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ABSTRACT
Necessity for finding improved intervention in many legacy thera-
peutic areas are of high priority. This has the potential to decrease
the expense of medical care and poor outcomes for many patients.
Typically, clinical efficacy is theprimary evaluating criteria tomeasure
any beneficial effect of a treatment. Albeit, there could be situa-
tions when several other factors (e.g. side-effects, cost-burden, less
debilitating, less intensive, etc.) which can permit some slightly less
efficacious treatment options favorable to a subgroup of patients.
This often leads to non-inferiority (NI) testing. NI trials may or may
not include a placebo arm due to ethical reasons. However, when
included, the resulting three-arm trial is more prudent since it
requires less stringent assumptions compared to a two-armplacebo-
free trial. In this article, we consider both Frequentist and Bayesian
procedures for testing NI in the three-arm trial with binary outcomes
when the functional of interest is risk difference. An improved Fre-
quentist approach is proposed first, which is then followed by a
Bayesian counterpart. Bayesian methods have a natural advantage
in many active-control trials, including NI trial, as it can seamlessly
integrate substantial prior information. In addition, we discuss sam-
ple size calculation and draw an interesting connection between the
two paradigms.
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1. Introduction

Well-designed Randomized Control Trials (RCTs) are accepted standards for measuring
an intervention’s impact across many diverse disease areas and thus are considered gold-
standard for establishing a new treatment regime. In the presence of clinically proven
established treatments/therapies, it is not ethical justified to allocate patients in the placebo
arm. Thus, this gives rise to trials that compare the experimental drug with one or more
active comparators. These trials are considered as standard in Comparative Effectiveness
Research (CER), which is designed for providing evidence on the effectiveness, benefits,
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and risks of a broad range of interventions to the patients and clinicians. Although mul-
tiple treatment comparisons are possible [27], for the sake of simplicity, here we consider
one experimental arm compared with one active reference. However, in certain situations
superiority of the new drug might be in question. It may be reasonable to test if the exper-
imental treatment is not worse than the reference by more than a pre-specified margin.
These type of active-controlled trials known as the non-inferiority (NI) trials are intended
to show if the new drug retains a substantial portion of the active control effect, thus mak-
ing it more preferable to some patients due to its other desirable properties [8]. The choice
of a pre-specified margin, also termed as NI margin (δ), is a critical issue in these trials.
Although regulatory agencies provided broad guidelines on the choice of δ [9,10,22,23], it
must be examined based on the past performance of the active control and is usually desir-
able to choose a margin that reflects the clinically acceptable largest loss of effect. Hence,
the NI trials need to be administered with extreme caution [10,21,32].

In the last few decades, two-arm NI trials (experimental vs. reference) have been devel-
oped predominantly under the Frequentist paradigm. However, two-arm trials suffer some
major challenges from the design, analysis, and possible interpretations point of view. One
of the major concerns is that the two-arm NI trial may not support assay sensitivity (AS)
directly and requires external validation [8]. This is because without a placebo arm no
direct proof can be established about the efficacy of the reference drug over placebo. To
compensate this, [9] recommends the inclusion of a placebo arm when ethically possible,
resulting in three-arm ‘gold-standard’ design, that has greater confidence concerning AS
and lesser concern related to external validity. For three-arm trials, [25,31] proposed the
choice of NI margin as the pre-specified fraction of the unknown effect size of reference
drug, instead of directly specifying a fixed margin. Later, this approach was extended first
by [34] and then by [24] for binary end-point by considering difference of proportions (or
risk difference). Pigeot et al. [31] suggested that the superiority of the reference drug over
placebo should be established first to satisfy the AS assumption before carrying out such
NI testing. An alternative to this is the fixed margin approach of [18] which requires joint
testing of NI and AS albeit resulting in a rather conservative intersection-union type test
[17]. In this article, we proposed an improved Frequentist test based on conditional prin-
ciple following Pigeot’s fraction margin approach for a binary outcome. Note, for binary
end-points, risk difference is not the only function of interest. However, the nature of NI
hypothesis, margin construction and the resulting methodological formulation for other
types of functional will diverge significantly as shown in our recently published paper (see
[4,5]). For related developments on those directions, please see the discussion section.

Clinical trials, particularly NI trials, have used Bayesian approaches since long past
which can be found in the references, for example, see [11,13,16,33] among others. Gamalo
et al. [12] considered Bayesian approach for the analysis of two-arm NI trials for binary
outcomes. Ghosh et al. [16] also put forward a novel Bayesian analysis for a three-arm NI
trial following Pigeot’s fraction margin approach. The existence of prior information in
the current NI trial is advantageous. The Bayesian paradigm delivers a natural route to
obtain the prior information and help to reduce the sample size as well as cost by com-
bining that information with the current trial. In this paper, we also propose an exact
Bayesian procedure that is based on the conditional Frequentist principle to test NI. We
also propose an approximation-based Bayesian approach that gives a closed-form solution
of the Bayesian posterior probability, thus avoiding computational complexity of an exact
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Bayesian approach with a slight loss of accuracy. All approaches are evaluated on simulated
and one published dataset from mental health trial.

The rest of the article is organized as follows. In Section 2, we give the NI hypothesis and
the existing and our proposed Frequentist method for testing it. In Section 3, we propose
a novel Bayesian methodology to design and perform the analysis of a three-arm NI trial
for binary outcomes. Along with conjugate priors, we consider two other prior scenarios
incorporating the condition of AS. Section 4 presents an interesting connection between
Frequentist and Bayesian posterior probabilities in the three-arm trial. In Section 5, we
present the algorithm and results for simulation studies as well as sample size table. Finally,
in Section 6, we apply our proposed methodology to a published clinical trial dataset. We
conclude the article with discussions in Section 7.

2. Three-arm Frequentist NI testing

Following [4,5,24], we construct the three arm non-inferiority trial for the primary binary
endpoints under the experimental (E), reference (R), and placebo (P) arms. Let Xl, l ∈
{E,R,P} denote the number of successes with nl number of subjects in lth arm. The random
variable Xl ∼ Bin(nl,πl) with the corresponding probability πl(∈ [0, 1]). Without loss of
generality, we assume the greater treatment benefits for the higher response probabilities in
this scenario. In general, for two armNI trial, the risk difference problemwith pre-specified
NImargin, δ < 0, is stated asH0 : πE − πR ≤ δ vs.H1 : πE − πR > δ. Pigeot et al. [31] and
Kieser and Friede [24] proposed the mathematical expression for δ as f (πR − πP), where f
is a negative fraction assuming the AS condition, that is,πR > πP. As discussed in [4,5], we
can build the three armNI hypothesis using δ and hence f asH0 : (πE − πP)/(πR − πP) ≤
θ vs. H1 : (πE − πP)/(πR − πP) > θ , where θ = 1 + f is a pre-specified fraction of the
effect of the reference drug relative to the placebo. In this three-arm NI trial, the efficacy
of the test drug when compared to placebo attains more than θ × 100% of the efficacy of
the reference drug as compared to placebo. Although the choice of θ (∈ [0, 1]) as shown in
[31] depends on the clinical approval, in this case θ is limited in [0.5, 1) for the NI testing
of the new drug to retain at least 50% effect of the active control. Hence, the NI hypothesis
of the risk difference can be written as

H0 : πE − θπR − (1 − θ)πP ≤ 0 vs. H1 : πE − θπR − (1 − θ)πP > 0. (1)

For thisNI test, the rejection of null hypothesis satisfies that a pre-defined proportion of the
unknown effect of the reference over placebo is maintained by the experimental treatment.

2.1. Existingmarginal approach

Kieser and Friede [24] developed statistical test procedures under Frequentist paradigm for
the NI testing under three-arm trial for binary outcomes. They constructed the test statis-
tic for testing the NI hypothesis in (1) by considering the maximum likelihood estimate
(MLE) of the linear contrastπE − θπR − (1 − θ)πP, given byT = π̂E − θπ̂R − (1 − θ)π̂P,
where π̂l = Xl/nl is the MLE of πl, l ∈ {E,R,P}. Different tests can be obtained by consid-
ering the maximum likelihood (ML) or restrictedML (RML) estimate of the variance of T,
given by Var(T) = πE(1 − πE)/nE + θ2πR(1 − πR)/nR + (1 − θ)2πP(1 − πP)/nP. RML
estimates can be obtained subject to the constraint πE − θπR − (1 − θ)πP = 0. Under
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asymptotic normality, the standardized statistic T/
√
Var(T)

H0∼ N(0, 1), since πE − θπR −
(1 − θ)πP = 0. An asymptotic level α Wald-type test is obtained by rejecting the null
hypothesis if T exceeds 100(1 − α)%. In this case, the power of T can be written as
1 − �(z1−ασ null

T /σ alt
T − μalt

T /σ alt
T ), where σ null

T denotes the standard deviation under H0
and μalt

T , σ alt
T represent the mean and standard deviation, respectively, under H1.

2.2. A novel Frequentist proposal

It is important to note that a pretest for the superiority of the active control over the placebo
should be performed before the NI is investigated (see [31]). NI testing thus then only car-
ried out as a second step provided the AS condition (πR > πP) holds. However, it is often
agreed [16,24,25,31] that if active control retains majority of the effect over placebo then
in practice the statistical power to perform joint testing (NI and AS) will be very similar
to that of testing NI only [35]. However, this may not always be true and traditionally the
pre-tested AS condition has not been used further in NI testing in the marginal Frequen-
tist effect-retention approach, except for margin construction. We introduce here a more
powerful conditional approach for risk difference. Since NI and AS hypothesis are related,
this leads to significant power gain in certain situations. Notably, [4,5] proposed a similar
approach for risk ratio and odds ration albeit without any theoretical guarantee for power
gain. Amajor point of this paper is to show that both theoretically as well as via simulation.
For finding theMLE, we truncate the parameter space of (πE,πR,πP) such that it belongs to
{πE,πR,πP : πE ∈ [0, 1],πR ∈ [0, 1],πP ∈ [0, 1],πR > πP}. One may develop a likelihood
ratio test based on the statistic

T = π̂E − θπ̂R − (1 − θ)π̂P (2)

the AS condition π̂R > π̂P under null hypothesis via Wald-type test. Following [29], one
can improve the convergence via the RML which requires solving under H0

(π̂E,RML, π̂R,RML, π̂P,RML) = argmax
πE−θπR−(1−θ)πP≤0,πR>πP

log l(πE,πR,πP), (3)

where log l(πE,πR,πP) is the log-likelihood of (πE,πR,πP). For the odds and risk ratios,
[4,5] discussed a strategy using unrestricted MLE to reduce the computational difficulty.
This strategy is well established in many practical applications as mentioned in [20,26].
Using similar concept, that is, using TML = π̂E,ML − θπ̂R,ML − (1 − θ)π̂P,ML, we can solve
the optimization problem numerically for the risk difference. However, for our case, we
consider the part restricted by the AS condition, π̂R,ML > π̂P,ML and hence

TRML � TML ∗ I[π̂R,ML > π̂P,ML], (4)

where ‘� ’ represents the approximation. The distribution of the product of ran-
dom variables can be formulated as f (TRML) � f (TML | π̂R,ML > π̂P,ML) × Pr[π̂R,ML >

π̂P,ML] . Hence, the test statistic can be written as (TML | π̂R > π̂P) ∝ (π̂E,ML − θπ̂R,ML −
(1 − θ)π̂P,ML | π̂R,ML > π̂P,ML) . From now onwards, we denote the ML estimate π̂l,ML
by π̂l, l ∈ {E,R,P}. Now one can reformulate the test statistic for three-arm NI
testing as W = (π̂E − θπ̂R − (1 − θ)π̂P) | π̂R > π̂P = ((π̂E − π̂P) − θ(π̂R − π̂P)) | π̂R >

π̂P ≡ (U − θV) |V > 0 . The exact small sample distribution ofW is non-normal under
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the current-setup, however, [1] proved thatW has Normal distribution under continuous
setting.Hence, for the binary case under asymptotic normality ofW, we can similarly prove
that (W − μw)/σw ∼ AN(0, 1), whereμw and σ 2

w are themean and variance ofW, respec-
tively. Chowdhury et al. [4,5] proved a similar lemma for calculating mean and variance
under the conditional approach for risk and odds ratios. In this paper, we use the same
approach to prove the lemma for risk difference.

Lemma 2.1: Under conditional normal approach, the mean μw and variance σ 2
w of W =

(π̂E − θπ̂R − (1 − θ)π̂P | π̂R > π̂P) are given by

μw = μU + σU
ρ

c
φ(d) − θ

(
μV + σV

1
c
φ(d)

)
,

σ 2
w = σ 2

U

[
1 + ρ2

c
dφ(d) −

(ρ

c
φ(d)

)2]+ θ2σ 2
V

[
1 − φ(d)

c

(
φ(d)
c

− d
)]

− 2θ
[
σUσV

ρ

c
(c + dφ(d)) + σUμV

ρ

c
φ(d) + σVμU

1
c
φ(d) + μUμV

−
(
μU + σU

ρ

c
φ(d)

)(
μV + σV

1
c
φ(d)

)]
,

where μU = πE − πP, μV = πR − πP, σ 2
l = πl(1 − πl)/nl, l ∈ {E,R,P}, σ 2

U = σ 2
E + σ 2

P ,

σ 2
V = σ 2

R + σ 2
P , ρ = Var(π̂P)/

√
Var(U)Var(V) = σ 2

P/

√
σ 2
Uσ 2

V, d = −μV/σV, and c =
1 − �(d).

Proof: See Supplementary Material 1. �

Now, (W − μnull
w )/σ null

w ∼ AN(0, 1) under H0 and (W − μalt
w )/σ alt

w ∼ AN(0, 1) under
H1, where by μnull

w and μalt
w are the means under null and alternative, respectively, and

σ 2null
w and σ 2alt

w are the variances under null and alternative, respectively. Hence, the critical
region of the test under the Frequentist approach is given byW > k∗, where k∗ is obtained
by assuming a test of size α: PH0(W > k∗) = α ⇒ k∗ = μnull

w + z1−ασ null
w , where z1−α is

the 100(1 − α)%percentile point of theN(0, 1) distribution. In general, the value ofα is set
to be 0.025. Based on the Lemma 2.1, it can be noted thatμnull

w ,μalt
w , σ null

w , and σ alt
w depends

onπE,πR, andπP withπnull
E satisfiesπnull

E − θπR − (1 − θ)πP = 0 andπalt
E satisfiesπ alt

E −
θπR − (1 − θ)πP > 0 ⇒ (πalt

E − πP) > θ(πR − πP), where null and alt in the exponent
represent the proportions under null and alternative, respectively. In simulation study, we
followed the approach of [4,5,17] to generate πR for a pre-defined θ , πE, and πP such that
it satisfies null hypothesis of equality as mentioned in Equation (1).

Lemma 2.2: At fixed α and sample size, our proposed conditional test statistic
(W= (π̂E − θπ̂R−(1 − θ)π̂P | π̂R > π̂P)) has equal or more power than the existing
marginal test statistic (T= π̂E − θπ̂R−(1 − θ)π̂P) for testing NI hypothesis in (1).

Proof: See Supplementary Material 2. �

This lemma shows that there is effective power gain in the conditional test or conversely
speaking, to attain a fixed power, the conditional test requires smaller sample size. Though
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for simplicity, the proof is given for equal allocation case, it can be easily extended for
more general unequal allocation case. As observed in the simulation study (Section 5), this
power gain is substantial when the gap between πR and πP is small and negligible when
πR >> πP. This is parallel to what was noted at the beginning of Section 2.2. Note that the
above theoretical claim for power gain via conditional approach for a binary outcome is
restricted to risk difference case only.

2.3. Sample size

Using our proposed approach, we can calculate sample size for the assessment of
NI to attain a desired power for a point alternative πE = πalt

E : PH1(W > k∗) = 1 −
�(k∗ − μalt

w /σ alt
w ). The power function of the test is derived by specifying the fixed

values of πR, πP, and θ and consider different values of πE such that the ratio
(πE − πP)/(πR − πP) ∈ [0.5, 1.4]. As described in [4,5], let r1 and r2 be the allocation ratio
of the sample sizes corresponding to the reference and placebo arms, respectively, relative
to the experimental arm with sample of size nE = n. Hence, the total sample size can be
expressed asN = n(1 + r1 + r2) for the allocation ratio nE : nR : nP = 1 : r1 : r2. To attain
at least 100(1 − β)% power, the sample size ‘n’ (of the arm E) is computed via the equation

PH1(W > k∗) ≥ 1 − β ⇒ �

(
k∗ − μalt

w
σ alt
w

)
≤ β . (5)

In this paper, we set β as 20% and vary π alt
E to get the minimum sample size needed for

80% power.

3. Three-arm Bayesian NI testing

Any NI trial by design is an active control trial, where the availability of historical data
on one or more arm/s is more or less guaranteed. Bayesian design [30] offers an interest-
ing pathway to bring this additional information into play which can lead to substantial
savings. Gamalo et al. [12] developed Bayesian procedures for NI testing in two-arm trial
with binary end-point that allows the incorporation of the historical data on the active
control via the use of informative priors. In this section, we propose an exact Bayesian and
an approximate Bayesian test procedure under fraction margin approach for three-armNI
trial via risk difference.

3.1. Exact Bayesian approach

We consider three different prior choices, such as Conjugate Beta Prior (CBP), Proper
Uniform Prior (PUP), and Dirichlet Prior (DP), where the AS condition is incorporated
explicitly parallel to the proposed Frequentist approach described earlier. Among these
three priors, the sampling procedure is easy to implement for CBP, whereas for DP it is
computationally more intensive than other two procedures. For the PUP, the sampling has
to be done from the restricted domain. Also, the posterior is not in the closed-form for DP.
So in this section, for the illustration purpose, we provide the formal test procedure for NI
testing and address the sample size calculation based on these three different prior settings.
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3.1.1. Conjugate Beta prior (CBP)
Under the Binomial setting, the usual conjugate prior is the Beta distribution. In this three-
arm NI trial, we assume the Beta prior with hyper-parameters αl∈ R+ and βl ∈ R+ with
l ∈ {E,R,P}, for the proportion of successes (πl) as proposed in [4]. For the three-arm NI
trial with AS condition, the joint prior distribution of the proportions of successes can
be defined as f (πE, πR,πP) = I(πR > πP)

∏
l∈{E,R,P} f (πl | αl,βl), where f (πl | αl,βl) is the

density of the standard Beta distribution. The joint posterior distribution of proportions
given the number of successes can be written as f (πE,πR,πP |XE,XR,XP,αl,βl) ∝ I(πR >

πP)
∏

l∈{E,R,P} π
αl+xl−1
l (1 − πl)

βl+nl−xl−1, 0 < πl < 1. Under the conditional approach,
the posterior samples can be generated from the joint posterior distribution satisfying
the AS condition, that is, πR > πP. Now, based on the prior information of the placebo-
controlled trial, we can choose the value of the hyper-parameters. For the informative
prior, the hyper-parameters can be computed by equating the mean or mode (with smaller
variance) with the success probabilities. If we do not have substantial ideas about the
parameters, non-informative prior is a common choice in this situation and in case of Beta
non-informative prior, the choice of hyper-parameters is αl = βl = 1 with l ∈ {E,R,P}.

3.1.2. Proper uniform prior (PUP)
In this case, the prior distributions are assigned to the parameters πE, πR, and πP so
that the restriction 0 < πP < πR < 1 is automatically satisfied. We give joint prior on
(πR,πP) by putting Beta distribution on πP and conditional on πP, a truncated Uniform
distribution on πR, with the support on (πP, 1), so that πR > πP. We also put unre-
stricted prior Beta(αE,βE) on πE. Thus, the joint distribution of (πR,πP) is f (πR,πP) ∝
π

αP−1
P (1 − πP)

βP−2, 0 < πP < πR < 1 and the joint distribution of (πE,πR,πP) is given
by f (πE,πR,πP) ∝ π

αE−1
E (1 − πE)

βE−1παP−1
P (1 − πP)

βP−2, 0 < πE < 1, 0 < πP < πR <

1. The joint posterior distribution, obtained by multiplying the joint likelihood with the
joint prior, is proportional to the product of two full Beta and one truncated Beta dis-
tribution: f (πE,πR,πP |X) ∝ Beta(πE | αE + XE,βE + nE − XE) × Trunc Beta(πR |XR +
1, nR − XR + 1) × Beta(πP | αP + XP, nP + βP − 1 − XP), where Trunc Beta(πR |XR +
1, nR − XR + 1) is a truncated Beta distribution with support on 0 < πP < πR < 1 and
X denotes the relevant data. The MCMC samples from the posterior for πE and πP can be
generated from the updated Beta distributions. Given a draw for πP, the MCMC samples
for πR can be generated from the truncated Beta distribution with the support (πP, 1).

3.1.3. Dirichlet prior (DP)
In this setup, we put a Dirichlet prior on (πR,πP) with support on 0 < πP < πR < 1.
We make the following transformation (πR,πP) ⇒ (u1, u2, u3) such that u1 = πP, u2 =
πR − πP, and u3 = 1 − πR. Assume (u1, u2, u3) ∼ Dirichlet(α1,α2,α3), where 0 < uj <

1 and
∑3

j=1 uj = 1. Then, the joint distribution of (πR,πP) is given by f (πR,πP) ∝
π

α1−1
P (1 − πR)

α3−1(πR − πP)
α2−1, 0 < πP < πR < 1. The joint prior of (πE,πR,πP)

can be obtained as before by multiplying f (πR,πP) by f (πE) which is Beta(αE,βE) and
then the joint posterior of (πE,πR,πP |X) can be obtained by multiplying the joint pos-
terior of (πR,πP) |XR,XP with f (πE |XE) ≡ Beta(αE + XE,βE + nE − XE) and is given
by f (πE,πR,πP |X) ∝ π

α1+XP−1
P (1 − πP)

nP−XPπ
XR
R (1 − πR)

nR+α3−XR−1(πR − πP)
α2−1 ×

π
αE+XE−1
E (1 − πE)

βE+nE−XE , 0 < πP < πR < 1, 0 < πE < 1. This joint posterior is not
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in any standard form and hence Metropolis-Hastings acceptance-rejection sampling is
required with a proposal density to generate MCMC samples from the posterior [14].
A convenient proposal density could be the product of three Beta distributions with
appropriately chosen parameters.

Remark 3.1: Following [16,31], we continue to assume that AS condition, that is, πR >

πP is true. As a result truncated priors are chosen. This assumption explicitly reflects the
fact that active control still retains some of its effect over placebo. In a situation when this
assumption is questionable, it is not advisable to carry out a three-arm NI trial, rather a
superiority trial of new treatment over placebo is more realistic.

Remark 3.2: Among the three proposed priors under Bayesian exact approach, the CBP
gives equal support to the three parameters which are treated independently and is the sim-
plest form the computational point of view. On the contrary, under PUP, the parameters
πR and πP are made to depend on each other and in the absence of any prior information
an uniform distribution is an obvious choice for πR with restricted support to incorporate
AS condition. Under the DP, more flexibility can be achieved by considering the joint dis-
tribution of πR and πP. However, the choice of the Dirichlet parameters is an additional
burden along with its computational complexity. While we have only considered proper
priors, improper priors are also possible albeit when posterior propriety holds, however,
not explored here for the brevity purpose.

3.1.4. Test procedure
We formulated the test procedure to determine the experimental drug compared to the
active control for the risk difference similar to the [4] who proposed the same for risk and
odds ratio type functional. Under the NI setup, the common acceptable range of the effect
size (θ) is [0.5, 1) . Hence, we can claim the NI of the test drug relative to reference drug if
the posterior probability under the alternative hypothesis asmentioned in (1) exceeds some
pre-defined clinically meaningful threshold, say, RNI = p∗ . Borrowing the idea from [16]
(Section 3.3), the Bayesian decision rule to claim NI in this setting is defined as

P
(
H1 :

πE − πP

πR − πP
> θ | πR > πP,X

)
> RNI. (6)

The probability in (6) can be calculated empirically by generatingMMCMC samples from
the posterior distribution of (πl |Xl), l ∈ E,R,P. The estimated probability is given by

P̂
(
H1 :

πE − πP

πR − πP
> θ | πR > πP,X

)
≈ 1

M

M∑
m=1

I
(

πm
E − πm

P
πm
R − πm

P
> θ | πm

R > πm
P

)
,

where πm
E , πm

R , and πm
P denote the mth MCMC sample, m = 1, . . . ,M, drawn from the

posterior distribution, satisfying the AS condition (πm
R > πm

P ) with sufficiently large M.
Note, the slight distinction with [16] previous approach (which is the direct Bayesian ver-
sion of [31]) is that the usage of AS condition in the conditioning statement, which not only
acting as a gate-keeper but also being used to calculate the posterior probability, yielding
greater power (as proved in Lemma 2.2).
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3.1.5. Sample size
The power under this NI setup can be calculated by estimating the probability of the
test drug out of n∗ times. Let π alt

E be the value of πE under H1. Hence, mathematically,
the estimated power is formulated as P̂ower = (#of times P(π alt

E − θπR − (1 − θ)πP >

0 | πR > πP,X) > p∗)/n∗, where the value of πE for known values of πR and πP such that
(πE − πP)/(πR − πP) ∈ [0.5, 1.4]. For NI testing, this ratio depends on the choice of θ

which equals to [0.5, 1) under H0 and exceeds under H1. As discussed in Section 2.3, the
minimum sample size ‘n’ of the arm E and other two arms corresponding to reference and
placebo arms by incorporating different allocation ratios can be obtained by setting the
power to be at least 100(1 − β)%. Due to generating random samples from the posterior
distribution, we can notice sampling fluctuation in the results.

3.2. Approximate Bayesian approach

We next propose an approximate Bayesian approach for NI testing that incorporates the
AS condition and also explicitly derive the formula for sample size determination. Note,
the approximation-based approach gives a closed form of the posterior probability and
hence saves the computation time of the MCMC sample generation from the posterior
distribution.

3.2.1. Test procedure
We consider the Beta prior for the proportions πl in each arm, that is, πl ∼ Beta(αl,βl),
and the responses are assumed to be Binomially distributed, that is, Xl ∼ Bin(nl,πl),
l ∈ {E,R,P}. The Frequentist test statistic for testing the hypothesis in (1) is given by T =
(XE/nE − θXR/nR − (1 − θ)XP/nP). Under asymptotic normality assumption, we have
T | μT ∼ AN(μT , σ 2

T), where μT = πE − θπR − (1 − θ)πP = (πE − πP) − θ(πR − πP)

and σ 2
T = πE(1 − πE)/nE + θ2πR(1 − πR)/nR + (1 − θ)2πP(1 − πP)/nP. Putting Nor-

mal prior on μT , for large sample we can approximate μT ∼ AN(μ∗, σ ∗2), where μ∗ =
E(μ̂T) = μE − θμR − (1 − θ)μP and σ ∗2 = σ 2

E + θ2σ 2
R + (1 − θ)2σ 2

P , where μl and σ 2
l

are the mean and variance of Beta(αl,βl), l ∈ {E,R,P}. Keeping in mind the condition of
AS, that is,πR > πP, we take prior on νT ≡ (μT | πR > πP) . Assuming νT ∼ AN(μ∗

ν , σ ∗2
ν ),

the posterior νT |X ∼ AN(μ̃T σ̃ 2
T , σ̃

2
T), where μ̃T and σ̃ 2

T are given as

μ̃T = T
σ 2
T

+ μ∗
ν

σ ∗2
ν

, σ̃ 2
T = 1

1
σ 2
T

+ 1
σ ∗2

ν

.

We refer to [1] for the detailed derivation of μ∗
ν , σ ∗2

ν .

Lemma 3.1: Under conditional normal approximation, the mean μ∗
ν and variance σ ∗2

ν of
νT = πE − θπR − (1 − θ)πP | πR > πP are given by

μ∗
ν = μηEP + σηEP

ρ

c
φ(a) − θ

(
μηRP + σηRP

1
c
φ(a)

)
,

σ ∗2
ν = σ 2

ηEP

[
1 + ρ2

c
aφ(a) −

(ρ

c
φ(a)

)2]+ θ2σ 2
ηRP

[
1 − φ(a)

c

(
φ(a)
c

− a
)]
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− 2θ
[
σηEPσηRP

ρ

c
(c + aφ(a)) + σηEPμηRP

ρ

c
φ(a) + σηRPμηEP

1
c
φ(a) + μηEPμηRP

−
(
μηEP + σηEP

ρ

c
φ(a)

)(
μηRP + σηRP

1
c
φ(a)

)]
, (7)

whereμηRP = πR − πP, μηEP = πE − πP, σ 2
ηEP = σ 2

E + σ 2
P , σ 2

ηRP = σ 2
R + σ 2

P ,ρ = σ 2
P

σηEPσηRP
,

a = −μηRP
σηRP

, and c = 1 − �(a), μl and σ 2
l being the mean and variances of Beta(αl,βl),

l ∈ {E,R,P}.

Proof: See Supplementary Material 3. �

The Bayesian decision rule for deciding that the experimental treatment is non-inferior
to the active comparator is given by [11]: P(νT ≥ 0 |X) ≥ p∗, where p∗ is a pre-specified
constant usually chosen to be 0.975 or 0.95.

3.2.2. Sample size
The sample size ‘n’ of the arm E under approximate Bayesian approach can be calculated
by satisfying the two conditions: (C1) P[P(νT ≥ 0 |X) ≥ p∗ |H0] ≤ α, (C2) P[P(νT ≥
0 |X) ≥ p∗ |H1] ≥ 1 − β , where the probability in (C1) is the estimated Bayesian version
of average type-I error while that in (C2) is the estimated power of the test, β being the
type-II error. The sample size ‘n’ is determined from (C2) by fixing β to have at least
100(1 − β)% power of the test and simultaneously satisfying (C1). As in the Frequentist
approach, we choose α = 0.025. We note that

P(νT ≥ 0 |X) = P

(
νT − σ̃ 2

Tμ̃T

σ̃T
>

−σ̃ 2
Tμ̃T

σ̃T

)
≥ p∗

⇔ −σ̃Tμ̃T < z1−p∗ ⇔ T > −z1−p∗

(
1
σ 2
T

+ 1
σ ∗2

ν

)1/2

σ 2
T − μ∗

ν

σ ∗2
ν

σ 2
T ,

where z1−p∗ is the 100(1 − p∗)% of the N(0, 1) distribution. Now the power function is
obtained by varying πE such that 0.5 ≤ (πE − πP)/(πR − πP) ≤ 1.4, keeping the other
proportions πR, πP, and θ fixed. Let us denote μT and σ 2

T by μnull
T and σ 2null

T , respectively,
under H0, and similarly underH1 denote the respective quantities by μalt

T and σ 2alt
T . Thus

condition (C1) can be rewritten in terms of T as

PH0

⎡⎣T > −z1−p∗

(
1

σ 2null
T

+ 1
σ ∗2

ν

)1/2

σ 2null
T − μ∗

ν

σ ∗2 σ 2null
T

⎤⎦ ≤ α,

⇔ PH0

⎡⎣T − μnull
T

σ null
T

>

⎛⎝−z1−p∗

(
1

σ 2null
T

+ 1
σ ∗2

)1/2

σ 2null
T − μ∗

ν

σ ∗2
ν

σ 2null
T − μnull

T

⎞⎠ /σ null
T

⎤⎦ ≤ α,

⇔Φ

⎛⎝z1−p∗

(
1

σ 2null
T

+ 1
σ ∗2

ν

)1/2

σ null
T + μ∗

ν

σ ∗2
ν

σ null
T + μnull

T

σ null
T

⎞⎠ ≤ α. (8)
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Similarly, condition (C2) becomes

Φ

⎛⎝z1−p∗

(
1

σ 2alt
T

+ 1
σ ∗2

ν

)1/2

σ alt
T + μ∗

ν

σ ∗2
ν

σ alt
T + μalt

T

σ alt
T

⎞⎠ ≥ 1 − β . (9)

Now ‘n’ can be solved from (9) by setting β = 20% and simultaneously satisfying (8). We
vary π alt

E (which is included in μalt
T ) to get minimum sample size satisfying at least 80%

power for each π alt
E . The sample size for the arms R and P can be obtained considering the

allocation ratios r1 and r2 as discussed earlier.

4. Bayesian–Frequentist connection in three-arm trial

In this section, we connect the Bayesian and Frequentist approaches by transforming the
Bayesian posterior probability of the tested hypothesis into the Frequentist probability of
Bernoulli trial after adjusting the number of events and population sizes. This section
is motivated from the work of [36] who showed similar connection for two-arm trial
with integer-valued hyper-parameters, by linking Frequentist p-values and Bayesian con-
ditional measure of evidence [2,7]. This work also offers additional insight about effective
sample size gain in Bayesian set up under conjugate prior specification. We consider the
CBP setting; that is, Xl | πl ∼ Bin(nl,πl), prior πl ∼ Beta(αl,βl), and the posterior dis-
tribution πl |Xl ∼ Beta(αl + Xl, nl − Xl + βl), l ∈ {E,R,P}, with the restriction that the
hyper-parameters are integers. The Bayesian decision rule to declare NI of the test drug
over the reference given the AS condition (πR > πP) holds, as given in Section 3.1.4, can
be written as

P[πE − θπR − (1 − θ)πP > 0 | πR > πP, X] > p∗. (10)

Define, ηRP = πR − πP. Now, since the probability in (10) does not have a closed form, it
is approximated by generating posterior samplers as in the following:

P(πE − θπR − (1 − θ)πP > 0 | πR > πP,X) = P((πE − πP) > θ(πR − πP) | πR > πP,X)

=
∫ ∞

0
P(πE − πP > θc |X)fηRP | ηRP>0(c)dc ≈ 1

M

M∑
i=1

g(θci,X), (11)

where g(θci,X) = P(πE − πP > θci |X), ci being the ith sampled value ofπR − πP | (πR >

πP), and X denotes the relevant section of the data. To obtain P(πE − πP > θc |X), we
refer to [36] and present the following two theorems that link the Frequentist and Bayesian
approaches and can be used to estimate the probability in (11).

Theorem 4.1: Let PF(·) be Fisher’s exact one-sided probability for testing H0 : θ1 ≤ θ2 ver-
sus H1 : θ1 > θ2, θi, i = 1, 2 being the Binomial rates for the two populations involving n1
and n2 individuals, respectively, xi, i = 1, 2 are the total number of events in two respective
populations; (ai, bi), i = 1, 2 are the hyper-parameters of the Beta priors on θi, i = 1, 2, and
let PB(·) be the probability of the same hypothesis under the Bayesian paradigm, then the
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following holds true:

PB(θ1 ≤ θ2 | x1, n1, x2, n2) = PF(θ1 ≤ θ2 | x1 + a1, n1 + a1 + b1 − 1,

x2 + a2 − 1, n2 + a2 + b2 − 1).

Theorem4.2: Let x1 + a1 > 0, x2 + a2 > 0, n1 + b1 − x1 − 1 > 0. Then, for a sufficiently
small δ,

PB(θ1 + δ ≤ θ2 | x1, n1, x2, n2) = PF(θ1 ≤ θ2 | x1 + a1, n1 + a1 + b1 − 1, x2 + a2 − 1,

n2 + a2 + b2 − 1)δ × h(α1,β1,α2,β2, n1, n2,X) + o(δ),

where h(α1,β1,α2,β2, n1, n2,X) = �(a1 + b1 + n1)�(a2 + b2 + n2)/�(a1 + x1)�(b1
+ n1 − x1)�(a2 + x2)�(b2 + n2 − x2) × �(a. + x. − 1)�(b. + n. − x. − 1)/�(a. + b.
+ n. − 2), (·) stands for summation. The probabilities PF(·) and PB(·), θi, and (ai, bi), i = 1,
2 remain same as defined in Theorem 4.1.

We give the following proposition using the identities in the above two theorems, which
can be used to obtain the probability PB(πE − πP > θc |X).

Proposition 4.1: Taking θ1 = πP, θ2 = πE, a1 = αP, a2 = αE, b1 = βP, b2 = βE, x1 = xP,
x2 = xE, n1 = nP, and n2 = nE, for a fixed value of c, g(θc,X) = P(πE − πP > θc |X) can
be estimated using Theorems 4.1 and 4.2 as

PB(πE − πP > θc | xP, nP, xE, nE)
= PB(πP + θc < πE | xP, nP, xE, nE)
= PF(πP + θc < πE | xP + αP, nP + αP + βP − 1, xE

+ αE − 1, nE + αE + βE − 1) − θch(αE,βE,αP,βP, nP, nE,X), (12)

h(·) is as given in Theorem 4.2. This can be repeated for each ci, i = 1, . . . ,M to obtain the
probability in (11).

Another way of linking the Frequentist and Bayesian approach can also be found from
the following identities ([36]) which can be used to approximate the incomplete Beta
integral by sum:

�(n + a + b)
�(a + x)�(n + b − x)

∫ 1

p
ka+x−1(1 − k)b+n−x−1dk =

xF−1∑
i=0

(
nF

i

)
pi(1 − p)n

F−i, (13)

xF = x + a and nF = n + a + b − 1. The identity in (13) can be used to approximate
g(θc |X) = PB(πE − πP > θc |X) in (11) as given in the following proposition.

Proposition 4.2: Taking p = πE, a = αP, b = βP, x = xP, and n = nP, PB(πP <

πE | xP, nP, xE, nE) can be approximated by the sum of gamma functions using the identity
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in (13) as

PB(πP < πE | xP, nP, xE, nE)

= 1 − �(nE + αE + βE)

�(αE + xE)�(nE − xE + βE)

×
αP+xP−1∑

i=0

�(αE + xE + i)�(nE + βE − xE − 1 + nP + αP + βP − i)
�(nE + αE + βE + nP + αP + βP − 1)

.

Thus, for a fixed c, P(πE − πP > θc |X) can be calculated using Theorem 4.1 and 4.2 as
PB(πE − πP > θc |X) = PB(πP < πE | nP, nE,X) − θc × h(αE,βE,αP,βP, nE, nP,X),
where the function h(·) is given in Theorem 4.2.

Proof: See Supplementary Material 4. �

Repeating the calculation of PB(πE − πP > θc |X) for each ci, i = 1, . . . ,M, one can
obtain the posterior probability of NI hypothesis given AS condition from (11). Similar to
[36], the Bayesian test of significance is equivalent to Fisher’s exact test with adjusted value
of the parameters. This is characterized as the effective sample size change in the literature
[3,28].

5. Simulation and sample size calculation

In this section, we enumerate simulation studies to evaluate the performance of the
Bayesian as well as Frequentist procedures presented above. The power curves are gener-
ated for the test considering three different priors under exact Bayesian, under Frequentist
as well as Bayesian approximation procedures. For the exact Bayesian approach, power
curves are compared under the informative and non-informative Beta priors. In the latter
part of the section focuses on sample size calculation for the assessment of NI to attain the
desired power under three approaches: (1) Frequentist normal approximation, (2) Bayesian
normal approximation, and (3) Bayesian exact approach for the three-arm NI testing.

5.1. Steps for simulation

The following simulation steps are used to calculate the type-I error and power for the three
different prior scenarios described earlier: (1) Conjugate Beta-Binomial, (2) PUP, and (3)
DP. For the CBP setting, we assume a non-informative prior for the proportions in each of
the three-arms; that is, πl ∼ Beta(1, 1), l ∈ {E,R,P}. We also consider an informative Beta
prior so that the mode of the Beta distribution equals the parameter and compared the
power between non-informative with the informative prior. For PUP, we consider the non-
informative Beta priors for the experimental arm (πE) and the placebo arm (πP), while πR
is generated from truncated Beta with the support on (πP, 1]. Finally, for the DP, we put
non-informative Beta prior on πE and choose suitable values for the Dirichlet parameters.
We consider a randomized trial with the sample size allocation ratio as nE : nR : nP = 1 :
r1 : r2. In following we give the steps for the simulation as discussed in [4]:
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S1: Specify nE, nR, nP (or, the allocation ratios), πl, l ∈ {E,R,P} with πR > πP, and θ

and vary πE such that πP + 0.5(πR − πP) ≤ πE ≤ πP + 1.4(πR − πP) to generate
X = {XE,XR,XP}.

S2: Generate Xl ∼ Binomial(nl,πl), l ∈ {E,R,P} for given values of the ratio (πE −
πP)/(πR − πP) or πE.

S3: For exact Bayesian approach, M many MCMC samples are generated from the pos-
terior distribution based on the priors as mentioned in Section 3 satisfying the AS
condition πR > πP. For Frequentist and approximate Bayesian cases, we disregard
this step. For the PUP and the DP, the posterior sample values satisfy πR > πP
automatically because of the in-built restriction.

S4: For each posterior samples, compute the ratio (πE − πP)/(πR − πP) and estimate the
posterior probability is as follows:

P
(

πE − πP

πR − πP
> θ | πR > πP,X

)
≈ 1

M

M∑
m=1

I
(

πm
E − πm

P
πm
R − πm

P
> θ | πm

R > πm
P ,X

)
.

S5: Set Count = 0 and increase Count by 1 if the posterior probability > p�, otherwise,
Count = 0.

S6: Repeat the steps S2 to S5 for a large number say n∗ times. Calculate type-I error
and power by using COUNTS divided by n∗. For type-I error calculation πE
should satisfy (πE − πP)/(πR − πP) = θ , and for power calculation, πE should be
(πE − πP)/(πR − πP) > θ .

S7: Based on the estimated power from the step S6, the power curve can be plotted for
sequence of πE satisfying the condition 0.5 ≤ (πE − πP)/(πR − πP) ≤ 1.4.

Note that for Frequentist and Bayesian approximation approaches, S4 and S5 are
replaced by the corresponding decision rule as mentioned in Sections 2.2 and 3.2.1,
respectively.

5.2. Simulation result

For the CBP and PUP, since the posterior is available in closed form, we chose the number
of posterior samplersM to be 1000. For the DP, we have determined the number ofMCMC
samples to be M = 1000 taking every 50th value of 50,000 MCMC samples. We assume
non-informative Beta(1, 1) prior for the three-arms for the CBP setting. Throughout the
simulation study,we consider the following specification of the parameters:πR = 0.7,πP =
0.1, and we set πE such that (πE − πP)/(πR − πP) ∈ [0.5, 1.4]. We consider several values
for nl, l ∈ {E,R,P} such that nE : nR : nP = n : nr1 : nr2, ‘n’ being the common sample size.
Unequal allocation is also possible as will be described in Section 5.3. Another important
criterion is the choice of p∗ whichwe fixed at 0.975.However, as reported in [13] this choice
could give too restrictive type-I error in the Bayesian context. One way to alleviate this
problem is to performBayesian calibration, but is not pursued to reduce the computational
burden.

In Figure 1(a), we present four power curves corresponding to different values of θ : 0.8,
0.7, 0.6, and 0.5 and n = 100 under Bayesian conjugate non-informative Beta(1, 1) prior
for each arm. The three values of θ correspond to the three choices of NI margin which are
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Figure 1. Power curves for different θ under Bayesian conjugate prior on the top left (a) and under Fre-
quentist and Bayesian normal approximation on the top right (b). Comparison of Frequentist, Bayesian
non-informative, and informative power curves at the bottom left (c). Comparison of power curves under
CBP, PUP, and DP at the bottom right (d).

the maximum clinically relevant difference: δ = −0.2(πR − πP), δ = −0.3(πR − πP), and
δ = −0.4(πR − πP), that is, f is chosen as−0.2,−0.3, and−0.4, respectively. This indicates
that in order to be non-inferior, the experimental drug with respect to placebo, must attain
more than 80%, 70%, and 60%, respectively, of the effect of the reference drug as compared
to the placebo. Also, for the proposed test, we can infer that the smaller value of θ is more
powerful than that of higher θ because of the easier declaration of NI of the experimental
drug. In Figure 1(b), we plot the power curves for a balanced study design with a com-
mon sample sizen = 100 for the Frequentist approach and approximate Bayesian approach
under non-informative prior. FromFigure 1(b), we observe that both themethods produce
almost similar power curves. Although the Bayesian power curve is slightly above the Fre-
quentist one, from our experience, this should be the case under a flat prior. In Figure 1(c),
we do a comparison among the power curves obtained under the Frequentist approach,
Bayesian exact approach under non-informative prior, and the same for informative prior
with the common sample size n = 100 in each arm. For the informative prior, we put the
prior in each arm as follows: E: Beta(40, 17.71), R: Beta(40, 17.71), and P: Beta(2, 10) and
for the non-informative prior, we consider the same Beta(1, 1) prior as earlier. We note
that these priors are chosen so that the mode of Beta distribution is equal to the value of
the corresponding proportion parameter. We observe that Bayesian power curve under
non-informative prior is almost similar to that of the Frequentist power curve, while the
Bayesian power curve under informative prior is much higher.
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Figure 2. Comparison of informative vs. non-informative power curves under conjugate Beta prior,
θ = 0.8.

The gain in power by using informative priors is also depicted in Figure 2, where
we give four plots for n = 20, 50, 100, and 200 to compare the informative with non-
informative power curves underCBP setting. For theDP,withDirichlet parameters (1, 1, 1)
and Beta(1, 1) prior for each arm, the test is too conservative for (πE − πP)/(πR − πP) ≤ θ

and yields type-I error close to 0. However, in our experience it is possible to choose the
Dirichlet parameters so that type-I error becomes close to 0.025, thus yielding better power
as compared to CBP and PUP. This is depicted in Figure 1(d). We have chosen the Dirich-
let parameters (α1,α2,α3) as (2, 3, 6) which gives the marginal distribution for πR and πP
as: πP ∼ Beta(2, 9) and πR ∼ Beta(5, 6) . To make the power curves comparable we chose
the same priors under CBP and PUP setup. In all three cases, the arm E is given Beta(1, 1)
prior. From Figure 1(d), we see that the DP outperforms the CBP and PUP. The latter yields
the least power among the three.

5.3. Sample size

We refer to the Sections 2.3, 3.1.5, and 3.2.2, respectively, for the sample size determination
under Frequentist, exact Bayesian, and approximate Bayesian approaches. We determine
the sample sizenl, l ∈ {E,R,P} setting the power at (1 − β)withβ as the pre-specified type-
II error. Let us consider nP = n, nR = r1n, and nE = r2n with r1, r2 > 0. To calculate the
sample size for each arm, we explore three possible allocations for experimental, reference,
and placebo arms, (i) (1:1:1) with r1 = r2 = 1; (ii) (2:2:1) with r1 = 1, r2 = 1/2; and (ii)
(3:2:1) with r1 = 2/3, r2 = 1/3 of the total sample size N. The sample size is calculated
as the smallest ‘n′ which satisfies power ≥ 1 − β . To make a comparison of the existing
Frequentist approach with the proposed conditional one, first we present the sample sizes
under both the approaches in Table 2. For simplicity, we only consider equal allocation to
the three treatment arms.
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Table 1. Sample size for marginal vs. conditional Frequentist approach.

Existing Conditional Existing Conditional
(πR = 0.7,πP = 0.1) (πR = 0.6,πP = 0.55)

θ πE nP N nP N nP N nP N

0.8 0.90 26 78 26 78 30 90 28 84
0.85 38 114 38 114 43 129 41 123
0.80 58 174 58 174 68 204 64 192
0.75 99 297 99 297 120 360 114 342
0.70 203 609 203 609 257 771 248 744
0.65 604 1812 604 1812 875 2625 866 2598

0.7 0.90 17 51 17 51 27 81 26 78
0.85 24 72 24 72 39 117 38 114
0.80 34 102 34 102 61 183 60 180
0.75 51 153 51 153 106 318 104 312
0.70 85 255 85 255 222 666 218 654
0.65 165 495 165 495 703 2109 698 2094

We determine the sample size under the two approaches for θ = {0.8, 0.7} with (πR =
0.7, πP = 0.1) and (πR = 0.6, πP = 0.55). From Table 1, we observe that for πR = 0.7
and πP = 0.1 the sample size under the conditional approach is identical to that calcu-
lated under the marginal approach, while for πR = 0.6 and πP = 0.55, the sample size
under the conditional approach is smaller than the existing one to achieve a power of 80%.
This observation implies for smaller difference between πR and πP, the proposed condi-
tional approach is more powerful, while for larger difference both the approaches behave
similarly. This fact supports the claim proved in Lemma 2.2. In rest of the sample size cal-
culation, only conditional Frequentist approach is considered as it is the more powerful
than the marginal approach. In Table 2, we demonstrate the sample sizes under our pro-
posed approaches with πR = 0.7 and πP = 0.1. Similar to [4,5], we assign α = 0.025 for
Frequentist and the sample sizes satisfying power ≥ 1 − β also allow estimated type-I error
of at most α = 0.025 for Bayesian exact and approximate methods.

In Table 2, total sample sizes for three allocations are calculated based on the sample
size of the placebo arm, nP. For example, the total sample size corresponding to the allo-
cation ratio 1:1:1 is 3nP whereas for 2:2:1 and 3:2:1, the total sample sizes are 5nP and
6nP, respectively. As discussed in [4,5], one might not consider balanced design due to
the ethical reason and the smaller difference between E and R compared to the difference
from placebo. From Table 2, we observe smaller sample size for the unbalanced alloca-
tion (2 : 2 : 1) as compared to the balanced design (1 : 1 : 1). Similarly, we notice a minor
reduction in sample size for the unbalanced case (3 : 2 : 1) as compared to (2 : 2 : 1). A
similar interpretation can be found in Figure 3 where the power curves show three dif-
ferent allocations under Frequentist and exact Bayesian approaches with non-informative
prior with N = 300. We note that the type-I error rate is exactly 0.025 for the Frequen-
tist approach and always maintained below 0.025 for the Bayesian approaches (Table 2). In
cases where α << 0.025, Bayesian calibration can be performed to improve sample size,
but is not explored in the current paper.

6. Application in a real data

To illustrate the real data application, we revisitedmajor depressive disorder data described
in [19]. This dataset has been analyzed in many articles, including [15,18]. Chowdhury
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Table 2. Frequentist and Bayesian sample sizes to achieve a power of 80% for θ = {0.8, 0.7},α = 0.025,
and πE ∈ [0.65, 0.9], keeping πR = 0.7 and πP = 0.1 under three different allocations.

Allocation Frequentist normal Bayesian normal Bayesian exact
E R P θ πE nP N nP N α̂ nP N α̂

1 1 1 0.8 0.90 26 78 20 60 0.014 21 63 0.020
0.85 38 114 32 96 0.017 33 99 0.022
0.80 58 174 52 156 0.019 52 156 0.025
0.75 99 297 93 279 0.021 93 279 0.024
0.70 203 609 196 588 0.022 184 552 0.025

0.7 0.85 24 72 20 60 0.015 21 63 0.025
0.80 34 102 30 90 0.018 29 87 0.021
0.75 51 153 48 144 0.020 47 141 0.023
0.70 85 255 82 246 0.021 80 240 0.024
0.65 165 495 162 486 0.023 158 474 0.023

2 2 1 0.8 0.90 13 65 10 50 0.014 11 55 0.023
0.85 19 95 16 80 0.017 17 85 0.015
0.80 30 150 27 135 0.019 27 135 0.025
0.75 50 250 47 235 0.021 47 235 0.021
0.70 103 515 99 495 0.022 94 470 0.024

0.7 0.85 12 60 10 50 0.015 11 55 0.023
0.80 18 90 16 80 0.018 17 85 0.025
0.75 26 130 25 125 0.020 26 130 0.020
0.70 44 220 42 210 0.021 43 215 0.023
0.65 85 425 83 415 0.023 83 415 0.022

3 2 1 0.8 0.90 11 66 9 54 0.015 9 54 0.022
0.85 16 96 14 84 0.017 14 84 0.023
0.80 24 144 22 132 0.019 22 132 0.025
0.75 40 240 39 234 0.021 37 222 0.024
0.70 81 486 80 480 0.022 79 474 0.024

0.7 0.85 10 60 9 54 0.016 9 54 0.014
0.80 14 84 13 78 0.018 13 78 0.019
0.75 21 126 20 120 0.020 20 120 0.020
0.70 34 204 33 198 0.021 34 204 0.016
0.65 66 396 65 390 0.023 64 384 0.018

Figure 3. Power curves for different allocations, θ = 0.8.

et al. [4,5] used this dataset for binary outcome with risk and odds ratio type functional.
In this analysis, we implement our proposed methods for risk difference purpose. Briefly,
the primary endpoint, HAMD-17 total score, was a continuous scale explaining the change
from baseline at the end of sixth week with three arms: duloxetine (nE = 147), paroxetine
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(nR = 148), and placebo (nP = 145). We consider two binary outcomes, Response and
Remission which are presented in Table 3. As described in [18], Response is defined as the
reduction of more than 50% change of the total score at the end of six week. Remission
is defined as maintaining HAMD-17 score of less than 17 at the same end-point. For the
existing Frequentist approach, the p−value of the test is calculated as

p−value = PH0(T > Tobs) = 1 − �

⎛⎝ Tobs√
σ 2null
T

⎞⎠ , (14)

where T = π̂E − θπ̂R − (1 − θ)π̂P is the Frequentist statistic under the existing approach,
Tobs is the observed value of T, and σ 2null

T is the variance of T under null hypothesis. For
the conditional Frequentist approach, we calculate the p-value as

p−value = PH0(W > Wobs) = 1 − �

(
Wobs − μnull

w
σ null
w

)
, (15)

whereW = (π̂E − θπ̂R − (1 − θ)π̂P) | π̂R > π̂P is the Frequentist test statistic for the con-
ditional testing, Wobs is the observed value of W, and μnull

w and σ 2null
w are the mean and

variance of W under null hypothesis as given in Section 2. For the Bayesian approach,
we start with non-informative priors and then consider informative priors to compare the
results. We use p∗ = 0.975 to determine NI of duloxetine over paroxetine. The Frequentist
p-values are compared with α = 0.025 to deduce the decision. Assuming non-informative
Beta(1, 1) prior for πl, l ∈ {E,R,P} the samplers are generated for the three rates from Beta
distributions as in Step 3 of the simulation.We calculate the posterior probability P(H1 |X)

for the rejection of H1 which is the quantity estimated in Step 4 of the simulation. This is
reported in Table 4 for different values of θ ∈ [0.5, 1), in order to ensure that the test drug
has meaningful clinical effect retention. These posterior probabilities are compared with
p∗ to deduce the Bayesian decision. We also checked that the AS condition holds with
probability close to 1 for both the Response and the Remission outcome. From Table 4, we
observe that the Frequentist p-values decrease while the posterior probabilities increase as
θ decreases implying greater chance of declaring NI for smaller values of θ , which is com-
patible with the simulation results observed in Section 5. Also, we observe that the p-values
under the conditional approach is smaller or at most equal to that under the marginal
approach which is consistent to the Lemma 2.2. However, since none of the p-values is
smaller thanα = 0.025,NI hypothesis cannot be rejected andhence non-inferiority cannot
be claimed for any θ . As evident, the Remission data has lower posterior probabilities than
Response data. Using non-informative Beta prior, the posterior probabilities are less than
the pre-specified cutoff p∗ = 0.975 and hence the NI of E relative to R cannot be claimed.
However, when we choose an informative Beta prior, E: Beta(40, 34) , R: Beta(40, 36) , and
P: Beta(40, 64) , NI is established for θ ≤ 0.55, for Response data. Similarly, taking the pri-
ors as E: Beta(40, 77) , R: Beta(40, 80) , and P: Beta(40, 141) , NI is claimed for θ = 0.5 for
the Remission data. For the PUP on the arm R and with Beta(1, 1) prior on the arms E and
P, we obtain results very similar to the CBP set-up. However, choosing informative priors
for the arms E and P as in the CBP one can claim NI for θ = 0.5. Finally considering DP,
with parameters (1, 1, 1) along with non-informative Beta prior for E, the posterior proba-
bilities are found to be too small, even smaller than the CBP or PUP, to claimNI. However,
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Table 3. Remission and Response as outcome
in the depression trial [19].

Outcome Duloxetine Paroxetine Placebo

Remission 50 49 32
Response 80 78 56
Total nE = 147 nR = 148 nP = 145

Table 4. Frequentist p-values andBayesian posterior probabilities under different informative (Info) and
non-informative (Non-Info) priors.

θ Freq-Marg-p Freq-Cond-p CBP Non-info CBP Info PUP Non-info PUP Info DP Non-info DP Info

Response data
0.80 0.198 0.195 0.810 0.845 0.687 0.832 0.370 0.910
0.75 0.159 0.157 0.836 0.879 0.746 0.864 0.397 0.928
0.70 0.125 0.124 0.871 0.911 0.791 0.907 0.437 0.947
0.65 0.097 0.096 0.908 0.942 0.839 0.938 0.468 0.956
0.60 0.073 0.073 0.933 0.962 0.872 0.954 0.506 0.970
0.55 0.055 0.055 0.944 0.976* 0.892 0.967 0.546 0.981*
0.50 0.040 0.040 0.955 0.985* 0.923 0.984* 0.592 0.985*

Remission data
0.80 0.265 0.259 0.723 0.778 0.718 0.789 0.158 0.809
0.75 0.225 0.220 0.776 0.832 0.758 0.831 0.168 0.861
0.70 0.188 0.184 0.811 0.872 0.797 0.874 0.183 0.896
0.65 0.154 0.154 0.832 0.905 0.829 0.908 0.198 0.924
0.60 0.124 0.122 0.872 0.935 0.859 0.946 0.212 0.950
0.55 0.098 0.097 0.899 0.953 0.888 0.964 0.228 0.971
0.50 0.077 0.076 0.916 0.976* 0.914 0.979* 0.249 0.985*
∗Denotes the posterior probability is greater than p∗ = 0.975.

if the Dirichlet parameters are chosen to be (60, 22, 73) with Beta(40, 36) for the arm E for
the Response data, NI can be claimed for θ ≤ 0.55. Similarly, with Dirichlet parameters
(150, 75, 450) with Beta ( 80, 160) for the arm E, NI can be claimed for θ = 0.5 for the
Remission data. We note, here, that the Dirichlet parameters as well as the informative pri-
ors under CBP or PUP are so chosen that the mean of the Beta distribution coincides with
the estimates of proportion parameters. A point to note, the choice of informative priors
cannot be set arbitrarily in practice to claim NI, rather it must be guided from available
and verifiable sources.

7. Conclusion

In this paper, we have presented new Frequentist and Bayesian test procedures for the ‘gold
standard’ three-armNI trial which includes a placebo arm.We focused primarily on binary
outcome with risk difference being the metric of comparison. In the Frequentist setup, we
introduce a more powerful conditional test of NI which makes more intuitive sense with
a reduction in sample size requirement under certain situations. In our proposed meth-
ods, we explored the fraction margin approach with unknown NI margin, δ, which can
be fluctuating based on the effect size of the treatment. On the other hand, the three-arm
fixed margin approach of [18] is based on joint testing which requires additional atten-
tion for decision making as it may result in a biased test (see [6] for Intersection Union
test and [17]). We provided sample size estimation for the three-arms of NI trial under
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three types of allocation (in E, R, P) using all three approaches. We have seen that even
with the non-informative prior Bayesian normal approximation, as well as Bayesian exact
approach yields greater or equal power as compared to Frequentist approach. The sample
sizes using Bayesian approaches are smaller than that of the Frequentist approach for the
desired power of 80%. From our investigation it is evident that an unbalanced allocation of
the total sample size in NI trial results in the reduction of the required number of patients
to achieve a fixed power. According to [31] an unbalanced allocation of the total sample
size in a NI trial is desirable from an ethical point of view. Besides these technical aspects,
NI trial has to be reflected in several substantive respects. The concerns include the choice
of δ, the question of whether a placebo can be included as an additional arm of the study,
AS, to give a few examples among others.

The results of the real clinical trial data suggest that the exact Bayesianmethods perform
favorably in all situations, and that these methods do not rely on any asymptotic approxi-
mation. Notably, with binary end-points, risk difference is not the only function of interest.
One may also frame both a two-arm as well as a three-arm hypothesis in terms of log odds
and/or relative risk ratios. For two-arm trial [30] proposed a fully Bayesian method for
such metrics. Their method is based on a fixed margin-based approach, where margin
construction was not the priority. Our group recently published (see [4,5]) conditional
Frequentist and Bayesian test for risk ratio, odds ratio and number needed to treat which
uses a similar approach as in the current paper, albeit, without any direct mathematical
proof of power gain. The effect of prior miss-specification in the NI context is also an open
area of research. Robust prior in the form of mixture distribution could lead to more stable
and less sensitive result. Another interesting extension could be semi or non-parametric
extensions of our approach. Ghosh et al. [16] proposed a semi-parametric extension of the
Bayesian test procedure for continuous outcomes, which can be further extended for the
binary responses.
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