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Abstract
Objectives: Previous studies conducted in mostly homogeneous sociodemographic samples have reported a relationship between weakened and/or disrupted rest-

activity patterns and metabolic dysfunction. This study aims to examine rest-activity rhythm characteristics in relation to glycemic markers in a large nationally 

representative and diverse sample of American adults.

Methods: This study used data from the National Health and Nutrition Examination Survey 2011–2014. Rest-activity characteristics were derived from extended 

cosine models using 24-hour actigraphy. We used multinomial logistic regression and multiple linear regression models to assess the associations with multiple 

glycemic markers (i.e., glycated hemoglobin, fasting glucose and insulin, homeostatic model assessment of insulin resistance, and results from the oral glucose 

tolerance test), and compared the results across different categories of age, gender, race/ethnicity, and body mass index.

Results: We found that compared to those in the highest quintile of F statistic, a model-fitness measure with higher values indicating a stronger cosine-like pattern 

of daily activity, participants in the lowest quintile (i.e, those with the weakest rhythmicity) were 2.37 times more likely to be diabetic (OR Q1 vs. Q5 2.37 (95% CI 1.72, 

3.26), p-trend < .0001). Similar patterns were observed for other rest-activity characteristics, including lower amplitude (2.44 (1.60, 3.72)), mesor (1.39 (1.01, 1.91)), and 

amplitude:mesor ratio (2.09 (1.46, 2.99)), and delayed acrophase (1.46 (1.07, 2.00)). Results were consistent for multiple glycemic biomarkers, and across different 

sociodemographic and BMI groups.

Conclusions: Our findings support an association between weakened and/or disrupted rest-activity rhythms and impaired glycemic control among a diverse US 

population.
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Statement of Significance

Weakened rest-activity patterns have been linked to metabolic dysfunction. However, all previous studies focused on older adults who were predominantly white, 

and it is unclear how findings from these studies can be generalized to other populations. In a nationally representative sample of noninstitutionalized US adults, 

we found that diabetes and impaired glycemic control were more prevalent among participants with weaker rest-activity rhythms. We found these associations to 

be robust across populations with different sociodemographic characteristics and BMI status. Notably, weaker rest-activity rhythm was associated with diabetes 

across all racial/ethnic groups. These findings invite further investigation of the role of rest-activity patterns in metabolic health, particularly in populations with 

diverse sociodemographic characteristics, lifestyle factors, and health status.
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Introduction

Diabetes is a common chronic condition in the adult population 
and major contributor to cardiovascular diseases (CVD), renal 
failure, cognitive decline, and mortality. It is estimated that over 
10% of the US population have diabetes [1] and the total cost 
attributable to diabetes was $327 billion in 2017 [2]. The preva-
lence of diabetes increased substantially across all ages, sex, 
and racial/ethnic groups in recent decades [3]. There are also 
considerable disparities in diabetes, with higher prevalence 
among non-Hispanic blacks, Hispanics, and Asians relative to 
non-Hispanic whites [4]. Decades of research has identified nu-
merous lifestyle risk factors for diabetes, particularly unhealthy 
eating and physical inactivity. More recently, circadian disrup-
tion has emerged as a novel risk factor for diabetes [5].

The rest-activity rhythm consists of sleep, physical activity 
and sedentary behaviors that occur during a 24-hour period. It 
is a central behavioral manifestation of the internal circadian 
rhythm that plays an important role in the entrainment of cir-
cadian clocks in metabolic tissues such as skeletal muscle [6]. 
Thus, there is a bidirectional relationship between circadian 
disruption and weakened and/or disrupted rest-activity pat-
terns [6]. Given the bidirectional relationship, efforts to under-
stand how intervening upon rest-activity rhythm to improve 
metabolic health have gained traction [7]. Several previous 
studies have linked rest-activity patterns measured by 24-hour 
actigraphy with metabolic dysfunction (e.g., higher body mass 
index (BMI), metabolic syndrome, dyslipidemia, and diabetes) 
in adult populations [8–10]. We recently found that multiple 
rest-activity parameters, including a lower amplitude and less 
robust overall rhythmicity, were associated with higher preva-
lence and incidence of diabetes in older men [10]. However, the 
evidence linking rest-activity rhythm characteristics and dia-
betes remains limited. Moreover, almost all previous studies fo-
cused on older adults who were predominantly white, and it is 
unclear how findings from these studies can be generalized to 
other populations. Given existing racial disparities in diabetes 
in the US [4], it is important to study the association between 
rest-activity rhythms and diabetes in more diverse populations.

Using the National Health and Nutrition Examination Survey 
(NHANES) 2011–2014, a nationally survey of the US population 
that oversampled racial/ethnic minority groups, we investigated 
the association between characteristics of rest-activity rhythms 
and multiple glycemic markers, including glycated hemoglobin 
(HbA1c), fasting glucose and insulin, homeostatic model assess-
ment of insulin resistance (HOMA-IR), and results from the oral 
glucose tolerance test (OGTT). Because of the large and diverse 
samples, we were also able to examine the association by dif-
ferent age, gender, race/ethnicity, and BMI groups.

Methods

Study population

This analysis included a nationally representative sample of 
adults from the NHANES, 2011–2014 [11]. Conducted by the 
National Center for Health Statistics at the Center for Disease 
Control and Prevention, the NHANES is a cross-sectional survey 
to assess the health status of the noninstitutionalized ci-
vilian population in the US. Participants were interviewed for 
sociodemographic information, lifestyle factors, and health 

status and medical history. Laboratory tests, physiological 
measures, and biosample collection were performed at a mobile 
examination center (MEC). The NHANES 2011–2014 represents 
the first nationally representative sample in the US with 24-hour 
rest and activity data assessed by wrist actigraphy.

Measurement of rest-activity rhythms

Participants who were three years or older were asked to wear an 
ActiGraph GT3X+ (Pensacola) on the wrist of the nondominant 
hand for seven full days (midnight to midnight) to measure 
24-hour rest and activity. The device was water-resistant and 
programmed to obtain triaxial measure of acceleration at 80 
Hz sampling intervals. Details of the physical activity monitor 
protocol were published on the NHANES website [12]. Actigraphy 
data underwent quality review by contractors at Northeastern 
University under the supervision of staff and collaborators from 
the National Cancer Institute and National Center for Health 
Statistics. Invalid measurements were flagged based on criteria 
published online [13]. The rest of the data were further categor-
ized into wake wear, sleep wear, or nonwear using an open-
source published algorithm [14]. In our analysis, valid data was 
determined as those categorized as wake and sleep wear. We 
further defined a valid day of recording as having at least 20 
hours of valid data and a participant with valid actigraphy data 
as having at least 4 valid days.

We used the 5-minute sum of the acceleration measure-
ments obtained on all three axes at the minute level (specified 
in Monitor-Independent Movement Summary (MIMS) units) to 
derive rest-activity rhythm parameters using the extended co-
sine model [15]. By applying an anti-logistic transformation, 
the model fits activity data to a squared wave form. We derived 
five parameters as the measures of rest-activity rhythms. Our 
primary measure of the overall rhythmicity was the F stat-
istic, a model goodness-of-fit measure of the cosine model [15]. 
Higher values of the F statistic indicate stronger and more ro-
bust overall rhythmicity. In addition, we also examined four 
variables that measured different aspects of the rest-activity 
rhythm: 1) Amplitude was measured as the difference between 
the peak and nadir of the fitted curve, and higher values indi-
cated larger rhythm strength. 2)  Midline estimating statistic 
of rhythm, or mesor, was measured as minimum+1/2 ampli-
tude, and higher values indicated a higher average level of ac-
tivity. 3) Amplitude:mesor ratio was calculated as a normalized 
measure of rhythm strength accounting for average activity 
levels. 4) Acrophase was measured as the time of peak activity 
of the fitted curve, and higher values indicated a later peak. 
All rest-activity parameters were grouped based on quintiles, 
with the quintile presumed as having the lowest risk (Q1 for 
acrophase, and Q5 for all others) as the reference, as was done 
previously to enable direct comparisons with earlier studies [10].

Measurement of glycemic markers

Our main analysis focused on the diabetic status assessed using 
HbA1c levels, combined with self-reported information on med-
ical history and medication use. HbA1c was measured from 
blood samples taken from participants who were 12 or older 
and visited the MEC. Blood samples were processed, stored, 
and shipped to the Fairview Medical Center Laboratory at the 
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University of Minnesota, Minneapolis, Minnesota for analysis. 
HbA1c was measured by the Tosoh Automated Glycohemoglobin 
Analyzer HLC-723G8 (South San Francisco, CA, USA). We cat-
egorized HbA1c status using previously published criteria [16]: 
low (<5%), normal (5–5.6%), prediabetic (5.7–6.4%), and diabetic 
(≥6.5% or self-reported diagnosis of diabetes or use of diabetes 
medication).

Our secondary analysis focused on fasting glucose, fasting 
insulin, HOMA-IR, and OGTT results, which were measured in 
a randomly selected sample of participants 12 or older who 
visited the morning session at the MEC. Blood glucose concen-
tration was measured by a hexokinase method. Insulin level was 
determined by enzyme-linked immunosorbent assay. Because 
of changes in insulin measurement methods from 2011–2012 
to 2013–2014, we applied the conversion algorithm as recom-
mended by the NHANES to match the 2013–2014 values to the 
2011–2012 values: Insulin2011–2012 = 10**(1.024*log10(Insulin2013–2014) 
– 0.0802). HOMA-IR was calculated as fasting insulin (mg/dl) x 
fasting glucose (uIU/ml)/ 405 [17]. OGTT results were based on 
plasma glucose levels measured two hours after ingesting 75 g 
glucose orally. For OGTT, there were several additional exclusion 
criteria including hemophilia and chemotherapy safety exclu-
sions, fasting less than 9 hours, taking insulin or oral medica-
tions for diabetes, refusing phlebotomy, and not drinking the 
entire Trutol glucose solution within the allotted time. All four 
secondary outcome variables were log-transformed to improve 
normality. Detailed lab protocols for outcome measurements 
are published on the NHANES website [18].

Covariates

Study participants reported sociodemographic characteris-
tics (age, gender, race/ethnicity, education, household income, 
marital status) and lifestyle factors (smoking, alcohol consump-
tion) in interviews. Dietary intake was measured by two 24-h 
dietary recalls conducted 3–10  days apart. BMI was measured 

at MEC. Sleep duration and total physical activity (total acceler-
ation measurement value in MIMS units) were derived from the 
actigraphy data [14].

Analytic sample

Of the 19 931 participants in NHANES 2011–2014, we focused on 
those age 20 years or older (N = 11 329) because this age cutoff 
was used in a previous study to estimate the prevalence of dia-
betes in an adult population in the US [4]. Of these, we excluded 
those who had no measures of rest-activity rhythms (N = 2736), 
had less than 4 days of valid recording (N = 1323), or a missing 
HbA1c measure (N  =  242). We also excluded pregnant women 
at the time of the survey (N = 59). The final analytic sample fo-
cusing on HbA1c included 6975 adults. For the analysis using 
fasting glucose, fasting insulin, HOMA-IR, and OGTT results as 
the outcomes, we further excluded those who reported taking 
medication to lower blood sugar (N  =  911). Because assays on 
fasting glucose and insulin, and the OGTT were performed on 
a subsample of participants, the analyses for these markers fo-
cused on those with available outcome variables. The sample 
sizes were 2938 for fasting glucose, 2836 for fasting insulin, 2834 
for HOMA-IR, and 2602 for OGTT. Figure 1 presents a flow chart 
for deriving the respective analytic samples.

Statistical analysis

NHANES assigns sample weights to allow findings to be gener-
alized to all civilian, noninstitutionalized populations living in 
the United States. We used the full sample MEC exam weight 
for analysis on HbA1c, the fasting subsample weight for fasting 
glucose, fasting insulin, and HOMA-IR, and the OGTT subsample 
weight for OGTT results. To examine the association between 
rest-activity rhythm parameters and HbA1c categories, we 
used multinomial logistic regression where the normal HbA1c 

Figure 1. Flow chart showing the progression of participants to derive analytic samples for HbA1c (Analytic sample I), and fasting glucose, fasting insulin, HOMA-IR and 

OGTT (Analytic sample II.1-II.4). Abbreviations: HOMA-IR, homeostatic model assessment for insulin resistance; OGTT, oral glucose tolerance test.
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category served as the reference, and presented odds ratios (OR) 
and 95% confidence intervals (CI). To examine the association 
with other glycemic markers, we used multiple linear regres-
sion and presented back-transformed geometric means and 
95% CI. In a minimal model, we adjusted for age (continuous) 
and gender (men, women). In the full model, we additionally 
adjusted for race/ethnicity (non-Hispanic white, non-Hispanic 
black, Hispanic, others), education (less than high school, high 
school graduate, some college, college graduate or above), house-
hold income (<$20 k, $20 k–44.9 k, $45 k–74.9 k, $75 k+), marital 
status (married, not married), smoking (current smoker, former 
smoker, never smoker, or less than 100 cigarettes in life), al-
cohol consumption (<1 drink/week, 1 drink/week-<1 drink/day, 
1+ drink/day), BMI (<18.5, 18.5–<25, 25–<30, 30+) and total en-
ergy intake (continuous). Given that sleep duration and physical 
inactivity are behavioral risk factors associated with diabetes, 
and both factors are integrated components of the rest-activity 
rhythm, we examined to what degree the results were explained 
by sleep and physical activity behaviors in sensitivity analysis. 
To do so, we examined the association between rest-activity 
rhythm parameters and HbA1c categories with and without ad-
justment for sleep duration (<7, 7–9, >9 hours) and total physical 
activity (continuous). To test for trend, we modeled categorical 
variables as continuous and evaluated this coefficient using the 
Wald test. We also performed subgroup analyses stratified by 

age, gender, race/ethnicity, and BMI, and calculated p-interaction 
between any two factors using the likelihood ratio test com-
paring a model with the cross-product term to one without. 
Because we noted that the distribution of study characteris-
tics differed between those who were included in the analytic 
sample and those who were excluded because they had missing 
or invalid rest-activity and HbA1c data (Supplementary Table 1), 
we performed sensitivity analysis to evaluate whether the ex-
clusion had an impact on the results. Specifically, we calculated 
a propensity score to indicate the likelihood of being excluded 
from the analytic sample for each participant who was aged 
20 years or older and not pregnant, using multiple logistic re-
gression including study characteristics listed in Supplementary 
Table 1. We then additionally adjusted for the propensity score 
in the full model to examine the association between rest-
activity characteristics and HbA1c status. Analyses were carried 
out using SAS 9.4 (Cary, NC).

Results
We presented study characteristics by quintiles of F statistic 
in Table 1. When compared to those in the highest quintile re-
flecting the more robust overall rhythmicity, those in lower 
quintiles were more likely to be non-Hispanic black, have a 

Table 1. Selected study characteristics a by quintiles of F statistic b in adults in NHANES 2011–2014. 

F Statistic

Q1 Q2 Q3 Q4 Q5 p-value

Age, %      .01
 20–39 30.9 29.8 32.5 30.3 27.3  
 40–59 35.4 36.0 39.5 39.1 43.1  
 60+ 33.7 34.2 28.0 30.5 29.6  
Women, % 46.0 51.9 50.4 55.1 57.2 <.0001
Race/ethnicity, %      <.0001
 Non-Hispanic white 61.6 64.4 66.7 70.6 74.7  
 Non-Hispanic black 17.6 13.8 10.9 9.0 4.3  
 Hispanic 13.1 12.8 14.2 14.4 15.5  
 Other 7.7 9.0 8.1 5.9 5.5  
Less than high school, % 16.9 16.2 14.8 15.2 16.6 <.0001
Household income<$20k, % 21.3 19.6 13.3 11.7 10.5 <.0001
Married, % 41.8 50.2 57.7 60.2 67.7 <.0001
Current smoker, % 29.8 21.5 18.9 13.1 13.6 <.0001
Alcohol, 1+ drink/day, % 13.4 13.6 15.2 16.2 14.9 0.01
Sleep duration, %      <.0001
 <7 hours 45.0 42.9 46.2 45.9 45.5  
 7–9 hours 23.1 30.4 33.6 36.5 41.4  
 >9 hours 31.9 26.7 20.1 17.6 13.1  
Total activity count, dmedian (IQR) 8801  

(6833, 11350)
9956  
(8198, 11833)

10922  
(9346, 12583)

11348  
(9805, 13271)

12918  
(11074, 14625)

<.0001

Obese, e % 45.6 44.1 40.3 35.6 29.4 <.0001
Total energy intake, kcal, median (IQR)
 Men 2246  

(1737, 2868)
2224  
(1693, 2684)

2517  
(1977, 3131)

2220  
(1738, 2731)

2454  
(1958, 2968)

.01

 Women 1716  
(1321, 2157)

1686  
(1341, 2094)

1709  
(1411, 2128)

1783  
(1424, 2203)

1759  
(1448, 2121)

.69

aAll percentages, median and IQR are weighted using sample weights.
bF statistic is a model fitness measure and higher values indicate stronger overall rhythmicity.
cp-values were derived from Chi-square test for categorical variables, analysis of variance for total energy intake, and Kruskal-Wallis test for total activity count.
dmeasured as the total daily sum of the Monitor-Independent Movement Summary triaxial value.
eDefined as body mass index ≥30.

Abbreviations: NHANES, National Health and Nutrition Examination Survey; IQR, interquartile range.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab291#supplementary-data
http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab291#supplementary-data
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household income less than $20 k, report current smoking, long 
sleep duration (>9 hours), were less physically active, and were 
less likely to be women or married. The lower quintiles also had 
a higher prevalence of overweight and obesity.

In the main analytic sample, 3,448 (56.5%, weighted) had 
normal HbA1c, while 514 (8.3%), 1,749 (21.6%) and 1,264 (13.6%) 
were categorized as low HbA1c, prediabetic, and diabetic, re-
spectively. Average rest-activity patterns according to different 
levels of HbA1c are presented in Supplementary Figure 1. In 
general, the average day-time activity level appeared lower 
for those with diabetes. We found that a weaker overall rhyth-
micity as indicated by a lower F statistic was associated with 
higher odds of being diabetic (Table 2) and the results remained 
after adjusting for sociodemographic and lifestyle factors and 
BMI (Model 2). Specifically, when compared to those in the 
highest quintile of F statistic, participants in the lowest quin-
tile were 2.37 times more likely to be diabetic (OR Q5 vs. Q1 (95% CI), 

2.37 (1.72, 3.26), p-trend, <.0001). In addition, other rest-activity 
profiles characteristic of weakened and/or disrupted rhythmi-
city (i.e., lower amplitude, mesor, and amplitude:mesor ratio, 
and later acrophase) were also positively associated with being 
diabetic (OR Q5 vs. Q1 (95% CI), p-trend: 2.44 (1.60, 3.72), < .0001; 
1.39 (1.01, 1.91), .02; 2.09 (1.46, 2.99), .0001 for amplitude, mesor, 
and amplitude:mesor ratio, respectively). Moreover, when 
compared to those in the earliest quintile of acrophase, parti-
cipants in the latest quintile had a 46% increase in the odds of 
being diabetic (OR Q5 vs. Q1 (95% CI), 1.46 (1.07, 2.00), p-trend, 0.01). 
We also found an association between higher odds of being 
prediabetic and lower F statistic (OR Q5 vs. Q1 (95% CI), 1.30 (1.03, 
1.64), p-trend, .003), but no association with other rest-activity 
parameters. Finally, there was no association between rest-
activity rhythms and low HbA1c status. The results were at-
tenuated after adjusting for individual behavioral components 
of the rest-activity rhythm (sleep duration and total physical 

Table 2. Associations between rest-activity rhythm characteristics and glycated hemoglobin (HbA1c) levels a in adults in NHANES 2011–2014.

Glycated hemoglobin (HbA1c) levels, OR (95% CI)

Low vs. Normal Prediabetic vs. Normal Diabetic vs. Normal

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

F statistic
 Q1 1.39 (0.87, 2.23) 1.45 (0.92, 2.28) 1.76 (1.37, 2.25) 1.30 (1.03, 1.64) 3.85 (2.82, 5.26) 2.37 (1.72, 3.26)
 Q2 1.31 (0.86, 2.01) 1.37 (0.87, 2.14) 1.72 (1.27, 2.34) 1.39 (1.03, 1.87) 3.38 (2.44, 4.69) 2.33 (1.68, 3.23)
 Q3 0.99 (0.68, 1.42) 1.01 (0.71, 1.45) 1.22 (0.95, 1.56) 1.03 (0.80, 1.34) 2.12 (1.48, 3.04) 1.67 (1.16, 2.40)
 Q4 1.54 (1.13, 2.11) 1.53 (1.11, 2.11) 1.48 (1.15, 1.90) 1.41 (1.10, 1.82) 1.68 (1.12, 2.52) 1.50 (0.97, 2.32)
 Q5 (ref) ref ref ref ref ref ref
 p-trend .36 .36 <.0001 .003 <.0001 <.0001
Amplitude
 Q1 1.07 (0.69, 1.66) 1.05 (0.67, 1.64) 1.26 (0.85, 1.87) 1.10 (0.76, 1.59) 3.24 (2.19, 4.79) 2.44 (1.60, 3.72)
 Q2 1.05 (0.71, 1.53) 0.96 (0.66, 1.40) 0.96 (0.76, 1.21) 0.94 (0.74, 1.19) 2.02 (1.24, 3.31) 1.89 (1.16, 3.08)
 Q3 1.13 (0.81, 1.59) 1.04 (0.74, 1.46) 1.01 (0.73, 1.38) 1.08 (0.79, 1.49) 1.57 (1.09, 2.25) 1.77 (1.23, 2.56)
 Q4 0.97 (0.70, 1.36) 0.89 (0.65, 1.23) 0.93 (0.68, 1.27) 1.00 (0.75, 1.33) 1.27 (0.84, 1.92) 1.41 (0.94, 2.11)
 Q5 (ref) ref ref ref ref ref ref
 p-trend .54 .75 .24 .73 <.0001 <.0001
Mesor
 Q1 1.29 (0.85, 1.97) 1.24 (0.83, 1.87) 0.86 (0.65, 1.16) 0.88 (0.64, 1.21) 1.54 (1.16, 2.05) 1.39 (1.01, 1.91)
 Q2 1.26 (0.87, 1.83) 1.25 (0.85, 1.85) 0.81 (0.61, 1.06) 0.89 (0.67, 1.18) 1.14 (0.86, 1.49) 1.26 (0.97, 1.64)
 Q3 1.25 (0.91, 1.73) 1.24 (0.90, 1.71) 0.82 (0.63, 1.07) 0.90 (0.68, 1.18) 0.89 (0.60, 1.32) 1.00 (0.68, 1.46)
 Q4 0.94 (0.67, 1.32) 0.91 (0.66, 1.25) 0.69 (0.53, 0.91) 0.77 (0.59, 1.01) 0.87 (0.61, 1.26) 1.02 (0.71, 1.45)
 Q5 (ref) ref ref ref ref ref ref
 p-trend .07 .09 .69 .76 <.0001 .02
Amplitude:Mesor
 Q1 0.98 (0.69, 1.39) 0.97 (0.69, 1.36) 1.28 (0.92, 1.77) 1.13 (0.82, 1.56) 2.63 (1.89, 3.66) 2.09 (1.46, 2.99)
 Q2 0.75 (0.55, 1.00) 0.68 (0.52, 0.90) 0.93 (0.69, 1.26) 0.98 (0.72, 1.33) 1.35 (0.87, 2.09) 1.44 (0.93, 2.23)
 Q3 1.14 (0.82, 1.59) 1.06 (0.76, 1.48) 0.89 (0.61, 1.28) 0.99 (0.69, 1.42) 1.13 (0.79, 1.61) 1.29 (0.92, 1.81)
 Q4 0.83 (0.54, 1.26) 0.75 (0.50, 1.13) 0.86 (0.64, 1.15) 0.97 (0.71, 1.32) 1.10 (0.77, 1.57) 1.30 (0.90, 1.89)
 Q5 (ref) ref ref ref ref ref ref
 p-trend .66 .50 .20 .57 <.0001 .0001
Acrophase
 Q1 (ref) ref ref ref ref ref ref
 Q2 0.95 (0.61, 1.48) 0.93 (0.60, 1.42) 0.84 (0.66, 1.07) 0.90 (0.70, 1.14) 1.08 (0.69, 1.69) 1.22 (0.82, 1.83)
 Q3 0.98 (0.66, 1.46) 0.96 (0.66, 1.41) 0.96 (0.80, 1.17) 0.98 (0.79, 1.20) 1.06 (0.79, 1.41) 1.16 (0.85, 1.58)
 Q4 0.76 (0.54, 1.06) 0.74 (0.53, 1.04) 1.05 (0.85, 1.30) 1.03 (0.84, 1.27) 1.14 (0.82, 1.59) 1.18 (0.87, 1.60)
 Q5 0.86 (0.56, 1.32) 0.83 (0.55, 1.25) 1.00 (0.81, 1.22) 0.84 (0.66, 1.07) 1.72 (1.25, 2.38) 1.46 (1.07, 2.00)
 p-trend .26 .20 .32 .55 .001 .01

a HbA1c level groups are defined as: low (N = 514), <5%; normal (N = 3448), 5–5.6%; prediabetic (N = 1749), 5.7–6.4%; diabetic (N = 1264), ≥6.5% or self-reported diagnosis 

of diabetes or use of diabetes medication.

Model 1: adjusted for age and gender.

Model 2: adjusted for variables in Model 1 and race/ethnicity, education, household income, marital status, smoking, alcohol consumption, BMI, and total energy 

intake.

Abbreviations: BMI, body mass index; CI, confidence interval; NHANES, National Health and Nutrition Examination Survey; OR, odds ratio.

http://academic.oup.com/sleep/article-lookup/doi/10.1093/sleep/zsab291#supplementary-data
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activity), but the association between the F statistic and dia-
betes remained statistically significant (OR Q5 vs. Q1 (95% CI), 1.69 
(1.15, 2.49), p-trend, .001). Most of the other associations also 
remained qualitatively similar (Supplementary Table 2). The re-
sults were also robust to the adjustment of propensity score 
for exclusion due to missing or invalid rest-activity and HbA1c 
data (Supplementary Table 3).

We performed subgroup analysis for the association be-
tween rest-activity rhythms and the odds of being diabetic. 
The association between a lower overall rhythmicity (F stat-
istic) and higher odds for diabetes was observed across all 
age, gender, race/ethnicity, and BMI groups (Figure 2 and Table 
3). Moreover, the association appeared to be larger for the 
younger age group and people with BMI<25 compared with 
other groups, although the p-value for interaction was only of 
borderline statistical significance. Additional subgroup results 
for amplitude, mesor, amplitude:mesor ratio, and acrophase 
are presented in Supplementary Tables 4–7. Overall, the re-
sults were mostly similar across subgroups, suggesting a re-
lationship between weakened rhythmicity and higher odds of 
diabetes. On the other hand, we also observed that the results 
for amplitude and amplitude:mesor ratio appeared stronger 
among non-Hispanic white and Hispanic participants, but 
weaker among blacks and Asians, while the association be-
tween a later acrophase and diabetes seemed to be more pro-
nounced and had larger effect sizes among Asians. However, 
due to the large number of tests, these subgroup differences 
could be due to chance alone.

We presented the associations between rest-activity 
parameters and fasting glucose, fasting insulin, HOMA-IR, 
and OGTT results in Table 4. The overall patterns of the re-
sults were consistent with that for HbA1c. When compared 
to the highest quintile, the lower quintiles of F statistic were 
associated with impaired glycemic control, as evidenced by 
higher fasting glucose (p-trend, .03), fasting insulin (p-trend, 
.002), HOMA-IR (p-trend, .0003), and OGTT results (p-trend, < 
.0001). The results for amplitude, mesor, and amplitude:mesor 
ratio consistently showed that lower values of these rest-
activity rhythm characteristics were associated with impaired 
glycemic control. In addition, later acrophase was associated 
with fasting insulin and HOMA-IR, but not fasting glucose or 
OGGT results.

Discussion
In a nationally representative sample of noninstitutionalized US 
adults, we found that actigraphy-measured rest-activity param-
eters were associated with markers of glycemic control. The 
overall results suggested that diabetes and impaired glycemic 
control were more prevalent among participants with weaker 
rest-activity rhythms. We found these associations to be robust 
across populations with different sociodemographic character-
istics and BMI status. Notably, weaker rest-activity rhythm was 
associated with diabetes across all racial/ethnic groups.

Our study findings contribute to and expand the current lit-
erature by linking weakened rest-activity rhythms to diabetes 
in a sociodemographically diverse sample of US adults. Earlier 
evidence on disrupted rest-activity rhythms and diabetes in 
human populations came from studies focusing on night shift 
workers, a population that often experience severe circadian 
misalignment and disruptions in rest-activity due to shift work: 
A meta-analysis estimated that shift work was associated with 
a modest increase (OR (95% CI), 1.09 (1.05, 1.12)) in diabetes risk 
[19]. More recently, the ubiquitous use of around-the-clock ac-
tivity tracking, usually with wrist actigraphy, has provided an op-
portunity to characterize more subtle variations in rest-activity 
rhythms in the general population. A  limited but growing 
number of studies have used actigraphy data to investigate 
characteristics of rest-activity rhythms in relation to metabolic 
health outcomes, including diabetes. For example, in a recent 
analysis in the Osteoporotic Fractures in Men (MrOS) study, we 
found that overall rhythmicity as measured by F statistic, as 
well as amplitude and mesor were all inversely associated with 
fasting insulin and HOMA-IR. Moreover, a lower amplitude and 
later acrophase were associated with higher odds of diabetes in 
older men in the MrOS study [10]. Among older men and women 
in the Rush Memory and Aging Project, Sohail et al. reported that 
reduced regularity of rest-activity rhythms was associated with 
higher odds of having metabolic syndrome and diabetes [8]. In 
addition, in multiple studies, weakened rhythmicity param-
eters derived from actigraphy data associated with higher BMI 
[9, 20, 21]. Our findings in the NHANES sample, which showed 
a relationship between rest-activity rhythm characteristics and 
multiple glycemic markers, are largely consistent with earlier 
analyses using convenience study samples. This suggests that 
rest-activity rhythm characteristics measured by actigraphy 
may be a robust behavioral marker for metabolic outcomes such 
as diabetes.

A unique strength of our study lies in its diverse and na-
tionally representative study sample. Homogenous study sam-
ples are a major limitation of many earlier studies. Most of the 
aforementioned studies included older adults who were pre-
dominantly white and of higher-than-average socioeconomic 
positions, and therefore the findings may not be applicable 
to populations with different sociodemographic characteris-
tics. Moreover, to the best of our knowledge, no previous study 
has directly compared the relationships between rest-activity 
parameters and metabolic outcomes across different age, gender, 
racial/ethnic groups in a representative sample of US adults. Our 
study addresses this gap by using recently released NHANES 
data, which enabled us to conduct subgroup analysis according 
to multiple individual characteristics. On one hand, the rela-
tionship between weaker rest-activity rhythms and diabetes 
appeared to be fairly robust across different subgroups. This 
suggests that actigraphy-derived parameters like the F statistic  

Figure 2. Associations between F statistic and diabetes a in adults in NHANES 

2011–2014, according to age, gender, race/ethnicity and BMI. Models were ad-

justed for age, gender and race/ethnicity, education, household income, marital 

status, smoking, alcohol consumption, BMI, and total energy intake. All models 

were adjusted for sample weights. a Diabetes was defined as ≥6.5% or self-

reported diagnosis of diabetes or use of diabetes medication. Abbreviations: 

BMI, body mass index; CI, confidence interval; NHANES, National Health and 

Nutrition Examination Survey; OR, odds ratio.
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for the overall rhythmicity may serve as useful behavioral 
markers in a wide range of populations. On the other hand, we 
also noted group difference in the association between certain 
rest-activity parameters and metabolic health. Rest-activity 
rhythm is partially governed by the internal circadian rhythm 
and it has been well established that circadian rhythms change 
over age and differ between men and women [22]. Differences 
in internal circadian rhythm properties, including phase and 
period, have also been reported between Americans of African 
and European descent [23]. Moreover, rest-activity rhythms are 
also shaped by numerous environmental and individual factors 
such as work schedules, living conditions, social interactions, 
and personal beliefs and choices, all of which may differ across 
sociodemographic groups. Indeed, a recent study reported con-
siderable differences in rest-activity rhythm patterns across dif-
ferent sociodemographic groups [24]. It is important to examine 
how potential differences in rest-activity rhythms in different 
populations may have contributed to health disparities, an area 
that remains largely understudied. Moreover, studies focusing 
on evaluating the strength of the association of rest-activity 
parameters with health outcomes in specific populations will 
also provide valuable information for developing tailored al-
gorithms for health monitoring and risk prediction based on 
actigraphy-based activity measures.

A relationship between weakened and/or disrupted rest-
activity rhythms and diabetes is supported by mechanistic 
studies showing a strong link between circadian rhythms and 
glycemic control. Earlier studies using lab protocols to separate 
the influence of internal circadian rhythms from that of envir-
onmental cues demonstrated a robust circadian pattern in glu-
cose level and tolerance [25, 26]. Moreover, human subjects who 
experienced lab-induced circadian misalignment exhibited in-
creases in glucose and insulin levels consistent with impaired 
glucose regulation and insulin sensitivity [26]. In addition, 
experimental studies in animals and observational studies 
in human populations have reported a relationship between 

obesity and metabolic dysfunction and exposure to light at 
night, a potent disruptor of circadian rhythms [27]. Finally, 
animal studies also showed that circadian gene mutations led 
to impaired beta-cell function and the development of diabetes 
in mice [28]. Taken together, evidence from mechanistic and 
epidemiological studies suggests that people with more severe 
circadian disruptions and weakened circadian rhythms may be 
more likely to have impaired glucose metabolism. We expand 
upon these findings with a more representative sample, and 
showed consistent associations between rest-activity rhythms 
and metabolic health across subpopulations with varied 
sociodemographic characteristics. However, it is noteworthy 
that our study did not directly measure circadian rhythms, 
and as discussed above, rest-activity patterns are shaped by 
numerous internal and external factors. To further clarify the 
relationship among circadian function, rest-activity behavioral 
patterns, and metabolic health, future studies should investi-
gate whether interventions to improve circadian function and 
rest-activity rhythmicity lead to metabolic benefits in human 
populations, particularly among disadvantaged populations 
who are at elevated risks for metabolic disorders and face more 
challenges in establishing and maintaining a healthy profile of 
rest-activity rhythms.

Besides the large and diverse sample, our study has sev-
eral additional strengths. We defined four outcome categories 
using HbA1c, including prediabetic and low HbA1c status, be-
cause previous studies showed that these conditions may also 
be associated with substantial increases in mortality [16, 29]. We 
found that the association with rest-activity rhythms was only 
observed for diabetes, not prediabetic or low HbA1c status. This 
finding suggests that the relationship between circadian disrup-
tion and metabolic dysfunction may not be linear, but become 
stronger with more extreme impairment in glycemic control. 
In addition, we included multiple glycemic markers, including 
fasting glucose, insulin, and HOMA-IR, as well as OGTT results. 
The consistency in the results suggest that the associations 

Table 3. Associations (adjusted OR (95% CI)) between F statistic and diabetes a in adults in NHANES 2011–2014, stratified by age, gender, race/
ethnicity and BMI.

F Statistic

 Q1 Q2 Q3 Q4 Q5 p-trend p-interaction

Age, years       .08
 20–39 6.51 (2.40, 17.69) 4.47 (1.38, 14.53) 2.58 (0.79, 8.49) 2.87 (1.07, 7.65) ref <.0001  
 40–59 2.71 (1.69, 4.35) 3.12 (2.08, 4.69) 2.50 (1.46, 4.26) 1.55 (0.86, 2.82) ref <.0001  
 60+ 2.51 (1.65, 3.81) 2.02 (1.35, 3.04) 1.52 (0.95, 2.45) 1.28 (0.82, 2.00) ref <.0001  
Gender       .54
 Men 2.46 (1.52, 3.97) 1.99 (1.27, 3.12) 1.51 (0.92, 2.48) 1.15 (0.61, 2.16) ref <.0001  
 Women 2.63 (1.83, 3.76) 2.56 (1.68, 3.91) 2.14 (1.44, 3.19) 1.62 (0.97, 2.71) ref <.0001  
Race/ethnicity       .50
 NH White 2.39 (1.49, 3.83) 2.45 (1.63, 3.69) 1.90 (1.23, 2.93) 1.49 (0.85, 2.62) ref <.0001  
 NH Black 2.40 (1.32, 4.36) 1.89 (1.14, 3.12) 1.59 (0.91, 2.78) 1.18 (0.56, 2.48) ref <.0001  
 Hispanic 2.34 (1.40, 3.92) 1.68 (0.97, 2.90) 1.39 (0.73, 2.65) 1.12 (0.63, 2.02) ref <.0001  
 Asian 2.84 (1.20, 6.73) 2.82 (1.28, 6.25) 2.32 (1.04, 5.19) 1.36 (0.59, 3.10) ref .002  
BMI, kg/m2       .05
 <25 3.20 (1.52, 6.73) 2.78 (1.60, 4.83) 3.67 (1.83, 7.36) 1.82 (0.93, 3.56) ref .0002  
 25–29.9 1.75 (1.04, 2.96) 1.89 (1.20, 2.99) 1.81 (1.10, 2.97) 1.58 (0.90, 2.76) ref .02  
 30+ 2.00 (1.40, 2.87) 1.79 (1.23, 2.61) 1.25 (0.74, 2.09) 1.00 (0.57, 1.75) ref <.0001  

a Diabetes was defined as ≥6.5% or self-reported diagnosis of diabetes or use of diabetes medication.

Models are adjusted for age, gender, race/ethnicity, education, household income, marital status, smoking, alcohol consumption, BMI, and total energy intake. 

Stratification variables were not included in their respective subgroup analyses. All models are adjusted for sample weights.

Abbreviations: BMI, body mass index; CI, confidence interval; NH, non-Hispanic; NHANES, National Health and Nutrition Examination Survey; OR, odds ratio.
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between rest-activity rhythms and glycemic function is robust 
to various metabolic biomarkers.

Despite the strengths, our study also has a few limitations. 
First, this is a cross-sectional study and therefore we are not 
able to establish the temporal relationship between rest-activity 
rhythms and diabetes. Second, although the rest-activity rhythm 
is closely regulated by the circadian clock, it is also influenced by 
other factors and only a proxy measure of the circadian rhythm. 
We do not have direct measures of the internal circadian clock, 
such as melatonin or core body temperature, and thus cannot 
directly assess the relationship between circadian disruption and 
glycemic markers. Moreover, we also did not have measures of 
environmental factors that can impact circadian rhythms, such 
as light exposure and shift work, and could not investigate the 
role of these factors in shaping rest-activity patterns and their as-
sociations with metabolic health. Third, glucose and insulin levels 
fluctuate within the 24-hour day. Although they were measured 
from morning fasting blood, there could still be considerable vari-
ation in the time when blood samples were collected. This would 

increase variation in outcome measures, which may lead to less 
precise effect estimates. Fourth, rest-activity parameters were de-
rived from the extended cosine model, which assumes a cosine-
like pattern for the diurnal rest-activity rhythms. This model 
may not yield accurate measures of rest-activity profiles among 
people whose activity rhythms deviate from the presumed wave-
form, such as shift workers or those who are severely ill. Fifth, the 
number of people with diabetes were small in certain subgroups, 
such as the 20–39 age group, which led to unstable estimates with 
wide confidence intervals. Finally, we observed considerable im-
balance in study characteristics between those with and without 
valid rest-activity and HbA1c data. Although our sensitivity ana-
lysis suggested that exclusion due to missingness in key ex-
posure and outcome variables did not have a major impact on our 
results, such exclusion may have affected the representativeness 
of our analytic sample and thus the generalizability of our results.

In summary, our results in NHANES 2011–2014 support an asso-
ciation between weakened rest-activity rhythms and impaired gly-
cemic control. Moreover, our study makes a unique contribution by 

Table 4. Adjusted associations a between rest-activity characteristics and markers of glucose metabolism and insulin resistance in adults who 
did not take medications to lower blood sugar in NHANES 2011–2014.

Adjusted geometric mean (95% CI) b

Fasting glucose (mg/dL) Fasting insulin (uU/mL) HOMA-IR OGTT (mg/dL)

N 2794 2697 2697 2602
F statistic
 Q1 100.68 (97.68, 103.76) 10.95 (9.49, 12.62) 2.71 (2.31, 3.19) 118.59 (111.13, 126.57)
 Q2 101.16 (98.42, 103.98) 11.10 (9.98, 12.34) 2.77 (2.46, 3.12) 110.95 (105.03, 117.21)
 Q3 100.09 (97.25, 103.01) 10.12 (9.19, 11.14) 2.50 (2.22, 2.81) 109.11 (102.98, 115.63)
 Q4 99.30 (96.66, 102.00) 9.57 (8.58, 10.68) 2.35 (2.07, 2.65) 109.13 (101.95, 116.8)
 Q5 (ref) 98.04 (95.77, 100.38) 8.61 (7.67, 9.66) 2.09 (1.83, 2.39) 103.49 (97.58, 109.76)
 p-trend .03 .0002 .0003 <.0001
Amplitude
 Q1 101.40 (98.59, 104.30) 11.13 (9.87, 12.68) 2.79 (2.43, 3.21) 117.92 (111.05, 123.97)
 Q2 102.54 (99.55, 105.61) 11.59 (10.49, 12.94) 2.95 (2.61, 3.34) 116.75 (112.17, 122.73)
 Q3 98.50 (96.17, 100.89) 9.39 (8.41, 10.49) 2.28 (2.02, 2.58) 108.85 (102.51, 116.75)
 Q4 97.86 (95.59, 100.16) 9.30 (8.33, 10.49) 2.26 (2.00, 2.57) 105.64 (99.48, 111.05)
 Q5 (ref) 99.30 (96.69, 101.98) 8.94 (7.92, 10.07) 2.19 (1.91, 2.50) 102.51 (96.54, 107.77)
 p-trend .002 <.0001 <.0001 <.0001
Mesor
 Q1 101.49 (98.49, 105.64) 11.52 (10.23, 12.96) 2.89 (2.52, 3.31) 117.92 (111.05, 125.21)
 Q2 99.48 (97.51, 101.49) 10.61 (9.39, 11.99) 2.61 (2.28, 2.98) 108.85 (102.51, 115.58)
 Q3 99.48 (96.54, 101.49) 9.69 (8.60, 10.92) 2.38 (2.08, 2.72) 106.70 (100.48, 112.17)
 Q4 99.48 (96.54, 101.49) 8.90 (7.97, 9.95) 2.19 (1.92, 2.49) 109.95 (104.58, 115.58)
 Q5 (ref) 98.49 (95.58, 101.49) 9.04 (7.83, 10.45) 2.21 (1.88, 2.60) 105.64 (97.51, 113.30)
 p-trend .18 <.0001 <.0001 0.003
Amplitude:mesor
 Q1 101.49 (98.49, 104.58) 10.59 (9.30, 12.06) 2.66 (2.29, 3.10) 115.32 (108.14, 122.97)
 Q2 100.48 (98.49, 103.54) 10.18 (8.94, 11.47) 2.51 (2.20, 2.89) 113.22 (106.74, 120.09)
 Q3 98.49 (95.58, 101.49) 10.18 (9.21, 11.36) 2.48 (2.20, 2.83) 108.40 (101.74, 115.49)
 Q4 98.49 (96.54, 101.49) 9.30 (8.33, 10.38) 2.27 (1.99, 2.59) 109.46 (103.71, 115.54)
 Q5 (ref) 99.48 (96.54, 102.51) 9.58 (8.50, 10.80) 2.34 (2.05, 2.66) 103.48 (97.02, 110.38)
 p-trend .04 .02 .01 <.0001
Acrophase
 Q1 (ref) 98.52 (95.78, 101.33) 9.04 (8.61, 9.49) 2.25 (1.97, 2.58) 110.12 (103.76, 116.87)
 Q2 99.70 (97.30, 102.17) 9.60 (8.86, 10.41) 2.35 (2.06, 2.69) 107.25 (101.67, 113.15)
 Q3 100.31 (97.46, 103.24) 10.21 (9.55, 10.93) 2.52 (2.19, 2.90) 111.87 (105.49, 118.64)
 Q4 99.65 (97.41, 101.95) 10.28 (9.89, 10.69) 2.46 (2.18, 2.77) 107.57 (101.36, 114.16)
 Q5 100.34 (97.40, 103.38) 10.51 (10.02, 11.04) 2.65 (2.32, 3.04) 109.77 (103.11, 116.86)
 p-trend .12 .0002 .001 .94

a Models are adjusted for age, gender, race/ethnicity, education, household income, marital status, smoking, alcohol consumption, BMI, and total energy intake.
b Raw marker levels were log-transformed and adjusted least squares means were back-transformed.

Abbreviations: BMI, body mass index; CI, confidence interval; HOMA-IR, homeostatic model assessment of insulin resistance; NHANES, National Health and Nutrition 

Examination Survey; OGTT, oral glucose tolerance test.
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showing that this association was observed widely among different 
age, gender, and racial/ethnic groups. These findings invite further 
investigation of the role of rest-activity patterns in metabolic health, 
particularly in populations with diverse sociodemographic charac-
teristics, lifestyle factors, and health status. Evidence obtained from 
such studies may eventually help develop algorithms using behav-
ioral patterns and biomarkers derived from wearable devices to im-
prove risk prediction and disease management.
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