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ABSTRACT
Introduction The independent and causal cardiovascular 
disease risk factor lipoprotein(a) (Lp(a)) is elevated in >1.5 
billion individuals worldwide, but studies have prioritised 
European populations.
Methods Here, we examined how ancestrally diverse 
studies could clarify Lp(a)’s genetic architecture, inform 
efforts examining application of Lp(a) polygenic risk scores 
(PRS), enable causal inference and identify unexpected 
Lp(a) phenotypic effects using data from African 
(n=25 208), East Asian (n=2895), European (n=362 558), 
South Asian (n=8192) and Hispanic/Latino (n=8946) 
populations.
Results Fourteen genome- wide significant loci with 
numerous population specific signals of large effect 
were identified that enabled construction of Lp(a) PRS 
of moderate (R2=15% in East Asians) to high (R2=50% 
in Europeans) accuracy. For all populations, PRS showed 
promise as a ‘rule out’ for elevated Lp(a) because certainty 
of assignment to the low- risk threshold was high (88.0%–
99.9%) across PRS thresholds (80th–99th percentile). 
Causal effects of increased Lp(a) with increased glycated 
haemoglobin were estimated for Europeans (p value 
=1.4×10−6), although inverse effects in Africans and East 
Asians suggested the potential for heterogeneous causal 
effects. Finally, Hispanic/Latinos were the only population 
in which known associations with coronary atherosclerosis 
and ischaemic heart disease were identified in external 
testing of Lp(a) PRS phenotypic effects.
Conclusions Our results emphasise the merits of 
prioritising ancestral diversity when addressing Lp(a) 
evidence gaps.

INTRODUCTION
Lipoprotein(a) (Lp(a)), a highly atherogenic 
and prothrombotic lipoprotein, is an inde-
pendent and causal cardiovascular disease 
(CVD) risk factor that is elevated in an esti-
mated 1.5 billion individuals worldwide.1 2 
Strong and consistent evidence linking Lp(a) 
with CVDs has motivated the development of 

Lp(a)- reducing therapies that are in pivotal 
clinical trials.3 Despite clinical, regulatory 
and public health interest in Lp(a), several 
major evidence gaps remain. First, the role 
of Lp(a) in the pathogenesis of non- CVD 
phenotypes remains largely unexplored 
despite the potential for broad phenotypic 
effects.4–8 Opportunities to anticipate adverse 
effects of therapeutic Lp(a) lowering, to illu-
minate mechanisms of action and to identify 
novel treatment indications through drug 

WHAT IS ALREADY KNOWN ON THIS TOPIC
 ⇒ Lipoprotein(a) (Lp(a)) is a highly heritable cardio-
vascular disease (CVD) risk factor for which pivotal 
clinical trials are underway.

 ⇒ Despite being one of the most variable CVD risk 
factors across populations, the majority of Lp(a) re-
search has been performed in European ancestral 
populations, limiting the reach and generalisability 
of the evidence base that informs clinical and public 
health decision making to five- sixths of the global 
population.

WHAT THIS STUDY ADDS
 ⇒ By applying innovations in statistical genetics to five 
ancestrally diverse populations, we demonstrate 
how increasing ancestral diversity helps clarify the 
role of Lp(a) in disease pathogenesis, identify indi-
viduals with elevated Lp(a) and enable causal infer-
ence studies.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ Important insights into Lp(a) can be enabled by inclu-
sion of modestly sized populations of non- European 
ancestry. Increased awareness of the benefits of an-
cestral diversity will provide an essential foundation 
for future studies that aim to maximise the benefits 
and minimise the risks of therapeutic Lp(a) lowering 
in everyone. 
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repurposing are therefore missed.9 10 Second, Lp(a) is not 
routinely measured in clinical practice, as few guidelines 
advocate universal measurement and the performance of 
commercially available assays varies.11 12 As a result, popu-
lations with very high lifetime CVD risk remain uniden-
tified. Third, Lp(a) is distinguished from other CVD 
risk factors by pronounced ancestral differences.13 The 
causes and consequences of these ancestral differences 
are poorly understood, but may reflect heterogeneity in 
Lp(a)’s genetic architecture.14 Finally, Lp(s) is not found 
in commonly studied laboratory animals, limiting the 
reach of mechanistic studies.15 Causal inference studies 
could help bridge this gap, although few studies outside 
European populations or CVD outcomes have been 
published.4 16 As a result, opportunities to inform Lp(a) 
and maximise its utility in clinical medicine and public 
health remain incompletely realised.

Lp(a)’s high heritability (h2=70%–90%), oligogenic 
genetic architecture and relative stability across the 
lifespan offer several avenues to address these evidence 
gaps.17 18 These features have enabled estimation of 
highly accurate Lp(a) polygenic risk scores (PRS) that, 
by aggregating variants into a single score, explain as 
much as 60% of Lp(a) trait variance.16 19 20 Few other 
CVD risk factors are predicted with such high accuracy. 
However, highly predictive Lp(a) PRS are only available 
for European populations and these European- derived 
PRS are not portable to other populations. This lack of 
portability reflects heterogeneity in the genetic archi-
tecture of Lp(a) across ancestral populations21 as well 
as the broader challenge of limited ancestral diversity in 
genetics research.22 23

Here, we constructed ancestry specific Lp(a) PRS using 
seven different approaches to maximise accuracy for 
populations of African, East Asian, European and South 
Asian ancestry. These PRS are publicly available and, for 
non- European populations, outperformed existing Lp(a) 
PRS.24 We then showed how these PRS and the genome- 
wide association studies (GWAS) from which they were 
derived can inform efforts examining clinical application 
of Lp(a) PRS, clarify Lp(a)’s genetic architecture, enable 
causal inference studies and identify unexpected pheno-
typic effects, even when the size of non- European popu-
lations is modest.

METHODS
Study populations
We included data from two sources: The Population 
Architecture through Genomics and Environment 
(PAGE) study and the UK Biobank (online supplemental 
table 1 and text). The PAGE study25 is a consortium 
funded since 2008 by the National Institutes of Health to 
examine the genetic underpinnings of common complex 
diseases and phenotypes in ancestrally diverse US popula-
tions. Five PAGE studies were included for PRS construc-
tion and testing: the Atherosclerosis Risk in Communities 
study (ARIC),26 the Coronary Artery Risk in Young Adults 

study (CARDIA),27 the Jackson Heart Study (JHS),28 the 
Multi- Ethnic Study of Atherosclerosis (MESA)29 and the 
Women’s Health Initiative (WHI).30 A sixth PAGE study, 
the Mount Sinai BioMe biobank (BioMe), was included to 
examine external application of PRS.

The UK Biobank is a publicly available, longitudinal 
study of England, Wales and Scotland residents.31 For all 
studies except BioMe, eligible participants had genotypic 
data and Lp(a) measures and were categorised into one of 
four populations with large enough numbers to support 
ancestry specific Lp(a) GWAS: African, East Asian, Euro-
pean or South Asian. For BioMe, eligible participants had 
imputed GWAS data, inpatient ICD- 9 and ICD- 10 codes, 
and were categorised into three populations with large 
enough number to support self- reported race/ethnicity- 
specific analyses: European, African and Hispanic/
Latino.

Genotyping and imputation
After genotyping using one of several assays, imputa-
tion was performed across studies using the UK10K and 
1000 Genomes Project (UK Biobank) or 1000 Genomes 
Project (PAGE) phase 3 reference panels (online supple-
mental table 2). In addition to study- specific protocols, 
we excluded variants meeting any of the following criteria 
on a population- specific and study- specific basis given the 
large differences in study size: minor allele frequency 
(MAF) <0.001; imputation quality score <0.4; or effective 
minor allele count Neff<30, where Neff =2f(1−f)Nq and f is 
minor allele frequency, N is the sample size and q is the 
imputation quality.

Statistical methods
Genome-wide association studies
We estimated Lp(a) ancestry- specific and study- specific 
genetic effects using generalised linear models of the 
form  M1: g

(
E
(
Y
))

= Xα + Gβ  where Y   was a vector of 
inverse- normalised Lp(a),  g   was an identity link func-
tion, X   denoted confounders (age, sex, 15 ancestral 
principal components and study centre, when appro-
priate) and  G   was variant dosage. Linear models were 
implemented in SUGEN (ARIC, CARDIA, WHI),32 
EMMAX (JHS),33 SNPTEST (MESA)34 or SAIGE (UK 
Biobank),35 accounting for relatedness as appropriate. 
Quality control and visualisation of GWAS results were 
performed using the EasyQC36 and EasyStrata37 pack-
ages.

Ancestry- specific GWAS results were combined using 
inverse- variance weighted, genomic inflation- corrected 
meta- analysis.38 Variant effect heterogeneity was assessed 
with the Cochran’s Q test within ancestry. Variants with 
p values <5×10−9 (Bonferroni correction for 10M tests) 
were considered genome- wide significant.39 Our ancestry- 
specific Lp(a) GWAS summary statistics will be available 
on the NHGRI- EBI GWAS catalogue pending publication 
given submission requirements (https://www.ebi.ac.uk/ 
gwas/).
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Identification of independent/secondary signals
We used GCTA- COJO,40 the ‘cojo- slct’ method, to 
perform forward model selection to identify inde-
pendently associated variants across each set of ancestry- 
specific GWAS meta- analyses. To account for linkage 
disequilibrium (LD) in each ancestry- specific analysis, we 
identified a subset of genetically unrelated UK Biobank 
participants and calculated LD between variant pairs in 
10 Mb windows.

Variant-based heritability and percentage variance explained
Lp(a) narrow sense- heritability was estimated by 
ancestry using GCTA and unrelated UK Biobank partici-
pants.41 42 Briefly, a genetic relationship matrix was created 
by ancestry for each chromosome (1–22), including vari-
ants imputed with high quality (>0.7). After combining 
the matrices, we fit ancestry- specific linear models 
adjusting for age, sex, 15 ancestral principal components 
and study centre using restricted maximum likelihood to 
estimate the percentage variance of Lp(a) explained by 
genome- wide variants and LPA variants.

Lp(a) PRS estimation
We examined seven approaches to estimate Lp(a) 
ancestry specific PRS. These approaches were distin-
guished by the statistical method, the data used to 
construct variant weights, the genomic region exam-
ined (LPA locus or genome- wide) and the LD reference 
panel (online supplemental table 3). For approaches 

that used external PRS,43 Pruning and Thresholding44 
and LDpred2,45 the discovery data were independent of 
the target data. For approaches that used GCTA- COJO40 
to identify independent signals across ancestry- specific 
GWAS meta- analyses and Crosspred,46 cross- validation 
was used to address a lack of independence between the 
discovery and target data.

PRS performance at the study level was compared 
using the incremental R2 after accounting for age, age2, 
sex, 15 ancestral principal components and study centre 
for continuous Lp(a) and the area under the receiver 
operator curve (AUC) when Lp(a) was dichotomised. 
When estimating AUC using Lp(a) PRS as the predictor, 
measured Lp(a) was dichotomised at 125 nmol/L, the 
Lp(a) clinical risk enhancer threshold47; participants 
with Lp(a) levels at or above 125 nmol/L were classified 
as having high Lp(a). The 95% CI for R2 were obtained 
from 1000 non- parametric bootstrap replicates of the 
parameters reporting their quantile at 2.5% and 97.5%.

Certainty in PRS estimation
To inform the use of PRS for the identification of indi-
viduals who may benefit from Lp(a) testing, we quan-
tified PRS certainty at the individual level for the best 
performing PRS within each ancestral population.48 
Briefly, the variance of each participant’s assigned PRS 
was estimated across four PRS stratification thresholds 
(the 80th, 90th, 95th and 99th PRS percentiles). Selection 

Figure 1 Distributions of lipoprotein(a) by ancestry in n=3 57 096 UK Biobank participants at study baseline.

https://dx.doi.org/10.1136/openhrt-2023-002382
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of the 90th, 95th and 99th percentiles was data driven, 
whereas the 80th percentile was selected because it corre-
sponded to a mean Lp(a) level of 125 nmol/L in African 
and European populations (online supplemental figure 
1). A percentile threshold corresponding to 125 nmol/L 
was not examined in East Asian and South Asian popula-
tions because either the mean Lp(a) level for the highest 
percentiles did not exceed 100 nmol/L (East Asians) or 
there were too few participants in the percentiles with 
mean Lp(a) >125 nmol/L (South Asians), which could 
reflect modest PRS accuracy. We then computed a 95% 
credible interval for the individual PRS point estimates, 
which is interpreted as the interval in which the true 
PRS is expected to fall with 95% probability. Finally, we 
calculated the proportion of individuals whose 95% cred-
ible intervals were fully contained within their assigned 
threshold range as a measure of certainty.

BioMe phenome-wide association study
To characterise the degree to which Lp(a) association 
studies reported consistent results across populations, we 
conducted a phenome- wide association study (PheWAS) 
in BioMe participants of White, African American and 
Hispanic/Latino self- identified race/ethnicity using R.49 
A genetically inferred Lp(a) value, which we substituted 
for measured Lp(a), was constructed for each BioMe 
participant with genotypic data. For White and Hispanic/
Latino BioMe participants, we used the approach and 
weights from the external PRS developed in a European 
ancestral population, as an Lp(a) PRS for Hispanic/

Latinos was unavailable. For African American BioMe 
participants, we used the independent signal (genome- 
wide) approach developed in PAGE and UK Biobank 
participants of African ancestry. Using these genetically 
inferred Lp(a) measures, we then estimated race/ethnic- 
specific associations with a maximum of 1004 phecodes 
with ≥20 cases derived from ICD- 9 and ICD- 10 inpatient 
codes, adjusting for age, sex and 15 ancestral principal 
components. Because statistical power to evaluate >1000 
phecodes would be modest, we restricted our attention 
to phenotypes that were nominally significant (ie, p value 
<0.05) and were previously associated with Lp(a).

Mendelian randomisation
Causal effects of Lp(a) on two phenotypes with incon-
sistent evidence of association with Lp(a) (estimated 
glomerular filtration rate (eGFR) and glycated haemo-
globin (hbA1c))8 50 were estimated in UK Biobank 
participants without chronic kidney disease or diabetes, 
respectively, by population using Mendelian randomisa-
tion (MR). MR is a form of instrumental variable (IV) 
analysis based on the concept that if X (Lp(a)) affects 
outcome Y (eGFR or hbA1c), factors affecting X (ie, 
Lp(a) PRS, G) must also affect Y.51 G therefore serves as 
an IV to estimate causal effects of X on Y. Strengths of MR 
include G- Y associations that are assumed to be robust 
to confounding from variables other than ancestry, 
which can be addressed through adjustment. Random 
assignment of G at conception also enables assessment 
of temporality of the G- Y association and, by extension, 

Figure 2 Genome wide- significant (p<5×10−9) loci discovered in ancestry- specific lipoprotein(a) genome- wide association 
studies of African (n=19 333), East Asian (n=2895), European (n=354 843) and South Asian (n=8192) Population Architecture 
through Genomics and Environment study and UK Biobank participants.

https://dx.doi.org/10.1136/openhrt-2023-002382
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the X- Y association. Causal effects were estimated in 
SAS (PROC SYSLIN) using two- stage least squares after 
examination of the pleiotropy and instrument strength 
MR assumptions and adjusting for age, sex, study centre 
and 15 ancestral principal components.51 52 To facilitate 
comparison, we also conducted standard association 
analysis using linear regression.

RESULTS
A total of 407 799 participants of African (n=25 208), East 
Asian (n=2895), European (n=3 62 558), South Asian 
(n=8192) and Hispanic/Latino (n=8946) race/ethnicity 
or ancestry were included (online supplemental table 1). 
Study participants spanned early to late adulthood (age 
range: 18 to >80 years) and 56% were female. As exem-
plified by UK Biobank participants, the distribution of 
Lp(a) varied by ancestry (figure 1, online supplemental 
table 4). An estimated 21%, 4%, 14% and 8% of African, 
East Asian, European and South Asian UK Biobank 
participants had Lp(a) values >125 nmol/L.

Lp(a) ancestry specific GWAS
Fourteen genome- wide significant Lp(a) loci were 
identified, with little evidence of within- ancestry heter-
ogeneity: 3 loci for African, 1 locus for East Asian, 13 
loci for European and 2 loci for South Asian partici-
pants (figure 2, online supplemental table 5 and figure 
2). The major chromosome 6 LPA locus was the most 
pronounced signal, harboured numerous independent 
secondary signals (online supplemental tables 6 and 7) 
and had lead variants with very strong (SD increment 
per effect allele copy: |0.74–1.21|) effects. LPA also 

demonstrated a unique genetic architecture for each 
ancestral population. The African LPA lead variant 
(rs41269135, A effect allele) was monomorphic (ie, 
only the non- effect allele G was observed) in East Asian, 
European and South Asian participants, and the Euro-
pean LPA lead variant (rs10455872, A effect allele) was 
monomorphic in East Asian participants. Other notable 
Lp(a) loci included APOE on chromosome 19, which 
was identified at genome- wide significance levels for 
African (lead variant rs7412, T effect allele), European 
(lead variant rs1065853, T effect allele) and South Asian 
participants (lead variant rs7412, T effect allele). APOE 
lead variants rs7412 and rs1065853 were in high LD 
(eg, R2=1 in 1000 Genomes EUR) (online supplemental 
table 5), suggesting that these lead variants tag the same 
locus.

Variant-based heritability and percentage variance explained
Ancestry specific Lp(a) variant- based heritability esti-
mates ranged from 13.1% in East Asian to 38.4% in 
African participants for the entire genome (online 
supplemental table 8). To reduce uncertainty and 
better capture the oligogenic architecture of Lp(a), 
we also estimated variant- based heritability restricting 
to the LPA locus. When restricting to the LPA locus, 
ancestry- specific variant- based heritability estimates 
approximately doubled in magnitude (LPA- specific h2 
range: 22.5% in East Asian to 76.1% in European partic-
ipants). However, smaller increases were observed for 
African participants (LPA- specific h2=45.7%; genome- 
wide h2=38.4%).

Figure 3 Performance of lipoprotein(a) polygenic risk scores (PRS) by methods across study populations in n=385 263 
participants of African (n=19 333), East Asian (n=2895), European (n=3 54 843) and South Asian (n=8192) ancestry from the 
Population Architecture through Genomics and Environment study and UK Biobank.
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Ancestry specific PRS performance
We evaluated seven approaches for estimating ancestry 
specific Lp(a) PRS (figure 3, online supplemental table 
9). The external PRS that included 43 LPA variants43 
was highly predictive in Europeans (R2=50%), but was 
not transferable across ancestries (R2 range: 2–11%). 
Lp(a) PRS prediction accuracy in non- European popu-
lations increased considerably when ancestry specific 
discovery data were used, with R2=12%–25% in African 
and R2=10%–12% in East Asian populations despite 
discovery populations that were modest in size (n=11 287 
in Africans and n=706 in East Asians). For South Asians, 
increased prediction accuracy was achieved when using 
Crosspred, the approach that did not require an inde-
pendent discovery population (R2=20%), which was 
unavailable. Prediction accuracy also was increased 
in East Asian populations (R2=15%) when Crosspred 
was used. When Lp(a) PRS were extended to include 
regions outside LPA, prediction accuracy was increased 
for African population (R2=27%), but was substantially 
decreased (R2 range: 9%–27%) for East Asian, European 

and South Asian populations. The most accurate PRS 
for each ancestral population showed good to excellent 
calibration (online supplemental figure 1) and varied 
in the ability to distinguish participants with high Lp(a) 
levels (AUC range: 0.66 (East Asians)–0.90 (Europeans)) 
(online supplemental table 9).

PRS certainty
We quantified certainty in PRS at the individual level 
across different PRS thresholds that might be used to 
identify high- risk populations (table 1). For the 90th–
99th percentile thresholds, PRS assignment to the upper 
threshold was most certain for European participants 
(84.7%–94.4% of participants with 95% credible intervals 
fully contained in the upper threshold) and least certain 
for the East Asian participants (9.1%–19.6% of partici-
pants with 95% credible intervals fully contained in the 
upper threshold). In contrast, certainty in PRS assign-
ment to the lower threshold was high for all populations 
(90th–99th percentile range: 88.6%–99.9%). We also 
examined an ancestry specific threshold corresponding 

Table 1 PRS- based individual stratification uncertainty across four populations (European, African, South Asian and East 
Asian) and four thresholds in n=357 096 UK Biobank participants at study baseline

Ancestry

PRS <percentile PRS >percentile

Certain Certain/N. certain+N. uncertain (SD) (%) Certain Certain/N. certain+N. uncertain (SD) (%)

99th 
percentile

  African 7857 98.6 (0.1) 31 38.3 (5.4)

  East Asian 2081 96.0 (0.4) 2 9.1 (6.1)

  European 334 946 99.9 (0.01) 2911 85.5 (0.6)

  South 
Asian

8016 98.8 (0.1) 25 30.5 (5.1)

95th 
percentile

  African 7384 96.6 (0.2) 239 59.3 (2.5)

  East Asian 1879 90.4 (0.7) 14 12.7 (3.2)

  European 320 446 99.6 (0.01) 15 986 94.4 (0.2)

  South 
Asian

7345 94.4 (0.3) 185 45.1 (2.5)

90th 
percentile

  African 6736 93.0 (0.3) 478 59.3 (1.7)

  East Asian 1746 88.6 (0.7) 43 19.6 (2.7)

  European 298 579 98.0 (0.3) 28 719 84.7 (0.2)

  South 
Asian

6683 90.7 (0.3) 391 47.7 (1.7)

80th percentile, corresponding to mean Lp(a) level of 125 nmol/L*

  African 5660 87.9 (0.4) 1055 65.5 (1.2)

  European 265 779 98.1 (0.03) 63 844 94.2 (0.1)

*Mean Lp(a) level for highest percentiles for East Asian ancestral population did not exceed 100 nmol/L. For South Asian populations, too few 
participants had PRS >125 nmol/L mean level.
Lp(a), lipoprotein(a); PRS, polygenic risk scores.

https://dx.doi.org/10.1136/openhrt-2023-002382
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to a mean Lp(a) ≥125 nmol/L, in African and Euro-
pean participants (online supplemental figure 1). This 
threshold occurred at the 80th percentile for both 
African and European participants. Approximately 94.2% 
of European and 65.5% of African participants with PRS 
assigned to the upper threshold had their 95% credible 
intervals fully contained in the upper threshold. Certainty 
in assignment to lower threshold remained high for both 
European (98.1%) and African (87.9%) participants.

Application of PRS in external studies to identify potentially 
novel Lp(a) effects
A total of 23 circulatory system phenotypes were nomi-
nally associated with genetically inferred Lp(a) in at least 
one BioMe population (online supplemental table 10). Of 
note, established associations with ischaemic heart disease 
(IHD) and coronary atherosclerosis (CAD) only were 
observed for Hispanic/Latino participants (n=1400 IHD 
cases; n=1200 CAD cases). These observations may reflect 
increased statistical power in Hispanic/Latinos relative to 
African Americans (n=680 IHD cases; n=620 CAD cases) 
and whites (n=740 IHD cases; n=710 CAD cases).

Causal inference using PRS as instrumental variables
For eGFR, estimates from MR uniformly indicated no 
causal effect of Lp(a) (table 2) (p value range: 0.15–
0.76). These results contrasted with results obtained 
using standard methods evaluating measured Lp(a), 
which instead suggested that Lp(a) was inversely and 
significantly associated with eGFR in European (p value 
=1.7×10−8), South Asian (p value =0.039) and African (p 
value =0.014) populations. For hbA1c, both statistical 
methods suggested that increased Lp(a) was associated 
with increased hbA1c in European ancestry participants 
(p values <1.4×10−6). Causal effects of Lp(a) on hbA1c 
suggested inverse associations in African and East Asian 
populations.

DISCUSSION
In this study, we demonstrated how the development and 
application of Lp(a) PRS in ancestrally diverse popula-
tions could help address longstanding Lp(a) evidence 

gaps. Importantly, studies of ancestrally diverse popula-
tions contributed unique information even when the PRS 
were less accurate than PRS in European populations. As 
new therapies for Lp(a) emerge, expanding ancestral 
diversity even further will help strengthen genetically 
informed risk prediction, enable novel biological insight 
and ensure that the promises of precision medicine are 
relevant for all populations.

Despite great interest in Lp(a) PRS and repeated calls 
for expanding ancestral diversity when constructing and 
testing PRS more generally, studies continue to prioritise 
European populations.22 Lp(a) is no exception. Three 
of five published studies that constructed Lp(a) PRS in 
the UK Biobank were restricted to European popula-
tions, although the UK Biobank included almost 20 000 
participants of diverse ancestries.8 53 54 Of two prior 
studies that included African, East Asian and South Asian 
UK Biobank participants, Lp(a) PRS accuracy was poor 
to moderate (eg, R2 ranged 0.3% in Africans to 16% in 
South Asians55). Such low accuracy likely represents the 
application of discovery data and analytic methods that 
perform well in European population, but poorly in other 
populations. We built on these efforts by prioritising 
ancestrally diverse populations and sharing our results 
publicly to enable further efforts. Our results demon-
strated that increasing PRS accuracy in non- European 
populations is feasible and, unlike PRS for many other 
cardiovascular phenotypes,56 does not require prohibi-
tively large sample sizes. Indeed, inclusion of modestly 
sized samples of ancestry matched discovery data outper-
formed efforts that substituted discovery data collected 
in several hundred thousand participants of European 
ancestry, but these PRS remained considerably less accu-
rate than results in European populations.

Adding further insight to the clinical application of 
Lp(a) PRS were estimates of individual PRS certainty. 
Certainty is an important companion metric to commonly 
reported population level measures like R2 that do 
not quantify variability in individual PRS estimates. We 
demonstrated that Lp(a) PRS showed promise as a ‘rule 
out’ for elevated Lp(a) because certainty of assignment 
to the low- risk threshold was high for individuals in all 

Table 2 Mendelian randomisation causal estimates and standard estimates for lipoprotein(a) with glycated haemoglobin and 
estimated glomerular filtration rate in UK Biobank participants at study baseline by ancestral population

Statistical method

African (n=7529) East Asian (n=2156) European (n=326 028) South Asian (n=8048)

Β (SE) P value Β (SE) P value Β (SE) P value Β (SE) P value

Estimated glomerular filtration rate

  MR 0.019 (0.47) 0.31 0.064 (0.99) 0.15 0.0013 (0.0021) 0.53 0.0062 (0.020) 0.76

  Standard 0.025 (0.010) 0.014 0.010 (0.017) 0.58 0.0086 (0.0015) 1.7×10–8 0.027 (0.010) 0.039

Glycated haemoglobin

  MR 0.065 (0.13) 0.60 0.34 (0.23) 0.14 0.044 (0.0091) 1.4×10–6 0.12 (0.12) 0.31

  Standard 0.23 (0.70) 5.0×10–3 0.035 (0.087) 0.68 0.13 (0.0067) 5.4×10–87 0.048 (0.053) 0.36

MR, Mendelian randomisation.

https://dx.doi.org/10.1136/openhrt-2023-002382
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populations and across the four thresholds we evaluated. 
In contrast, while Lp(a) PRS may be useful to identify indi-
viduals of European ancestry for follow- up Lp(a) testing 
(ie, to ‘rule in’ potentially high Lp(a)), certainty was 
low for African, East Asian and South Asian participants. 
Improving Lp(a) PRS certainty for non- European popula-
tions assigned to high Lp(a) PRS thresholds—the individ-
uals at highest risk of Lp(a)- associated CVD—is important 
because Lp(a) remains a ‘hidden CVD risk factor’. In 
addition to not being part of a standard lipid panel, 
clinical guidelines do not routinely recommend Lp(a) 
measurement.11 12 Even as Lp(a) measurement becomes 
more routine, integration of Lp(a) PRS risk thresholds 
into medical records or even direct to consumer testing57 
could help broaden Lp(a) testing uptake in individuals 
with high PRS estimates. Although clinical application 
remains rare, Lp(a) PRS assignment and risk stratifica-
tion could be performed using summary statistics and 
workflows, as presented herein, assuming genotypic data 
are available. These efforts are enabled by growing inter-
ests in merging electronic health records and genotypic 
data,58 the potential for Lp(a) PRS to capture lifetime 
elevations in Lp(a), the growing popularity of direct to 
consumer genetic testing, and in the USA, decreasing 
primary care receipt among individuals with no evident 
chronic medical conditions.59 Integrating Lp(a) PRS into 
electronic health record also could inform identification 
of clinical trials participants.54 Although Lp(a) presents 
a good ‘test case’ for PRS- informed screening given the 
modest to high accuracy of PRS, without additional work 
increasing PRS accuracy for everyone, these efforts will 
continue to benefit European populations primarily.

One outstanding question is how the genetic archi-
tecture of Lp(a) varies by ancestry and the phenotypic 
consequences of this variation. One potential major 
driver of Lp(a) ancestral differences are LPA kringle IV 
type 2 repeats (KIV- 2).18 19 KIV- 2 repeats are not called 
in array data, although methods that capture KIV- 2 
repeats from sequencing data are emerging.60 Because 
array data are more commonly available, it is unclear 
the degree to which these innovations will become inte-
grated into PRS estimation. However, causal inference, 
particularly the development of genetic instruments for 
extremely low Lp(a), is one area where KIV- 2 enabled 
PRS accuracy gains could be prioritised. Studies in Euro-
pean populations have not identified a strong genetic 
instrument for extremely low Lp(a).61 The phenotypic 
consequences of extremely low Lp(a) are poorly under-
stood, although emerging therapies may reduce Lp(a) 
by ~80%62 and associations with increased type 2 diabetes 
risk have been reported.50 Like European populations, 
large proportions of East Asian populations harbour 
very low Lp(a) levels. These features, combined with 
marked ancestral heterogeneity in Lp(a)’s genetic 
architecture, motivate studies in East Asian populations 
that construct genetic instruments for extremely low 
Lp(a) and, if feasible, apply these instruments for causal 
inference.

East Asian populations are not the only population 
for Lp(a)’s ancestral heterogeneity could enable natural 
experiments that would be challenging to conduct in 
studies of European populations. For example, there is a 
limited understanding of how variants outside LPA regu-
late Lp(a).61 The genetic architecture of Lp(a) in African 
populations may be particularly well suited to examine 
this question because while the LPA locus explains almost 
all Lp(a) genetic variance in European populations, LPA 
accounts for ~50% of genetic variance in African popu-
lations.21 This finding is consistent with our observa-
tions that genome- wide Lp(a) heritability was highest in 
African populations and that the best performing PRS 
in African populations included variants outside LPA. 
However, African populations remain severely under- 
represented in Lp(a) GWAS.

Finally, we demonstrated how ancestrally diverse PRS 
could be applied in an external biobank to identify 
potentially novel associations. To date, available Lp(a) 
PheWAS have largely focused on cardiovascular traits in 
predominantly European populations.7 8 63 Continued 
prioritisation of European populations in Lp(a) PheWAS 
assumes no ancestral heterogeneity in the genetic archi-
tecture of Lp(a) or its phenotypic effects and that Euro-
pean populations can support well powered studies of 
all phenotypes of interest. Results from BioMe demon-
strate how unrealistic these assumptions are. Although 
accuracy of the Lp(a) PRS in Hispanic/Latinos is likely 
not as high as accuracy in European populations due to 
reduced portability of European derived PRS, known 
associations with IHD and CAD only were identified in 
Hispanic/Latinos. It remains unknown how many other 
associations may be missed due to ongoing biases toward 
European populations.

Several limitations of the present study warrant consid-
eration. First, our results may be limited by the lack of 
standardised methods used to measure Lp(a). However, 
little evidence of within- population effect heterogeneity 
was observed, suggesting modest influence. Second, KIV- 2 
repeats were not evaluated because sequencing data are 
not universally available. Studies have demonstrated the 
existence of common variants in LD with KIV- 2 repeats, 
which captured some degree of KIV- 2 repeat variability, 
thus reducing this concern.64 Third, while incorporating 
ancestry specific genetic information in developing PRS 
improved predictive values within each ancestral popu-
lation substantially, there remained a significant imbal-
ance in predictive performance. This limitation stresses 
that achieving equally informative PRS across ancestrally 
diverse populations will not be possible without more 
fundamental shifts in increasing diversity in genetic 
research.

In conclusion, the present study emphasises the need to 
expand scientific inquiry into Lp(a) through deliberate 
prioritisation of ancestrally diverse populations. Although 
we used PRS as an example of how such expansion could 
broaden understanding of Lp(a), we anticipate that there 
will be further gains from increased diversity that do 
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not include genomics or PRS more specifically. At best, 
continued failure to expand Lp(a) research priorities to 
include ancestrally diverse populations will perpetuate 
Lp(a) evidence gaps. At worst, this continued failure will 
perpetuate health disparities by limiting the relevance of 
precision medicine in non- European populations.
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