons
remained unchanged after proper name learning ( p = 0.447) but

increased dramatically with category term acquisition
( p , 0.001). The latter is clear evidence for a facilitatory effect of
language, more specifically, of category term learning, on concep-
tual category formation in brain-constrained deep neural networks.

With respect to the gain/loss of neurons in the extrasylvian
central areas relative to the primary ones, our repeated-measure
3× 2 ANOVA with two factors training condition (no symbol/
category term/proper name) and neuron type (unique/shared)
confirmed bothmain effects on the percentage change of neurons
and their interaction to be significant (F2 22 = 55.17837,
p , 0.001, h2 = 0.5519424, F(1 11) = 6471.54090, p , 0.001,

Figure 5. Bar charts depicting dissimilarities between network activity elicited by trained novel grounding patterns after learning for each of the three training conditions. A, Main simulation:
within-category dissimilarity values between any two trained instances (W-TT) and between trained and novel instances were averaged for each of the twelve model areas. B,C Within-category
dissimilarities between any two trained instances (W-TT) and between trained and novel instances (W-TN) were averaged for extrasylvian model areas. The three training conditions of the main
simulations (B) were no symbol (NoS, gray), category term (CT, blue), and proper name (PN, pink). The four training conditions of the control simulation (C) were NoS_1x (blue-striped gray) or
NoS_3x (pink-striped gray), CT_1x (blue) and PN_3x (pink). For further explanation, see Figure 4. The results were replicated in the whole model architecture (six extrasylvian and six perisylvian
model areas); see Extended Data Figure 5-1 and Extended Data Table 5-1.
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Figure 6. Bar charts depicting average numbers of instance-specific (“unique”) and category general (“shared”) neurons activated by grounding patterns of instances learnt in the three training
conditions, no symbol (gray), category term (blue), and proper name (pink). A, Main simulation: The number of activated unique (U) and shared (S) neurons in response to each of the 30 trained
instances was averaged across all 12 model areas. B,C, The number of activated neurons in response to the 30 trained grounding patterns was averaged for each of the six extrasylvian areas. D,E,
Changes in neuronal activation seen between extrasylvian primary areas, where stimulation was given, and the “higher” more central connector hub areas central to the architecture. Changes in
the number of activated neurons in response to trained grounding patterns are shown for the three training conditions. Unique neurons are shown by solid lines with crossed ends and shared ones
by broken lines with triangular ends. The three training conditions of the main simulations (B,D) were no symbol (NoS, gray), category term (CT, blue), and proper name (PN, pink). The four
training conditions of the control simulation (C) were NoS_1x (blue-striped gray) or NoS_3x (pink-striped gray), CT_1x (blue) and PN_3x (pink). For further explanations, see Figure 4. The results
were replicated in the whole model architecture (six extrasylvian and six perisylvian model areas); see Extended Data Figure 6-1 and Extended Data Table 6-1.
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h2 = 0.9954, and F(2 22) = 1484.43893, p , 0.001, h2 = 0.966,
respectively). According to the subsequent pairwise t tests, the
deep neural networks gained shared neurons but lost unique neu-
rons in the central areas, which held true for all conditions
( ps , 0.001) (Fig. 6D, upward dotted lines represent positive
gains in shared neurons and downward solid lines mean negative
gains in unique neurons). On the three levels of training condi-
tion, the gain in shared neurons and the loss in unique neurons
in the category term condition were significantly larger than that
in the proper name and no-symbol conditions ( ps , 0.001)
(Fig. 6D). PN did not significantly increase the gain in shared
neurons ( p = 0.1) but led only to a moderate loss of unique neu-
rons, as compared with the control training condition
( ps , 0.001). These results further confirm that training with
CT magnified both the gain in shared semantic neurons in cen-
tral areas and the loss of unique instance-specific neurons there.
The simulations performed for balancing the number of word
form presentations during proper name and category term learn-
ing also confirmed these observations (Fig. 6C,E). Therefore, the
overgrowth of shared neurons in category term learning does not
depend on an abundant number of word form presentations and
cannot be explained by adding word form information to
instance-related information.

Both RSA and CA analyses were also conducted for the whole
model architecture (six extrasylvian and six perisylvian model
areas). The findings replicated previous results, indicating category
learning (Extended Data Figure 4-1, Extended Data Table 4-1),
generalization (Extended Data Figure 5-1, Extended Data
Table 5-1), and representations of category critical as well as
instance-specific features (Extended Data Figure 6-1, Extended
Data Table 6-1).

Discussion
When sensorimotor patterns simulating the processing of similar
objects or actions from different categories were presented, the

brain-constrained network applied in the current study showed
successful conceptual category learning. Category learning outside
symbol context was manifested in greater similarities of activity
patterns elicited by different instances of the same category as com-
pared with between-category pattern similarities. Importantly,
compared with the training of instances per se, concurrent learning
of category instances and symbols had a substantial effect on both
categorial and instance-specific processes. Category term learning
led to an additional increase in dissimilarities between activity pat-
terns across conceptual categories, whilemaking categorymembers
substantially more similar to each other. In contrast, proper name
learning did not change between-category similarities and led to a
relatively minor similarity increase between members of the same
category. Themodel gave evidence of generalization to novel mem-
bers of learned categories and showed that such generalization was
maximal for novel members of categories for which CT had been
learned. Meticulous analyses of neuronal activity patterns suggest
that the enhancement of within-category similarities and between-
category dissimilarities in the context of category symbols is due to
an increase in the number of cells responding to all category mem-
bers. Likewise, the relative persistence of instance-specific neurons
with proper name learning underlies the maintained activation
differences between category instances observed in this case. All
observed effects regarding pattern dissimilarities and neuronal
microstructure were greatly pronounced in the central “connector
hub” areas of the brain-constrained model applied, as compared
with primary areas. Table 3 summarizes major observations in
the current data and the corresponding learning aspects these
observations reflect.

Relationship to experimental and neurocomputational
research
Our results can be used to address observations delivered by
neurocognitive and neurobehavioral experiments. Neuropsych-
ological evidence highlights the role of the prefrontal cortex

Table 3. Critical and significant observations and the corresponding aspects of learning

Analysis Learning aspect Observation

RSA Category learning Successful category learning in all learning conditions
DissimB−TT. DissimW−TT

Interaction effect of symbol type and within/between categories
DissimB−TTCT. DissimB−TTPN ; DissimB−TTCT. DissimB−TTPN
DissimW−TTCT, DissimW−TTPN ; DissimW−TTCT, DissimW−TTNoL

Generalization Symbol effect on dissimilarity differences within category
DissimDiffCT, DissimDiffNoS
DissimDiffCT, DissimDiffPN

CA Analysis Tendency to encode shared features in all learning conditions
nS.nU

Representations of category-critical features Symbol effect on the number of shared neurons
nSCT.nSPN ; nSCT.nSNoL

Gain in shared neurons in the central areas in all learning conditions
nS−central.nS−primary

Symbol effect on across-area gain of shared neurons
GainSCT. GainSPN ; GainSCT. GainSNoL

Representations of instance-specific features Symbol effect on the number of unique neurons
nUPN.nUCT ; nUNoL.nUCT

Loss in unique neurons in the central areas in all learning conditions
nS−central.nS−primary

Symbol effect on across-area loss of unique neurons
LossSPN, LossSCT

DissimW−TT/DissimW−TN , dissimilarity between a trained instance and another trained instance/novel instance of the same category; DissimB−TT , dissimilarity between two trained instances from different categories;
DissimDiff = |DissimW−TN − DissimW−TT |; nS , number of shared neurons; nU , number of unique neurons; CT, category term; PN, proper name; NoS, no symbol.
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in categorical representation (for review, see Kéri, 2003).
Prefrontal areas (PFi and PFl) are part of the four central areas
of our model, where conceptual neurons constituting category
representations emerged most numerously. This is explained
by the high degree of convergence of neural activity in these
areas, which are not only located in the center of the model archi-
tecture but also show the highest connectivity degrees. Due to
ample activity converging on these connector hub areas, their fre-
quently activated shared semantic neurons can most efficiently
recruit other neurons, which therefore take on similar response
properties (Doursat and Bienenstock, 2006). This mechanism
may contribute to why these areas act as “semantic hubs” and
house neurons reflecting category membership (e.g., PF and
AT, see Miller et al., 2002; Seger and Miller, 2010; Garagnani
and Pulvermüller, 2016; Tomasello et al., 2017). On the other
hand, the higher density of instance-specific neurons in the pri-
mary visual/motor model area relative to the centre is evidence
for exemplar learning in the sensorimotor cortices (Kéri, 2003;
Bowman et al., 2020)—a type of category learning that is based
on the representations of specific category instances (Nosofsky,
1988) and should be independent of signs and symbols. Here,
solid evidence for category formation was obtained even in the
control condition where only sensorimotor patterns were pre-
sented to the model without symbols. In line with neural data
(Freedman et al., 2001; Seger andMiller, 2010), experimental evi-
dence shows that perceptuomotor similarities among category
members are sufficient to trigger category learning in preverbal
infants (Sloutsky and Fisher, 2004; de Heering and Rossion,
2015) and animals (Güntürkün et al., 2018; Pusch et al., 2023).

When learning conceptual instances in the context of CT,
infants show the most pronounced category building and an
attention bias toward shared features of category members
(Waxman and Markow, 1995; Dewar and Xu, 2007; Althaus
and Mareschal, 2014). In contrast, encountering PN for individ-
ual instances focuses their attention relatively more on object-
specific features (Barnhart et al., 2018; Pickron et al., 2018; La
Tourette and Waxman, 2020). In the current network model,
symbol association raises the number of neurons involved in
the processing of a given sensorimotor pattern. This can be inter-
preted as biased attention to the object or action for which the
pattern codes and thus explains why label learning generally
increases attention to object features. Furthermore, as category
term learning increases the number of category-critical shared
semantic neurons in the network, at the cost of reducing the
number of instance-specific ones, the preobserved greater atten-
tion to shared features has a direct model correlate, along with
the label-related tendency to build stronger category representa-
tions. Infants’ attentional focus on instance-specific features of
objects is in line with the relative preservation of instance-specific
neurons in the model of proper name learning. Thus, the oppos-
ing effects of proper name and category term learning, which,
respectively, drive attention toward instance-specific and cate-
gory general features of objects, are captured by the current
model.

A range of neurocomputational studies previously explored
the putative brain basis of cognitive processes (Deco and Rolls,
2005; Rolls and Deco, 2015; Palm, 2016), including conceptual
category learning and the influence of language on object percep-
tion (Rogers and McClelland, 2014; Henningsen-Schomers and
Pulvermüller, 2022). For example, Westermann and Mareschal
(2014) demonstrated, using a fully distributed parallel processing
model, that learning a category label made the neural patterns of

category members more similar to each other, whereas different
categories moved away from each other in representational
space. Our RSA in models mimicking cortical area structure
and connectivity, along with within-area excitatory and inhibi-
tory connectivity, achieved the same result. In addition, we deter-
mined the neuron-level mechanisms and contributions of
different model areas to this result and, in particular, revealed
the model–central connector hub areas as the loci where the
differences between categorical and instance-specific mecha-
nisms as well as those between the shared- versus specific-feature
promoting roles of instance-specific and category labels are most
pronounced. As to our knowledge, the contrast between activity
patterns and neuronal correlates of PN and CT has not been
addressed by previous computational work.

Model explanation
The present simulations offer explanations of the observed phe-
nomena based on neuroscience principles. Of special relevance
here are the biological learning mechanisms applied, which
include unsupervised Hebbian synaptic strengthening of connec-
tions between coactivated neurons and weakening of links
between cells firing independently of each other. This principle
explains why category labels primarily interlink with the shared
neurons of instance representations belonging to the same cate-
gory. The reason lies in the highest correlation values, as
instance-specific neurons are silent when the category term is
used together with other category instances. This implies some
weakening of connections between the CT’ and the instance-
specific neurons, based on the “anti-Hebbian” “neurons
out-of-sync delink” rule. The opposite difference applies to PN,
whose neural correlates strongly connect to instance-specific
neurons but weaken their links with the category-critical shared
neurons whenever a different category member co-occurs with its
own and thus different name. Effects are most clearly present in
the central areas of the network where the neural correlates of
words and entities are equally manifest so that their correlation
structure can easily be mapped.

Limitations and future direction
The current simulations use idealized instance and category
learning conditions. The activation patterns representing con-
ceptual instances and word forms were chosen to be nonover-
lapping, except for the neurons coding for shared features.
These are idealizations considering both the features of word
forms and those of objects and actions could be shared across
categories (compare phonological, e.g., “cat”-“hat” or percep-
tual color/shape similarities). Such similarities are irrelevant
to category membership and hence were omitted to keep the
simulation well-controlled. Secondly, only a small number of
conceptual features were realized, and a small set of shared fea-
tures determined concept membership. This situation may hold
for some concrete terms but not for others and certainly not for
abstract concepts (Henningsen-Schomers et al., 2022).
Furthermore, PN and CT were acquired by different networks
to allow straightforward separation and evaluation of the mech-
anistic side of different label types—although label types are
normally copresent in the same mind and brain. In the future,
it is desirable to complement this work with simulations of
more realistic conceptual categories and to build one model
in which interaction/interference effects between different
learning conditions are possible.
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Conclusion
The current study strived to meet the need for a mechanistic
model of symbols and their meaning within a neurobiological
computational framework by addressing specific features of PN
(Mickey Mouse) and category symbols (house mouse).
Developmentalists and linguists have long been proposing that
CT and PN distinctively impact infants’ locus of attention toward
category-shared and instance-specific object and action features,
respectively. By simulating concept and instance learning in a
deep neural network with neurobiologically realistic architecture
and brain-like connectivity, we demonstrate that learning these
two different symbol types had opposing effects on the emergent
neuronal CAs representing and processing instances of a cate-
gory and the shared conceptual features of that category, which
can explain preobserved differences in perceptual, attentive,
and memory processes related to the specific and shared features
of category instances. These explanations were based on unsu-
pervised Hebbian associative learning mechanism binding neu-
rons involved in correlated processing of instance-specific
category general information. The current work could thus not
only replicate but also offer underlying neuronal mechanisms
and causal neurobiological explanations for well-established
observations in cognitive science.
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