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ABSTRACT: As wildland fires become more frequent and intense, fire
smoke has significantly worsened the ambient air quality, posing greater
health risks. To better understand the impact of wildfire smoke on air
quality, we developed a modeling system to estimate daily PM2.5
concentrations attributed to both fire smoke and nonsmoke sources
across the contiguous U.S. We found that wildfire smoke has the most
significant impact on air quality in the West Coast, followed by the
Southeastern U.S. Between 2007 and 2018, fire smoke contributed over
25% of daily PM2.5 concentrations at ∼40% of all regulatory air monitors
in the EPA’s air quality system (AQS) for more than one month per
year. People residing outside the vicinity of an EPA AQS monitor
(defined by a 5 km radius) were subject to 36% more smoke impact
days compared with those residing nearby. Lowering the national
ambient air quality standard (NAAQS) for annual mean PM2.5 concentrations to between 9 and 10 μg/m3 would result in
approximately 35−49% of the AQS monitors falling in nonattainment areas, taking into account the impact of fire smoke. If fire
smoke contribution is excluded, this percentage would be reduced by 6 and 9%, demonstrating the significant negative impact of
wildland fires on air quality.
KEYWORDS: smoke PM2.5, wildfire, air pollution, remote sensing, machine learning

■ INTRODUCTION
With a changing climate, large-scale wildfire events have
increased in frequency and intensity, and fire seasons have
been prolonged in the contiguous U.S. (CONUS) in recent
decades.1,2 Wildfire smoke contains large quantities of fine
particulate matter (PM2.5, airborne particles with diameters
smaller than 2.5 μm) and can adversely affect regional air
quality in downwind communities that are tens to hundreds of
kilometers away. For instance, Jaffe et al. reported that PM2.5
levels have increased in summer due to wildland fires in the
western U.S.,3 and Geng et. al observed an significant
enhancement in PM2.5 concentrations in intensive wildfire
years in Colorado.4 This impact has become so expansive that
a previous analysis of PM2.5 measurements from U.S. EPA’s
ground monitoring network between 1988 and 2016 attributed
the increasing trend of 98th quantile of 24 h PM2.5
concentration in the Northwestern U.S., in contrast to the
decreasing trend in the rest of the contiguous U.S., to the
influence of wildland fires.5 In January 2023, the U.S. EPA
proposed to revise the National Ambient Air Quality Standards
(NAAQS) of PM2.5 by lowering the primary annual PM2.5
standard to a range of 9.0−10.0 μg/m.36 Previous studies
documented that starting from 2016 or earlier, the influence of
wildfire smoke has shaped the trajectories of average annual

PM2.5 levels in approximately 75% of contiguous U.S.,7 and
attainment under the new annual PM2.5 standard will be more
challenging in fire prone regions.
Different from ambient PM2.5, smoke PM2.5 contains 5−20%

elemental carbon (EC) and at least 50% organic carbon (OC)
including many polar organic compounds.8 The greater
oxidative potential of smoke PM2.5 implies the possibility of
greater toxicity than ambient PM2.5.

9 Recently, new aircraft-
based campaigns, including Western Wildfire Experiment for
Cloud chemistry, Aerosol absorption, and Nitrogen (WE-
CAN) and Fire Influence on Regional to Global Environments
and Air Quality (FIREX-AQ), have provided more details of
smoke PM2.5 components for specific wildland fires.10,11 In
addition, with the expanding wildland−urban interface and an
aging U.S. population, the overall burden of wildfire-related
diseases is expected to increase.12 A few previous studies have
linked exposure to wildfire smoke PM2.5 with a series of
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adverse health outcomes including cardiovascular, respiratory,
and mental health diseases.12−1315 For example, Alman et al.
positively associated short-term exposure of PM2.5 from
wildfire with respiratory illnesses.16 Stowell et al. reported
significant association between smoke PM2.5 exposure and a
greater risk of emergency department visits due to asthma
attacks after controlling for PM2.5 exposure from nonsmoke
sources in Colorado.17

While chronic exposure to ambient PM2.5 has been shown to
present a much greater risk to human health than acute
exposure,18 few studies have assessed the health effects of
chronic wildfire smoke PM2.5 exposure primarily due to the
challenge of estimating long-term wildfire smoke PM2.5
exposure at high spatial and temporal resolutions. Since most
wildland fires started in remote areas, regulatory monitoring
networks such as the US EPA’s Air Quality System (AQS) are
often insufficient to characterize the spatial patterns of smoke
PM2.5. Low-cost sensor networks have been rapidly evolving to
become a valuable complement to regulatory monitoring
systems, primarily because of their broad spatial coverage and
high sampling frequencies.19 PurpleAir is a citizen-based real-
time PM2.5 monitoring network with nearly 10,000 sensors
currently online globally.20 By utilizing various adjustment
techniques,21,22 previous studies suggested that the low-cost
sensor can be an important supplement to the reference
ground monitors in PM2.5 exposure assessments.23,24 For
example, Vu et al, incorporated the PurpleAir network with
AQS monitors in estimating regional PM2.5 levels during a fire
event in California.25 In addition to the limited spatial pattern,
ground observations alone cannot separate fire smoke PM2.5
from other sources. Chemical transport models (CTMs) such
as the Community Multiscale Air Quality (CMAQ) model can
simulate fire-specific PM2.5 with full coverage in space and
time, greatly expanding the study population of air pollution
epidemiological studies to cover both urban and rural
populations.4 However, uncalibrated CTM smoke simulations
frequently suffer from substantial prediction errors caused by
imperfect characterization of complex fire chemistry, inaccu-
rate emission inventory, and rapidly changing local meteorol-
ogy surrounding fires.26 Most recently, machine learning or
statistical models that integrated ground observations, satellite
remote sensing data, land cover and land use information, as
well as CTM simulations have shown great promise to
generate long-term, accurate, and high-resolution ambient
PM2.5 concentrations worldwide with full spatial and temporal
coverage. To date, a handful of non-CTM-based fusion models
to estimate smoke PM2.5 levels have been reported. For
example, O′Dell et al. (2019) estimated the contribution of
wildland fire smoke to seasonal mean PM2.5 levels in the
CONUS at a spatial resolution of ∼15 km.27 Childs et al.
(2020) estimated daily smoke PM2.5 concentrations at 10 km
spatial resolution using satellite-based fire smoke contours to
define fire days. The coarse spatial resolutions of these studies
cannot capture the detailed spatial gradients of the smoke
PM2.5 levels. The lack of ground observations near the fires to
be included in model training can also be attributed to the
underestimation of peak smoke PM2.5 concentrations in these
studies.
Here, we designed a multistage, CTM-based modeling

framework to estimate full coverage, daily smoke PM2.5
concentrations in the CONUS at 1 km spatial resolution.
This framework integrated CMAQ PM2.5 simulations, multiple
satellite remote sensing products, meteorology reanalysis, land

cover and land use information, and ground observations from
both regulatory and low-cost sensor networks. Taking
advantage of the high spatial and temporal resolution of our
model predictions, we investigated the long-term impact of
wildland fires on national air quality as well as the
representativeness of the AQS monitoring network in
estimating population exposure to fire smoke. In addition,
we investigated the impact of lowering the PM2.5 standard on
the attainment areas and the number of individuals affected by
it, both with and without the influence of smoke emissions
from fires.

■ MATERIALS AND METHODS
Ground PM2.5 Measurements and Calibrations. We

obtained Environmental Protection Agency (EPA) federal
reference and acceptable ground PM2.5 measurements which
were publicly available at the AQS.28 We calculated daily PM2.5
concentrations by averaging the hourly measurements at
stations and days with at least 16 of 24 possible measurements.
The rapidly developing low-cost sensor networks are a
significant supplement of traditional monitoring due to their
high spatial density and temporal frequency.29,30 We included
measurements from the PurpleAir low-cost PM2.5 sensors to
extend the spatiotemporal coverage of ground monitoring and
increase the probability of capturing the PM2.5 pollutions from
wildfire smoke.31 Since the PurpleAir PM2.5 measurements
have biases when compared with reference-grade measure-
ments, we performed a series of quality control and
adjustment.20 We first removed all station days with less
than 16 hourly measurements and those with 30% relative
difference among two channels, which are measurements from
two independent laser counters in each PurpleAir unit. We also
removed daily values with PM2.5 levels above 1000 μg/m3,
temperature less than −20 F° or higher than 140 F°, and
humidity less than 0% or higher than 100%. We conduct
geographically weighted regression (GWR) to adjust PurpleAir
measurements which is similar to many previous studies.24 In
order to perform a spatially representative adjustment across
the entire study domain, we matched PurpleAir monitors and
AQS stations within 5 km. A total of 230 AQS stations were
paired, approximately half of which are located in the western
U.S. Since meteorological conditions such as relative humidity
and temperature have great impacts on PurpleAir accuracy,24

we divided CONUS into 4 subregions, as shown in Figure S1.
We developed four regional GWR models with relative
humidity and temperature as model covariates to adjust the
PurpleAir measurements. A 20 km buffer was created for each
region, and adjusted PurpleAir observations located in the
buffers were calculated as the mean of two GWR models’
outputs in order to make a smooth transition between regions.
The overall R2 between measurements of PurpleAir and their
matched AQS monitors is 0.92 after adjustment and R2 varied
from 0.79 to 0.96 among four regions. Adjusted daily PurpleAir
observations over the annual standard of 12 μg/m3 were added
to our final model.

CMAQ Simulations. The Community Multiscale Air
Quality (CMAQ) model is an atmospheric chemical transport
model that combines emission sources, weather-based
atmospheric transport, dispersion, chemical transformation,
and deposition to predict air pollution concentrations.32 In this
study, two sets of CMAQ model runs were used to predict
daily ground PM2.5 concentrations at ∼12 km spatial
resolution. While the full model simulated the total PM2.5
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concentrations using all emission sources, the nonfire model
toggled off wildland fire emissions to predict the nonfire PM2.5
concentrations. Detailed descriptions of the CMAQ model are
published elsewhere.33,34 The model versions, emissions, and
model configuration information on each model year in our
study are presented in Table S1. In terms of the fire emission
inventories, the models incorporated the BlueSky framework
(v3.5.1) to represent both wildland and prescribed burning.
We calculated the smoke PM2.5 concentrations by subtracting
nonfire PM2.5 concentrations from the total PM2.5. Addition-
ally, we determined the ratio of smoke PM2.5 by dividing
smoke PM2.5 by the total PM2.5.

Data Integration. A large array of predictor variables was
used to develop the PM2.5 models, including satellite-retrieved
aerosol, cloud, and smoke plumes information, gridded
meteorology, population, land cover, and topographic data
(detailed descriptions provided in the Supporting Informa-
tion).
All data sets at various spatial resolutions were integrated at

the 1 km grid of the multi-angle implementation of
atmospheric correction (MAIAC) aerosol optical depth
(AOD). Due to the missing data issue in MAIAC AOD, we
applied a two-step gap-filling approach to obtain a full-coverage
MAIAC AOD (detailed descriptions provided in the
Supporting Information). Daily average PM2.5 measurements
from the AQS monitors and PurpleAir sensors were assigned

to their collocated grid cells, and averaged PM2.5 measure-
ments were calculated at grid cells with multiple monitors.
Note that the PurpleAir data were adjusted based on a
previously reported method before merging with AQS
measurements.24 We interpolated the coarse resolution
variables into 1 km resolution using inverse distance
weighting.35 They include CMAQ, Copernicus Atmosphere
Monitoring Service (CAMS) AOD and meteorological
variables. We obtained the land cover data at 30 m resolution
from the National Land Cover Database. We collected road
network and elevation data from the Global Roads Inventory
Project and the Global Digital Elevation Model, version 3,
respectively. For each grid cell, we calculated the percentages
of land cover types, average elevations, and total road length.
We matched our grid with the 1 km resolution population
density data, which is from the Landscan Program at Oak
Ridge National Laboratory (ORNL).36 We calculated daily
total smoke plumes duration, daily weighted average plume
density for each grid cell using the fire smoke polygons
produced by the National Oceanic and Atmospheric
Administration (NOAA) Hazard Mapping System.37,38 Terra
and Aqua Moderate Resolution Imaging Spectroradiometer
(MODIS) cloud fractions at 5 km resolution were assigned to
the overlapped grid cells and then averaged if available. One
weakness lies in capturing the diurnal cycle of PM2.5, as fire
smoke transport differs between day and night due to varying

Figure 1. Flow diagram of the PM2.5 modeling framework (RF: Random Forest model).
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meteorological conditions, and it is challenging for satellite
instruments to capture nighttime fire smoke.39−41 Given the
challenges in distinguishing daytime from nighttime meteor-
ology and the limited understanding of nighttime meteoro-
logical effects on fires, our primary focus is on daytime
conditions. Consequently, we calculated daytime averages of
meteorological data as daily averages. Based on climate types,
CONUS is divided into nine climate regions,42 and indicators
of climate region were assigned to the overlapped grid cells.

Smoke PM2.5 Model Development. Random forest (RF)
is an ensemble algorithm based on multiple decision trees, and
the outputs from all decision trees are averaged to be the
prediction of the dependent variable.43,44 Each decision tree is
built on a bootstrap training data, and a subset of independent
variables are randomly selected in each tree node.43 The
bootstrap strategy allows RF to be a robust model against
overfitting.44 RF also provides an estimated importance rank
which informs the weights of predictors and allows an easier
interpretation, comparing to neural network models.43,45 The
R2 and root mean squared error (RMSE) were calculated from
overall, spatial, and temporal 20-fold cross-validation (CV),
and we used them to assess the model performance and
furthermore adjust model parameters.
Two random forest algorithms were trained independently

in order to separate smoke PM2.5 from the background PM2.5
by grid cells and days (Figure 1). The smoke-impacted regions
and no-smoke regions were defined by smoke impacts in both
time and space. First, the modeling grid cells and days were
divided into smoke-impacted regions and no-smoke regions
according to daily HMS smoke plume polygons and the
CMAQ smoke ratio (i.e., simulated smoke PM2.5 over the total
PM2.5 concentration). On a given day, a smoke-impacted grid
cell was defined as either being inside an HMS smoke plume
polygon or having a CMAQ smoke ratio greater than a
threshold. We examined different values of the CMAQ smoke
ratio between 0.01 and 0.1, and training data sets were most
balanced for two models with the ratio of 0.03. Next, in the
smoke-impacted region, a random forest algorithm was trained
to estimate daily total PM2.5 concentrations, which was
assumed to be the sum of smoke contribution and background

(i.e., contribution from all of the other sources). In the no-
smoke region, smoke contribution was assumed to be
negligible, and a separate random forest algorithm was trained
to estimate daily background PM2.5 concentrations in the no-
smoke region. Then, this no-smoke algorithm was also used to
predict daily background PM2.5 concentrations in the smoke-
impacted region. Finally, the daily smoke PM2.5 concentration
in each grid cell of the smoke-impacted region was then
calculated as the difference between the predicted total PM2.5
concentration and the predicted background PM2.5 concen-
tration. Since only a small proportion of extreme-high ground
PM2.5 concentrations were captured by AQS data, we applied a
Synthetic Minority Oversampling Technique (SMOTE) to
oversample the underrepresented measurements with high
levels to improve the model performance at high PM2.5
concentrations.25,46 SMOTE generated synthetic samples
along with their predictions from the five nearest grid cells
in the training data set.46 PM2.5 concentrations over 35 (U.S.
NAAQS for 24 h PM2.5) and below 100 μg/m3 were
oversampled once, while the PM2.5 measurements over 100
μg/m3 were oversampled twice through SMOTE. The
oversampled data accounted for 0.85% of the total input
data, and the SMOTE process did not skew the distribution of
PM2.5 observations. Our final training data set for smoke-
impacted and no-smoke models had 1 681 873 and 2 010 266
station-day observations, respectively.
The formulas of models in smoke-impacted and no-smoke

regions are

=

= f X Z

model in no-smoke region: PM

PM

( , )

(s,t)

B(s,t)

(s,t) (s,t)

= +

= f X Z

model in smoke-impacted region: PM

PM PM

( , )

(s,t)

F(s,t) B(s,t)

(s,t) (s,t)

Figure 2. Annual mean smoke PM2.5 concentration (μg/m3) from 2007 to 2018 in the CONUS.
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where PM(s,t), PMF(s,t), and PMB(s,t) denote the ground-level
PM2.5 concentration, fire component PM2.5 and nonfire
background PM2.5 at location s on day t, respectively. For
the model in no-smoke region, X(s,t) is the CMAQ-simulated
background PM2.5 at location s on day t, and Z(s,t) is a vector of
additional predictors, including gap-filled MAIAC AOD,
meteorological factors, cloud fractions, land cover, and climate
region types, as listed in Table S2. For the model in the smoke-
impacted region, X′(s,t) is the CMAQ-simulated total PM2.5 at
location s on day t, while Z′(s,t) includes the HMS data and all
predictors in Z(s,t).

■ RESULTS AND DISCUSSION
Model Performance. Removing the oversampled data, the

R2 of overall, spatial, and temporal CV of smoke-impacted
model is 0.75 (RMSE = 4.59 μg/m3), 0.59 (RMSE = 5.88 μg/
m3), and 0.67 (RMSE = 5.18 μg/m3), respectively, indicating a
good model performance in fire grids. For the no-smoke
model, the R2 of random, spatial, and temporal CV is 0.68,
0.47, and 0.63, with RMSE of 3.35, 4.30, and 3.59 μg/m3,
respectively, which indicates the satisfactory performance from
the random forest model for background PM2.5. As shown in
Figure S2, when daily model estimations were compared with
AQS measurements, random forest models slightly over-
estimated at low PM2.5 concentrations and underestimated at
high PM2.5 values, especially when the daily PM2.5 concen-
tration exceeds 100 μg/m3. After aggregating the daily PM2.5
predictions to a monthly level, the R2 of smoke-impacted and
no-smoke models in the overall 20-fold CV increased to 0.84
and 0.78, respectively. This indicated that the majority of
overestimations and underestimations are most likely ran-
domly distributed, since random errors can be reduced by
averaging.47 Scatter plots for aggregated monthly CV are
shown in Figure S3. Same process was used for spatial and
temporal CV and as a result, the R2 of both smoke-impacted
and no-smoke models were improved, as shown in Table S3.
After aggregating the overall CV to an annual level, the R2

between all predictions and AQS measurements is 0.9,
implying a high accuracy of model predictions. As for variable
importance, CMAQ is the most important predictor in both
smoke-impacted and no-smoke models, and AOD and wind
are the common parameters ranked in the top five in two
models (Figure S4).

Spatiotemporal Patterns of Smoke PM2.5 across the
CONUS. Figure 2 presents spatial distributions of annual mean
smoke PM2.5 in the CONUS from 2007 to 2018, with a focus
on identifying areas where annual average fire smoke exceeding
1 μg/m3 is deemed to have a significant impact on PM2.5 levels.
While the Western U.S. has seen a significant and more
persistent impact of fire smoke on PM2.5 levels, other regions
including the mid-West and the Southeast have also suffered
high smoke PM2.5 in certain years. For example, annual average
smoke PM2.5 concentrations over 8 μg/m3 occurred in
California, Oregon, and Washington in 2007−2009, 2011,
2013, 2017, and 2018, and over 50% of the areas in these states
were impacted by fire smoke during these years. Along the
California coasts and in the Central Valley, annual average
smoke PM2.5 concentrations exceeded 12 μg/m3 in 2007, 2017,
and 2018. We observed the highest annual average wildfire
smoke PM2.5 level north of Ventura County in Southern
California at 25 μg/m3 in 2017. Other Western states, such as
Idaho, Montana, Utah, Colorado, Arizona, and New Mexico
have been affected to a lesser degree, with annual mean smoke

PM2.5 levels ranging between 0 and 5 μg/m3. The second most
affected region by fire smoke is the Southeast. For example,
annual smoke PM2.5 levels of up to 9 μg/m3 were common in
Alabama, Georgia, and Carolinas. Fire smoke also contributed
significantly to elevated PM2.5 levels in Georgia and Florida in
2010 and 2017. In addition, air quality in the Midwestern
states was periodically affected by fire smoke. For example,
approximately half of Texas, Oklahoma, and Kansas showed
detectable fire smoke impact in 2010, 2011, and 2017, with
high smoke PM2.5 levels observed over large cities such as
Dallas, Austin, and San Antonio. PM2.5 levels in the states
around the Great Lakes and in the Northeastern U.S. have
rarely been affected by fire smoke during our study period.
Conducting large-scale epidemiological studies to investigate

the impact of fire smoke on human health has been
challenging, largely due to the difficulty in estimating spatially
resolved exposure to fire smoke PM2.5. Recently, a few
modeling studies of smoke PM2.5 concentrations in the
CONUS have been conducted with spatial resolutions ranging
from 10 to 15 km.27,48 Using machine learning models such as
those presented in this study allows the integration of CTM
fire simulations, high-resolution satellite remote sensing of fire
smoke, and the broader spatial representation of the PurpleAir
sensor network to achieve high spatial resolution (1 km), high
temporal resolution (daily), and full-coverage of the CONUS
for a 12 year period. The temporal trend and spatial
characteristics of our model-predicted smoke PM2.5 concen-
trations align with those of major fire events across the
country. For example, data from the National Interagency Fire
Center49 showed that fire activities in Southern California,
eastern Texas, and southern North Carolina and Tennessee in
2007 were 125 and 121% of previous 10 year average,
respectively. The acres burned in the Rocky Mountains were
367 and 351% of previous 10 year average in 2012 and 2017,
respectively, and our model successfully captures these
features. Compared with uncalibrated CMAQ simulations of
smoke PM2.5 (Figure S5, panel A), our predictions better
represent the spatial and temporal distribution of fire smoke.
For instance, our model captured the high smoke PM2.5 values
in the West and Southeast during the extreme fire years, such
as 2007, 2017, and 2018 (Figure 2), and low smoke PM2.5
values in 2015, which have same temporal trend as reported by
National Interagency Fire Center.49 In addition, our model was
able to capture finer spatial features due to its high spatial
resolution at 1 km. Compared with previous smoke PM2.5
estimations with coarse resolution, our predictions provided a
clearer boundary of the smoke-impacted areas and captured
the detailed variability of population exposure levels. As
illustrated in Figure S6, population within an area of 100 km2

in Sacramento, California, were able to be assigned to 100
unique smoke PM2.5 values based on their locations rather than
one average value, which offers the feasibility for high-
resolution health impact studies.
To the best of our knowledge, our study is the first large-

scale attempt to use calibrated PM2.5 concentration measure-
ments from low-cost sensors such as PurpleAir monitors in
conjunction with AQS monitors to better characterize the
spatial variability of smoke PM2.5. Previous research has shown
that low-cost sensor measurements can increase the likelihood
of detecting wildfire smoke,19,31 and integrating low-cost
sensor data with regulatory measurements has allowed for
better training of satellite-based machine learning models for
identifying air pollution hotspots.24,50 In our study, PurpleAir
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sensors reported extreme PM2.5 concentrations over 200 μg/
m3 during the Camp fire in California, while the highest AQS
measurement was approximately 100 μg/m3 as there were no
AQS monitors located near the smoke plumes. Including the
high PM2.5 measurements from PurpleAir in our training data
set reduced the model underestimation on high PM2.5 values.
For instance, the smoke PM2.5 prediction from models without
PurpleAir (Figure S5, panel B) was biased low in California
where high smoke PM2.5 values always occurred and the
difference of annual smoke PM2.5 predictions between models
with and without PurpleAir measurements reached up to 16
μg/m3 in 2018. While PurpleAir measurements are not
available prior to 2016, our models were developed using
data from 2007 to 2018. Since our models do not incorporate
time indicators, the influence of PurpleAir data extends across
the entire study period rather than being limited to the years
when PurpleAir measurements were available. Unlike earlier
studies which attributed the deviation from background levels
of PM2.5 to smoke using ground total PM2.5 measurements,
satellite-based smoke plume identification, and air trajecto-
ries,27,48 we employed two different CMAQ simulations, with
and without fire emissions, along with satellite-based HMS
smoke contours to more accurately label smoke-impacted areas

and days. Our approach facilitates independent modeling of
both background PM2.5 and total PM2.5 accounting for smoke
impact nationwide.

Effect of Fire Smoke on National PM2.5 Concentration
Levels. Using our daily model predictions, we assessed the
impact of fire smoke on the regulatory air quality monitoring
network. We defined a smoke impact day as when fire smoke
contributed more than 25% of the model-estimated daily total
PM2.5 mass concentration at the location of an air quality
monitoring station included in the EPA AQS. Around 40% of
the 1836 AQS monitoring sites have experienced smoke
impact days for more than a month each year during our study
period (Figure 3). In 2009 and 2010 when our model
predicted the lowest smoke impact on national PM2.5 levels,
over 25% of the national ambient PM2.5 monitoring network
was under a significant smoke impact for more than a month.
In intensive fire years such as 2017, 50% of all monitoring
locations were affected for at least a month, indicating a
widespread impact at the national scale. During the worst fire
year of 2007, 25% of all monitoring locations were affected for
more than 90 days. Smoke impact on air quality was highest in
summer and fall in most years. However, in low fire years such

Figure 3. Fractions of EPA PM2.5 monitoring locations significantly affected by fire smoke from 2007 to 2018.

Table 1. Fire Smoke Impact on the U.S. Population

year

total population
(population without
AQS coverage)

(million)

smoke-impacted total population
(smoke-impacted population without

AQS coverage) (million)

smoke impact days among population
with AQS coverage (among population

without AQS coverage)

total PM2.5
(smoke PM2.5)

with AQS
coverage

total PM2.5 (smoke
PM2.5) without
AQS coverage

2007 300.1 (73.6) 299.7 (73.6) 38.2 (54.6) 11.90 (0.96) 9.87 (1.11)
2008 302.6 (74.1) 298.3 (72.6) 21.2 (22.4) 10.42 (0.32) 8.26 (0.38)
2009 305.5 (70.9) 300.3 (69.9) 13.5 (19.4) 11.20 (0.25) 8.45 (0.22)
2010 307.0 (72.0) 285.7 (71.6) 12.8 (22.6) 10.83 (0.57) 9.73 (0.77)
2011 310.0 (72.9) 307.9 (72.7) 16.4 (25.7) 11.43 (0.51) 9.14 (0.73)
2012 299.9(72.0) 289.0 (71.6) 11.9 (20.3) 10.35 (0.53) 9.28 (0.83)
2013 313.1 (74.0) 308.0 (72.9) 16.7 (19.1) 11.57 (0.61) 9.34 (0.66)
2014 317.3 (74.6) 310.8 (74.3) 16.9 (22.5) 9.40 (0.31) 8.74 (0.40)
2015 319.8 (74.9) 313.2 (74.6) 14.4 (19.2) 9.37 (0.48) 7.91 (0.64)
2016 321.5 (74.9) 319.7 (74.9) 17.6 (25.0) 9.30 (0.31) 7.98 (0.48)
2017 324.1 (74.6) 321.6 (74.5) 26.2 (33.8) 11.22 (0.97) 8.78 (0.92)
2018 325.6 (74.8) 308.9 (73.1) 20.2 (18.5) 10.51 (0.61) 8.95 (0.65)
average 312.2 (73.6) 305.3 (73.0) 18.8 (25.2) 10.79 (0.50) 8.87 (0.65)
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as 2009 and 2010, fire smoke had the greatest impact in spring
and fall.

AQS’s Representativeness of Population Exposure to
Fire Smoke. Using our model predictions and annual
population estimates at a 1 km resolution, we estimated the
U.S. population affected by fire smoke. As shown in Table 1,
nearly the entire population in the CONUS, ranging from 95%
in 2018 to 100% in 2007, has been exposed to significant fire
smoke PM2.5, defined as over 25% smoke contribution to total
PM2.5, for at least 1 day per year. On average, a slightly higher
percentage of people living outside the vicinity of an EPA AQS
monitoring station (defined by a 5 km radius) have been
exposed to fire smoke. The average duration of population
exposure to fire smoke showed a more substantial difference.
On average, people living outside the vicinity of an AQS
monitoring station experienced 25 smoke impact days, 34%
(ranging from −8% in 2018 to 70% in 2012) greater than
people living near an AQS station. While the mean model-
estimated total PM2.5 concentration in regions near an AQS
station (10.79 μg/m3) is 22% greater than that in regions
without AQS coverage (8.87 μg/m3), the estimated smoke
PM2.5 concentration shows the opposite trend, with a 30%
decrease (0.50 vs 0.65 μg/m3). Since the majority of AQS
stations are located in urban areas, these findings suggest that
using EPA observations alone may substantially underestimate
both the duration and the concentration of the fire smoke
exposure of the rural and suburban population. Figures based
on Table 1 are shown in the Supporting Information (Figure
S7) to make the temporal trend visible.

Impact of Fire Smoke on Attainment Status with the
Proposed New PM2.5 Standard. In January 2023, the U.S.
EPA proposed to lower the NAAQS for annual mean PM2.5
concentrations, calculated as the average of the past three
years, to a value between 9 and 10 μg/m3. We estimated the
total population as well as the number of AQS monitoring sites
that would reside in nonattainment areas under the new
standard (Tables S4 and S5). Without considering the impact
of fire smoke, an average of 116.83 million people (from 68.73
million in 2016 to 148.74 million in 2013) and 30% of all AQS
monitoring sites (from 15% in 2017 to 40% in 2011) in the
CONUS would be in areas with annual mean PM2.5
concentrations equal to or above 10 μg/m3. When we
considered the fire smoke contribution to PM2.5 levels, an
additional 21.4 million people and 6% of AQS monitors would
reside in nonattainment areas. Under the stricter standard of 9
μg/m3, the average affected population would increase to
167.23 million without considering the effect of fire smoke and
197.68 million (ranging from 153.73 million in 2016 to 225.27
million in 2013) with the contribution of fire smoke. Regarding
air quality monitoring, an average of 41% of all AQS
monitoring sites would fall into nonattainment areas. When
the contribution of fire smoke was considered, this percentage
rose to 50% (ranging from 37% in 2016 to 58% in 2011 and
2012).
As the increasing regulation of emissions of PM2.5 and its

precursors from anthropogenic sources have effectively
improved air quality in most parts of the U.S., fire emissions
are becoming a major contributor of PM2.5. The proximity of
large populations to wildland fires poses a nontrivial threat to
public health and compliance with ambient air quality
standards. According to EPA,51 approximately 20.9 million
Americans (2010 population) reside in PM2.5 nonattainment
areas based on the current NAAQS as of 2023. This number

changed to around 21.7 million, based on our model-estimated
county-level annual total PM2.5 in 2018 and current NAAQS of
12 μg/m3. Our model estimated that 95.9−146.3 million more
people would live in nonattainment areas if the annual mean
PM2.5 NAAQS were lowered to between 9 and 10 μg/m3. Our
calculations also suggested that taking the impact of fire smoke
into account would result in an additional 21.4−30.5 million
people falling into nonattainment areas. As most wildland fires
start in rural areas, fire smoke PM2.5 would disproportionally
affect suburban and rural populations. The comprehensive
spatial coverage of our model estimates would enable future
research on the differential health effects of air pollution
exposure associated with altered PM2.5 composition in these
communities.
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